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Abstract
We consider extensions of the Shannon relative entropy, referred to as f -divergences.
Three classical related computational problems are typically associated with these
divergences: (a) estimation from moments, (b) computing normalizing integrals, and
(c) variational inference in probabilistic models. These problems are related to one
another through convex duality, and for all of them, there are many applications
throughout data science, and we aim for computationally tractable approximation
algorithms that preserve properties of the original problem such as potential convexity
or monotonicity. In order to achieve this, we derive a sequence of convex relaxations
for computing these divergences from non-centered covariance matrices associated
with a given feature vector: starting from the typically non-tractable optimal lower-
bound, we consider an additional relaxation based on “sums-of-squares”, which is is
now computable in polynomial time as a semidefinite program. We also provide com-
putationally more efficient relaxations based on spectral information divergences from
quantum information theory. For all of the tasks above, beyond proposing new relax-
ations,we derive tractable convex optimization algorithms, andwepresent illustrations
on multivariate trigonometric polynomials and functions on the Boolean hypercube.
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1 Introduction

Tools from information theory are ubiquitous in data science. Starting with the notion
of Shannon entropy, other notions have emerged, in particular, f -divergences [1, 19],
which are defined as

D(p‖q) =
∫
X

f
(dp
dq

(x)
)
dq(x), (1)

where p and q are two finite positive measures on an arbitrary set X, dpdq is the density

of p with respect to q, and f : R∗+ → R is a convex function.1 A classical example
is f (t) = t log t − t + 1, where D(p‖q) is the usual Kullback–Leibler divergence,
associated with Shannon information theory [17], which we will use as a running
example.

These divergences have been used in many areas in machine learning, signal pro-
cessing or statistics, such as within message passing and variational inference [41],
concentration inequalities [11], PAC-Bayes analysis [50], independent component
analysis [14], information theory [51], differential privacy [42], design of surrogate
losses for classification [45], and optimization [7]. We review f -divergences and their
basic properties in Sect. 2, see [37, 38, 56] for a more complete treatment.

Two classical related computational problems are typically associated with f -
divergences, which have to be estimated or optimized in some way, a task that can
become difficult in multivariate settings. For all them, there are many applications
throughout data science, and we aim for computationally tractable algorithms that pre-
serve properties of the original problem (such as potential convexity or monotonicity).

(1) Estimation of divergences from moments: Given some function T from X to some
vector space, the goal is to estimate D(p‖q) defined in Eq. (1) only from the
knowledge of the integrals

∫
X T (x)dp(x) and

∫
X T (x)dq(x). Our aim in this

paper is to estimate D(p‖q) from below, and to obtain the largest possible lower
bound. We focus on particular functions T of the form T (x) = ϕ(x)ϕ(x)∗, where
ϕ : X → C

d is some complex-valued feature map, and where M∗ denotes the
conjugate transpose of the matrix M . Thus, in our particular situation, T takes
values in the set H+

d of positive semi-definite Hermitian matrices of size d × d.
This choice of the feature map T as a rank-one Hermitian matrix is not a limitation
in many instances, such as with polynomials (as monomials can be arranged in
Hankel matrices) and is key to our methodological developments.
For this particular form of moments as non-centered covariance matrices, we first
provide in Sect. 5 a characterization of the tightest such lower bound. This formu-
lation involves the maximization over X of quadratic forms in ϕ, that is, functions
of the form x �→ ϕ(x)∗Mϕ(x), where M ∈ Hd (the set of Hermitian matrices of
size d × d).
Our first contribution is to replace the exact maximization of such quadratic
forms of ϕ(x) by “sum-of-squares” relaxations, that is, relaxations based on
semi-definite programming and the representation of non-negative functions as

1 Note that our notation D(p‖q) ignores the dependence in f .
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positive-semidefinite quadratic forms in ϕ(x) [34, 49] (see review in Sect. 4). This
relaxation is developed in Sect. 6 and allows to bring to bear the well-developed
area of sum-of-squares optimization with its computational tools and extensive
analyses.We also provide in Sect. 7 a further relaxation which is based on informa-
tion divergences from quantum information theory (which are reviewed in Sect. 3).
Note that a related interesting task is to estimate estimation divergences directly
from samples [46, 54]. We could use our algorithms with increasingly large fea-
ture vectors and use empirical estimates, but a detailed analysis is left for future
research.

(2) Variational inference in probabilistic models: One classical inference task in prob-
abilistic modeling (see [43, 62] and references therein) is to compute moments
of some distributions from which we know the density. In our context of f -
divergences, we consider a density (with respect to some positive measure q)
proportional to ( f ∗)′(h(x) − ρ), where f ∗ is the Fenchel conjugate of f ,
h : X → R is an arbitrary function, and ρ ∈ R is a normalizing constant making
sure that we obtain a probability distribution. As shown in Sect. 8.1, this density
happens to be exactly the maximizer in

cq(h) = sup
p probability measure on X

∫
X
h(x)dp(x) − D(p‖q).

Theoptimal quantity cq(h) is referred to as the f -partition-function, and for f (t) =
t log t−t+1,we recover the usual log-partition function, and densities proportional
to eh(x).
When we restrict h to be a quadratic form in ϕ(x), that is of the form ϕ(x)∗Hϕ(x)
for some H ∈ Hd , then, (a) we can replace D(p‖q) by the lower-bound we just
defined above, and obtain a computable upper-bound of cq(h), and (b) the gradient
with respect to H of the f -partition function ends up being exactly the moment of
T (x) = ϕ(x)ϕ(x)∗ ∈ Hd for the desired distribution. This relaxation is presented
in Sect. 9, and can be extended to the task of computing integrals of the form∫
X f ∗(h(x))dq(x) (see Appendix D).
For well-chosen feature vectors, e.g., polynomials on {−1, 1}d , log-densities that
can be expressed as quadratic forms cover a wide set ofMarkov random field mod-
els in statistical modeling [36] and image processing [10]. For these models, exact
moment estimation and log-partition estimations are key computational tasks that
are intractable, even in moderate dimensions, hence the need for approximations.
The formulations presented in this paper follow a line of work based on tractable
convex relaxations, typically based on linear programming, with few examples
using the more powerful semi-definite programming framework that we further
develop (see [62] for a thorough introduction).

1.1 Contributions

In this paper, we first derive a sequence of three convex formulations of f -divergences
based on covariance matrices. Starting from the typically non-tractable optimal lower-
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bound, we consider an additional relaxation based on “sums-of-squares”, which is
now computable in polynomial time as a semidefinite program, as well as further
computationally more efficient relaxations based on spectral information divergences
from quantum information theory. For all of the tasks above, beyond proposing new
relaxations, we derive tractable algorithms based on convex optimization, and we
present illustrations on multivariate trigonometric polynomials and functions on the
Boolean hypercube. We then extend these bounds by duality to lower bounds on
partition functions.

Since these contributions involve three traditionally separate domains, we start
by a review of those, that is, f -divergences and associated variational formulations
in Sect. 2 (where we propose a new one more adapted to our purposes), quantum
information divergences in Sect. 3, and finally sum-of-squares relaxations in Sect. 4.

2 Review of f -Divergences

We consider f -divergences, with f : R
∗+ → R+ is a convex function, where R

∗+
denotes the set of strictly positive real numbers.We assume that f is strictly convex and
differentiable, so that the Fenchel conjugate f ∗ is differentiable and non-decreasing,
with ( f ∗)′(u) ≥ 0 for u in the domain of f ∗. Moreover, we assume that f (1) = 0, and
thus 1 is theminimizer of f , leading to f ′(1) = 0 and ( f ∗)′(0) = 1.Moreover,we then
have f ∗(0) = 0. Our running example is f (t) = t log t − t + 1 with f ∗(u) = eu − 1
(see more examples below).

On the setX (which we only assume to be equipped with a topology, and compact),
we consider several sets of finite Borel measures: M+(X) the set of finite positive
measures on X, M(X) the set of finite signed measures on X, and P(X) the set of
probability measures on X (that is, finite positive measures in M+(X) that integrate
to one).

For two finite positive measures p, q inM+(X), we can define

D(p‖q) =
∫
X

f
(dp
dq

(x)
)
dq(x),

for all non-negative measures (possibly non normalized), assuming that the density
dp
dq (x) exists for all x ∈ X and that the integral is finite. We now review several
properties and examples, see [19, 50, 56] for more results.

2.1 Classical Properties

Given our assumption that 1 is a global minimizer of f , f (1) = 0, and f is strictly
convex, we have D(p‖q) ≥ 0 with equality if and only if p = q. Moreover, D(p‖q)

is jointly convex in p and q.
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2.2 Examples

Wehave the following classical examples,with the usual “reversion” of f -divergences:
if we define g(t) = t f (1/t), swapping p and q in D(p‖q) is equivalent to replacing
f by g (for α-divergences below, this corresponds to replacing α by 1−α). All of the
approximations that we consider in this paper will satisfy this reversibility: swapping
p and q (and later moment matrices A and B) is equivalent to replacing f by g.

Note that the total variation case, where f (t) = |t − 1| is excluded from most
developments because it is neither differentiable nor strictly convex (nor operator
convex, as defined in Sect. 3.1), but many results (except the quantum ones) would
apply as well. We normalize all functions f so that f ′′(1) = 1. See table and plots
below.

Divergence f (t) f ∗(u) ( f ∗)′(u)

α-Rényi 1
α(α−1)

[
tα − αt + (α − 1)

] 1
α

[−1+ (1+ (α−
1)u)α/(α−1)] (1 + (α −

1)u)1/(α−1)

Kullback–Leibler,
α = 1

t log t − t + 1 eu − 1 eu

Reverse KL,
α = 0

− log t + t − 1 − log(1 − u) 1
1−u

Squared Hellinger,
α = 1

2

2(
√
t − 1)2 u

1−u/2
1

(1−u/2)2

Pearson χ2, α = 2 1
2 (t − 1)2 1

2 (u + 1)2+ − 1
2 (u + 1)+

Reverse Pearson,
α = − 1

1
2
( 1
t + t

) − 1 1 − √
1 − 2u 1√

1−2u

Le Cam (t−1)2
t+1 2− u − 2

√
1 − 2u 2√

1−2u
− 1

Jensen–Shannon 2t log 2t
t+1 + 2 log 2

t+1 −2 log(2 − eu/2) 1
2 exp(−u/2)−1

2.3 Variational Representations

The f -divergence has a variational representation obtained from the Fenchel conjugate
of perspective functions [53]. Indeed, the function (p, q) �→ q f

( p
q

)
defined on R+ ×
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R
∗+ is referred to as the perspective function of f , is convex, and has the variational

representation for p ∈ R+ and q ∈ R
∗+:

q f
( p

q

)
= sup

v,w∈R
vp + wq such that ∀r ≥ 0, rv + w ≤ f (r), (2)

where for p and q ∈ R
∗+, the maximizer w is infr≥0 f (r) − rv = − f ∗(v), and thus

the optimal value of v is the supremum of vp − q f ∗(v), leading to optimal values
v∗ = f ′( p

q

)
, and w∗ = − f ∗(v∗) = f

( p
q

) − p
q f ′( p

q

)
. Depending on the behavior of

f at 0 and +∞, we can extend the perspective function to R+ × R+.
Following [40], for p, q ∈ M+(X), applying Eq. (2) to densities, this leads to

a variational representation of D(p‖q) as the supremum of linear functions of the
measures p and q (with functions v and w that are measurable and bounded):

D(p‖q) = sup
v,w:X→R

∫
X

v(x)dp(x) +
∫
X

w(x)dq(x) such that ∀x ∈ X,

∀r ≥ 0, rv(x) + w(x) ≤ f (r). (3)

The optimal functions w and v are such that v(x) = f ′( dp
dq (x)

)
, and w(x) =

f
( dp
dq (x)

) − dp
dq (x) f ′( dp

dq (x)
) = − f ∗(v(x)). We can also use the function g defined

above through g(t) = t f (1/t), to get w(t) = g′( dq
dp (x)

)
.

Note that in this representation, the non-negativity of the measures p and q is
automatically satisfied (the value of the optimization problem in Eq. (3) is infinite
otherwise). Optimizing with respect to w(x) in closed form as above then leads to the
representation of D(p‖q) from [13, 46] as the supremum with respect to v : X → R

of
∫
X v(x)dp(x) − ∫

X f ∗(v(x))dq(x).

2.3.1 New Variational Unconstrained Formulation

In this paper, we will need a novel unconstrained variational formulation similar to
Eq. (3). To this effect, we introduce the function F : R2 → R defined as

F(v,w) = sup
r≥0

rv + w − f (r)

r + 1
. (4)

The function F is convex as a supremum of affine functions and given our assumption
on f that f (t) ≥ f (1) = 0 for all t > 0, we have v+w

2 ≤ F(v,w) ≤ max{v,w}
(which also shows it has full domain). In addition all subgradients of F are in the
simplex in R

2. Moreover, for any constant u ∈ R, F(v − u, w − u) = F(v,w) − u,
and F(w, v) ≤ 0 if and only if for all r ≥ 0, rv + w − f (r) ≤ 0.

Thus, starting from Eq. (2), we have, for p, q ∈ R
∗+:

q f
( p

q

)
= sup

v,w∈R
vp + wq such that F(v,w) ≤ 0

= sup
u,v,w∈R

(v − u)p + (w − u)q such that F(v − u, w − u) ≤ 0,
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by adding an extra variable u,

= sup
u,v,w∈R

vp + wq − (p + q)u such that F(v,w) ≤ u, using properties of F,

= sup
v,w∈R

vp + wq − (p + q)F(v,w) since the optimal u is F(v,w). (5)

In other words, the function F is the Fenchel conjugate of the function (p, q) �→
q f

( p
q

)
restricted to p+q = 1. Using the same technique as above and replacingw(x)

and v(x) by w(x)− u and v(x)− u) in Eq. (3), we can optimize with respect to u and
thus obtain: as

D(p‖q) = sup
v,w:X→R

∫
X

v(x)dp(x) +
∫
X

w(x)dq(x)

−
( ∫

X
dp(x) +

∫
X
dq(x)

)
sup
x∈X

F
(
v(x), w(x)

)
. (6)

Equation (6) above will be crucial when estimating f -divergences of partition func-
tions because it leads to unconstrained optimization problems, while Eq. (3) was
constrained.

2.3.2 Computing F

In our algorithms in later sections, we will need to compute F for any (v,w) ∈ R
2,

that is, solve for r ≥ 0 in Eq. (4). This is a one-dimensional root-finding problem for
which Newton method can be used with quadratic convergence, and thus with few
iterations. See “Appendix A” for details for the function f (t) = t log t − t + 1.

2.3.3 Variational Formulations as Infimum

Through convex duality, we can derive variational formulations of D(p‖q) as mini-
mization problems rather than maximization problems like in Eqs. (3) and (6). Since
this is not crucial to our developments, this is presented in Appendix E for all our
formulations.

3 Review of Quantum Information Theory

In order to define quantum information divergences, we first need to introduce operator
convexity.

3.1 Operator Convexity

All the examples of convex functions proposed in Sect. 2 also happen to be “operator
convex”, meaning that for two positive semi-definite Hermitian matrices A, B, and
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any λ ∈ [0, 1],

f (λA + (1 − λ)B) � λ f (A) + (1 − λ) f (B),

where � defines the Löwner order between Hermitian matrices (A � B if and only if
B − A is positive semi-definite), and f (A) is the spectral function defined as f (A) =∑d

i=1 f (λi )uiu∗
i when A = ∑d

i=1 λi ui u∗
i is an eigenvalue decomposition of A.

A classical necessary and sufficient condition for f being operator-convex is the
existence of a representation of f as, for f additionally satisfying f (1) = f ′(1) = 0:

f (t) = β(t − 1)2 + (t − 1)2
∫ +∞

0

1

λ + t
dν(λ), (7)

for some β ∈ R+ and a positive measure ν onR+ [9]. When the function f is extend-
able to an analytic function onC, then the measure ν can be obtained from the Stieltjes

inversion formula [63], as the limit of the measure with density 1
π
Im

(
f (−λ−i t)

(λ+i t+1)2

)
− β

when t → 0+. In “Appendix B”, we provide this decomposition for the examples
from the beginning of Sect. 2.

Operator convexity is crucial for the quantum information divergences that we now
consider.

3.2 Quantum Information Divergences

We consider two Hermitian positive semi-definite matrices A and B in H
+
d . If A

and B commute, then they are jointly diagonalizable, and we can naturally define a
divergence as

d∑
i=1

λi (B) f
(λi (A)

λi (B)

)
,

where λi (A) and λi (B) are the corresponding non-negative eigenvalues of A and
B (with the same eigenvectors). When A and B do not commute, there are several
notions of f -information divergences that reduce to the formula above when matrices
commute [60]. Among the several candidates from quantum information theory [23,
29, 40], two are particularly interesting in our context.

The so-called maximal divergence is equal to

D̃QT
max(A‖B) = tr

[
B1/2 f (B−1/2AB−1/2)B1/2] = tr

[
B f (B−1/2AB−1/2)

]
,

while the standard divergence is equal to:

D̃QT
standard(A‖B) = vec(B1/2)∗ f (A ⊗ B−1)vec(B1/2), (8)
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with the usual Kronecker product notation between matrices and vec(M) the column
vector obtained by stacking the columns of M [26]. It is equal to

d∑
i, j=1

λi f
(μ j

λi

)
|u∗

i v j |2,

where A = ∑d
j=1 μ jv jv

∗
j and B = ∑d

i=1 λi ui u∗
i are eigenvalue decompositions of

A and B. Both are jointly convex and equal to zero if and only if A = B.
An important feature of these divergences is that they canbothbe computed in closed

form from spectral decompositions. This will give a strong computational advantage
for the relaxations that are based on these.

3.2.1 Examples of the Standard Divergence

We have the following classical examples below, with simpler formulas than Eq. (8),
where we recover the von Neumann relative entropy and classical matrix formulations
of the Rényi entropies.

Divergence f (t) D̃QT
standard(A‖B)

α-Rényi 1
α(α−1)

[
tα − αt + (α − 1)

] 1
α(α−1)

[
tr[B1−α Aα] −

α tr[A] + (α − 1) tr[B]]
Kullback–Leibler, α = 1 t log t − t + 1 tr

[
A log A − A log B

]
Squared Hellinger, α = 1

2 2(
√
t − 1)2 2 tr A + 2 tr B −

4 tr
[
A1/2B1/2]

Pearson χ2, α = 2 1
2 (t − 1)2 1

2 tr
[
B−1(B − A)2

]

From the representation of operator convex functions in Eq. (7), we can infer prop-

erties of these divergences from the particular example f (t) = (t−1)2

λ+t for λ > 0, for
which we have

D̃QT
standard(A‖B) = vec(A − B)∗(A ⊗ I + λ · B ⊗ I )−1vec(A − B),

and

D̃QT
max(A‖B) = tr

[
(A − B)(A + λB)−1(A − B)

]
.

This shows immediately that the two quantum divergences are jointly convex in A and
B. A less direct property is that for all A and B (see proof in [29, Prop. 4.1]):

D̃QT
standard(A‖B) ≤ D̃QT

max(A‖B).

Thus, in our context of lower bounds on the regular f -divergence D(p‖q), we get
a tighter result with D̃QT

max, and a strict improvement over [4] which uses D̃QT
standard in
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the same context (but only for the Kullback–Leibler divergence). Moreover, the key
property outlined by [4] that D̃QT

standard(A‖B) ≤ D(p‖q) for A = ∫
X ϕ(x)ϕ(x)∗dp(x)

and B = ∫
X ϕ(x)ϕ(x)∗dq(x) as soon as for all x ∈ X, ‖ϕ(x)‖2 ≤ 1, is preserved

for D̃QT
max. In fact, in this paper, we derive a sequence of lower bounds that are all

improvements on [4]. See Table 1 in Sect. 11 for a summary.
While the Fenchel conjugate of D̃QT

standard(A‖B) with respect to A can be computed

in closed form in most cases, this is not the case for D̃QT
max(A‖B). Thus, some of the

algorithms from [4] cannot be extended and we need to derive new ones based on the
unconstrained variational formulation presented in Sect. 2.3.

3.2.2 Special Case of von Neumann Relative Entropy

When f (t) = t log t − t + 1, for the standard divergence D̃QT
standard(A‖B), we get

tr
[
A log A − A log B

]
, which is the Bregman divergence associated with the von

Neumann entropy A �→ tr[A log A]. Note that this is different from seeing that A
and B are covariance matrices, and considering the Kullback–Leibler between zero-
mean Gaussian distributions with these covariance matrices (which would lead to
1
2 tr[AB−1] − 1

2 log det[AB−1] − d
2 ). For an approach linking semi-definite program-

ming and Gaussian entropies, see [31].

4 Review of Sum-of-Squares Relaxations

In this section, we assume that ϕ is continuous on X, and thus bounded since X is
assumed compact. Tomake the results simpler, we assume that features are normalized
to unit norm, that is, ∀x ∈ X, ‖ϕ(x)‖ = 1, for the standard Hermitian norm. We
consider the task of computing


(M) = max
x∈X

ϕ(x)∗Mϕ(x), (9)

for some matrix M ∈ Hd . Since ϕ is bounded, 
 is a positively homogeneous every-
where finite convex function on Hd . We now introduce necessary tools and notations
for presenting sum-of-squares (SOS) relaxations [34, 49].

Let K be the closure of the convex hull of all ϕ(x)ϕ(x)∗, x ∈ X, C the closure of
its conic hull, and V its linear span. By construction, we haveK ⊂ C ⊂ V, and, since
we have assumed that for all x ∈ X, ‖ϕ(x)‖=1, we have:

� ∈ K ⇔ � ∈ C and tr[�] = 1.

Wemake the extra assumption thatV contains a positive definite matrix (this will most
often be the identity matrix in examples in Sect. 4.2).

By definition of 
 in Eq. (9), and since maximizing linear functions of ϕ(x)ϕ(x)∗
with respect to x ∈ X leads to the same value as maximizing over its convex hull, we
get:
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(M) = max
x∈X

ϕ(x)∗Mϕ(x) = max
�∈K

tr[�M],

that is, the function 
 is the support function of the convex setK. Moreover, using our
notations for finite measures from Sect. 2, we have V = { ∫

X ϕ(x)ϕ(x)∗dp(x), p ∈
M(X)

}
, C = { ∫

X ϕ(x)ϕ(x)∗dp(x), p ∈ M+(X)
}
and K = { ∫

X ϕ(x)ϕ(x)∗dp(x),
p ∈ P(X)

}
.

4.1 Outer Approximations of Convex Hulls

In order to obtain an upper-bound on 
(M) defined in Eq. (9), we will look for outer
approximations of the setK. By construction, the convex hull is included in the affine
hull, that is, if � ∈ K, then tr[�] = 1 and � ∈ V. The extra condition we will use in
this paper follows [34, 49], and is simply that � is positive semi-definite, which is a
direct consequence of ϕ(x)ϕ(x)∗ ∈ H

+
d for all x ∈ X.

We thus consider outer approximations of K = C ∩ {�, tr[�] = 1}, through the
outer approximation of C as Ĉ = V ∩ H

+
d , which corresponds to K̂ = V ∩ H

+
d ∩

{�, tr[�] = 1}, with H
+
d the set of PSD Hermitian matrices. This leads to our

approximation of 
(M) as:


̂(M) = max
�∈K̂

tr[�M] = max
�∈Hd

tr[�M] such that tr[�] = 1,

� ∈ V, and � � 0, (10)

which satisfies 
(M) ≤ 
̂(M) for all M ∈ Hd .
These relaxations are often referred to as “sum-of-squares” (SOS) relaxations,

because of the following dual interpretation,2 Introducing Lagrangemultipliers, c ∈ R

for the constraint tr[�] = 1, Y ∈ V⊥ for � ∈ V, and B � 0 for � � 0, we get, using
strong duality (which holds by Slater’s condition since Eq. (12) has a strictly feasible
point):


̂(M) = sup
�∈Hd

inf
c∈R, Y∈V⊥, B�0

tr[�M] + c(1 − tr[�]) + tr[Y�] + tr[B�]
= inf

c∈R, Y∈V⊥, B�0
sup

�∈Hd

tr[�M] + c(1 − tr[�]) + tr[Y�]
+ tr[B�] (11)

= inf
c∈R, Y∈V⊥, B�0

c such that M = cI − Y − B

= inf
c∈R, B�0

c such that ∀x ∈ X, c − ϕ(x)∗Mϕ(x) = ϕ(x)∗Bϕ(x). (12)

This can be interpreted as finding the lowest upper-bound c on the function x �→
ϕ(x)∗Mϕ(x) by relaxing the non-negativity of c − ϕ(x)∗Mϕ(x) by the existence of
B � 0 such that c − ϕ(x)∗Mϕ(x) = ϕ(x)∗Bϕ(x) (which is indeed non-negative).

2 Note that using an outer approximation in Eq. (10) leads to a relaxation per se while in the dual view
presented here, we obtain a strengthening due to replacing non-negative functions by the smaller set of
sums-of-squares. Throughout the paper, we will use the term “relaxation” in all cases.
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Finally, using the eigendecomposition of B, ϕ(x)∗Bϕ(x) can be written as a sum
of square functions, hence the denomination. Note that it is common to add extra
conic constraints to further restrict Ĉ∗, often leading to hierarchies of relaxations
(see examples below and [34]), which makes the relaxations tighter and tighter. This
corresponds to adding to ϕ another feature vector ϕ+, and see a quadratic form in ϕ

as a quadratic form in ϕ̃ = ( ϕ

ϕ+
)
, which leads to a tighter relaxation.

In terms of computational complexity, because Slater’s condition is satisfied,
interior-point methods have a polynomial number of iterations, each based on
polynomial-time numerical linear algebra algorithms [44].

4.1.1 Spectral Relaxation

Because of our unit norm assumption for the features, we canmaximize with respect to
c and B in Eq. (12) and reformulateEq. (12) as the problemofminimizingλmax(M+Y )

over Y ∈ V⊥. Simply taking Y = 0 corresponds to computing the largest eigenvalue
of M . This corresponds to relaxing K to {� � 0, tr[�] = 1}.

Throughout the paper, we will often use the following statements based on dual
cones (using that the dual of the intersection of closed cones is the sum of their duals
when their relative interiors intersect [53, Corollary 16.4.2], and the assumption that
V contains a positive definite matrix):


(M) ≤ t ⇔ 
(t I − M) ≤ 0 ⇔ t I − M ∈ C∗


̂(M) ≤ t ⇔ 
̂(t I − M) ≤ 0 ⇔ t I − M ∈ Ĉ∗ = H
+
d + V⊥

⇔ ∃Y ∈ V⊥, λmax(M + Y ) ≤ t . (13)

4.2 Examples

4.2.1 Finite Set with Injective Embedding

If X is finite and the Gram matrix of all features for all values of X is invertible, then
the SOS relaxation is tight. Indeed, assuming (potentially after applying an invertible
linear transformation to ϕ) that ϕ(x)∗ϕ(y) = 1y=x , K is the set of diagonal matrices
with a diagonal belonging to the simplex.

4.2.2 Affine Functions on the Euclidean Unit Sphere

We consider X the unit sphere in R
d−1, with ϕ(x) = 1√

2

(
1

x

)
∈ R

d . Then V is

the set of matrices

(
α x�
x X

)
such that tr(X) = α. This is another situation where the

sum-of-squares relaxation is tight [27].
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4.2.3 Trigonometric Polynomials on [0, 1]

We consider X = [−1, 1] and ϕ(x) ∈ C
2r+1, with ϕ(x)ω = e2iπωx/

√
2r + 1 for

ω ∈ {−r , . . . , r}. Then (ϕ(x)ϕ(x)∗)ωω′ = e2iπ(ω−ω′)x/(2r + 1), and thus V is the set
of Hermitian Toeplitz matrices. It turns out that the sum-of-squares relaxation is tight,
see [59, Theorem 1.2.1] and [21].

4.2.4 Trigonometric Polynomials on [0, 1]n

We consider X = [−1, 1]n and ϕ(x)ω = e2iπω�x/(2r + 1)n/2 ∈ C for ω in a certain
set  ⊂ Z

n , typically  = {ω ∈ Z
n, ‖ω‖∞ ≤ r}. We then have (ϕ(x)ϕ(x)∗)ωω′ =

e2iπ(ω−ω′)�x/(2r + 1)n , which depends only on ω − ω′, which defines a set of linear
constraints defining V. The relaxation is then not tight, but by embedding in a larger
set, we can make the relaxation as tight as desired (see [21]), while for n = 2, it will
be tight after a certain (unknown) degree [57, Corollary 3.4].

4.2.5 Polynomials on [−1, 1]

In order to tackle polynomials, we could simply consider ϕ(x) composed of mono-
mials, but this would not lead to a normalized feature map. Rather, following [6,
Section 2.2], given a classical polynomial P , we consider the trigonometric polyno-
mial x �→ f (x) = P(cos 2πx), which we can represent with a normalized feature
map. This extends to polynomials on [−1, 1]n .

4.2.6 Polynomials on the Euclidean Hypersphere

With X = {x ∈ R
n+1, x�x = 1}, we can consider all harmonic polynomials, as

described by [22]. By only considering functions depending on the first n variables,
this allows to consider X the Euclidean unit ball.

4.2.7 Boolean Hypercube

We consider X = {−1, 1}n with feature vectors composed of Boolean Fourier com-
ponents of increasing orders [47]. This corresponds to features ϕA(x) = ∏

i∈A xi ∈
{−1, 1}, where A is a subset of {1, . . . , n}. Moreover, given two sets A and B, we have
ϕA(x)ϕB(x) = ϕA�B(x), where A�B is the symmetric difference between A and B.

If we consider a setA of subsets of {1, . . . , n}, then, the element indexed (A, B) of
ϕ(x)ϕ(x)∗ only depends on the symmetric difference A�B = (A\B) ∪ (B\A), and
this leads to a set of linear constraints definingV. The relaxation is not tight in general,
but if we see our moment matrix as a submatrix obtained from a sufficiently larger set
of subsets, then we obtain a tight formulation (see [33, 35, 58] and references therein).
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5 Exact Lower Bounds Based onMoments

We consider the optimal lower bound on D(p‖q) given the integrals �p =∫
X ϕ(x)ϕ(x)∗dp(x) and �q = ∫

X ϕ(x)ϕ(x)∗dq(x),3 that is, given two Hermitian
matrices A and B:

DOPT(A‖B) = inf
p,q∈M+(X)

D(p‖q) such that �p = A and �q = B. (14)

Note that we do not assume that p and q integrates to one. By construction,
DOPT(�p‖�q) ≤ D(p‖q). Moreover, we have some immediate properties for the
function of (A, B) defined in Eq. (14), which preserves similar properties of D(p‖q).
For other potential properties such as used within multivariate probabilistic modeling,
see [4]:

• If A or B is not in C (the closure of the convex hull of all ϕ(x)ϕ(x)∗), then
the optimization problem in Eq. (14) is infeasible as no (p, q) can be found to
satisfy �p = A and �q = B, and, following the standard convention in convex
analysis [53], we set the value of DOPT(A‖B) to infinity.

• If tr[A] = tr[B] = 1, sinceϕ is normalized to unit norm, then the optimalmeasures
p and q in Eq. (14) are probability measures.

• The function (A, B) �→ DOPT(A‖B) is jointly convex in A and B, as the optimal
value of a jointly convex problem in A, B, p, q.

• If ϕ is replaced by Tϕ for an injective linear map T (which changes also �p and
�q ), the quantity DOPT(�q‖�q) is unchanged.4

• If ϕ is replaced by Tϕ for a (potentially non-injective) linear map T , the quantity
DOPT(�q‖�q) is reduced. Therefore, to have tighter lower-bounds DOPT(�q‖�q)

on D(p‖q), we need to use high-dimensional features. In other words, for all p, q,
the approximation is typically tight, that is, D(p‖q) close to DOPT(�p‖�q) only
if the feature ϕ : X → C

d is rich enough. For approximation capabilities when
the feature size grows to infinity, and the use of positive definite kernel methods,
see [4]. In this paper, all feature vectors will have a fixed dimension.

5.1 Variational Representation

We have, using the representation of the f -divergence D(p‖q) from Eq. (3), and
strong convex duality for an infinite-dimensional optimization problem with lin-
ear constraints [39, Section 8.6], with Lagrange multipliers M, N ∈ Hd , for
the finite-dimensional equality constraints A = ∫

X ϕ(x)ϕ(x)∗dp(x) and B =∫
X ϕ(x)ϕ(x)∗dq(x):

DOPT(A‖B)

= inf
p,q∈M(X)

sup
M,N∈Hd , v,w:X→R

tr
[
M

(
A −

∫
X

ϕ(x)ϕ(x)∗dp(x)
)]

3 Note that �p and �q do depend on ϕ, but we omit the dependence in the notation.
4 In this section, we do not need to impose that ‖Tϕ(x)‖ = 1 for all x ∈ X, but we will in subsequent
sections.
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+ tr
[
N

(
B −

∫
X

ϕ(x)ϕ(x)∗dq(x)
)]

+
∫
X

v(x)dp(x) +
∫
X

w(x)dq(x) such that ∀x ∈ X,∀r ≥ 0, rv(x) + w(x) ≤ f (r)

= sup
M,N∈Hd , v,w:X→R

inf
p,q∈M(X)

tr[MA] + tr[N B] +
∫
X

(
v(x) − ϕ(x)∗Mϕ(x)

)
dp(x)

+
∫
X

(
w(x) − ϕ(x)∗Nϕ(x)

)
dq(x) such that ∀x ∈ X,∀r ≥ 0, rv(x) + w(x) ≤ f (r)

by swapping inf and sup,

= sup
M,N∈Hd

tr[MA] + tr[N B] such that ∀x ∈ X,∀r ≥ 0,

rϕ(x)∗Mϕ(x) + ϕ(x)∗Nϕ(x) ≤ f (r) (15)
since taking the infimum with respect to p and q leads to explicit expressions for v

and w,

= sup
M,N∈Hd

tr[MA] + tr[N B] such that ∀r ≥ 0, 
(rM + N ) ≤ f (r),

by definition of 
. (16)

Note that above, we can restrict M and N to be in V by orthogonal projection on V,
as any component along V⊥ does not change the optimization problem. The represen-
tation above shows that being able to compute DOPT requires the computability of 


defined in Eq. (9), that is, maximizing quadratic forms in ϕ(x), which is exactly what
SOS methods presented in Sect. 4 are tailored to approximate, and that will be used
in Sect. 6 below.

5.1.1 Algorithms to Compute DOPT(A‖B)

This tightest lower bound can only be computed precisely, if we can compute 


arbitrarily precisely. Beyond brute force enumeration, this is typically only easily
possible with sum-of-squares relaxations which are asymptotically tight (thus using
hierarchies in dimensions larger than one). In our experiments where we compare all
bounds, we consider the case of uni-dimensional trigonometric polynomials, for which
our simplest relaxation is already tight. Computable lower bounds are considered
in Sect. 6 (based on SOS relaxations) and Sect. 7 (based on quantum information
divergences).

5.1.2 Alternative Derivation

While we gave a definition of DOPT(A‖B) in terms of smallest possible D(p‖q)

given �p = A and �q = B, the formulation in Eq. (15) shows that it is equivalent
to taking the variational formulation of f -divergences in Eq. (3), and only allowing
quadratic forms in ϕ for the functions w and v, that is, w(x) = ϕ(x)∗Mϕ(x) and
v(x) = ϕ(x)∗Nϕ(x).
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5.1.3 Relaxations

What makes the computation of DOPT(A‖B) difficult is the need to deal with the
constraints 
(rM + N ) ≤ f (r) in Eq. (16). In the next two sections, we will explore
two successive relaxations:

• The first one in Sect. 6 corresponds to using the constraints 
̂(rM + N ) ≤ f (r),
which is thus using the SOS relaxation for the optimization problem. This is
equivalent to the existence ofY (r) ∈ V⊥ (one for each r ) such that rM+N+Y (r) �
f (r)I . Equivalently, this is using Ĉ instead of C, and will lead to the lower-bound
DSOS(A‖B).

• The second one in Sect. 7 adds a further relaxation by having a unique Y inde-
pendent of r , in a specific form that leads to a direct link with spectral quantum
divergence from Sect. 3.2. This will lead to the lower-bound DQT(A‖B).

6 Relaxed f -Divergence Based on SOS

We consider replacing 
 in the optimal relaxation DOPT(A‖B) in Eq. (16) by its
approximation 
̂ based on sums-of-squares, as defined in Sect. 4. This leads to, using
that Ĉ = H

+
d ∩ V, and thus Ĉ∗ = H

+
d + V⊥, from Eq. (13):

DSOS(A‖B) = sup
M,N∈Hd

tr[AM] + tr[BN ] such that ∀r ≥ 0, 
̂(rM + N ) ≤ f (r)

= sup
M,N∈Hd

tr[AM] + tr[BN ] such that ∀r ≥ 0, f (r)I − rM − N ∈ Ĉ∗

= H
+
d + V⊥. (17)

Since 
 ≤ 
̂, we have by construction DSOS ≤ DOPT. Most of the properties of
DOPT are preserved, such as convexity, invariance by invertible transforms. In terms
of domain, it is now finite if only if A, B ∈ Ĉ = H

+
d ∩ V (rather than C).

6.1 Variational Unconstrained Formulation

In order to derive an algorithm to estimate DSOS(A‖B), we will use the same uncon-
strained variational formulation as Eq. (5),5 and introduce the function:

Ĝ(M, N ) = sup
�∈K̂

F
(
tr[M�], tr[N�]) = sup

�∈K̂
sup
r≥0

r tr[M�] + tr[N�] − f (r)

r + 1

= sup
r≥0


̂(rM + N ) − f (r)

r + 1
= sup

s∈[0,1]

̂(sM + (1 − s)N ) − (1 − s) f

( s

1 − s

)
,

by the change of variable s = r/(r + 1) ⇔ r = s/(1 − s). We can therefore use the
same reasoning as the one leading to Eq. (6), now based on Ĝ(M − uI , N − uI ) =
5 A similar formulation can be derived for DOPT using 
 instead of 
̂.
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Ĝ(M, N ) − u, and obtain from Eq. (17) the unconstrained variational formulation:

DSOS(A‖B) = sup
M,N∈Hd

tr[AM] + tr[BN ] such that Ĝ(M, N ) ≤ 0

= sup
M,N∈Hd

tr[AM] + tr[BN ] − (tr[A] + tr[B])Ĝ(M, N ). (18)

6.2 Estimation Algorithm Based on Kelley’s Method

Given the unconstrained formulation above, we are faced with the maximization of
a concave function over a vector space. Assuming that subgradients of Ĝ can be
computed, we can use Kelley’s method [32], which is constructing a sequence of
piecewise-affine lower-bounds on Ĝ(M, N ) obtained from subgradients and use them
to find the next candidate maximizer for M, N ∈ Hd . Note that we can restrict the
search for M − M0 and N − N0 in V (for any well-chosen M0, N0 typically from the
computationally more efficient relaxations derived in Sect. 7) since any component
along V⊥ has no impact on the objective function. Since we do not know a priori an
upper bound on ‖N − N0‖ and ‖M − M0‖, we restrict the minimization to bounded
sets, and increase the bound if the boundedness constraints are active.

6.3 Computing Subgradients

We need to find maximizers defining the convex function Ĝ(M, N ) above, that is,
findingmaximizer s and� in sup�∈K̂ sups∈[0,1] tr[�(sM+(1−s)N )]−(1−s) f

( s
1−s

)
.

Given s, this is equivalent to solving one SOS maximization problem. We use the
Chambolle–Pock algorithm [15] for the primal-dual formulation in Eq. (11), with a
fixed maximal number of iterations. Since we end up solving many such problems for
values of s which are close, we use warm starts and simple predictor–corrector steps
so that the maximal number of iterations is rarely achieved.

To find an approximate joint maximizer (s, �), we first take a fine grid s ∈ [0, 1],
and compute the value of 
̂(sM + (1 − s)N ) − (1 − s) f

( s
1−s

)
for each element of

this grid. From the largest elements, we launch alternating optimization (alternating
optimizing over s and over �), which is converging quickly. The number of steps can
be controlled if needed, but we simply take a grid of step less than 10−3.

6.4 Using Hierarchies

In order to get tighter approximations to DOPT, like in classical SOS optimization,
we can embed the feature ϕ into a larger feature vector ϕ̃ = ( ϕ

ϕ+
)
, where ϕ+ is an

additional feature map. This defines the expression DSOS
ϕ̃

( Ã‖B̃), for moment matrices

Ã and B̃, where we add the dependence on the feature map to makes the difference
explicit. We can then the consider a tighter bound by minimizing DSOS

ϕ̃
( Ã‖B̃) with

respect to Ã and B̃ that have their upper-left blocks equal to A and B.
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In this paper, we focus on the computation of upper-bounds of the partition function.
The study of the approximation capabilities, when the feature vector grows, is left for
future work.

7 Relaxed f -Divergence Based on Quantum Information Theory

In the previous section, we relaxed 
 into 
̂, which corresponds to using SOS relax-
ations for the optimization of quadratic forms. This was equivalent to replacing C by
Ĉ. This can be further relaxed into the spectral relaxation where we replace 
̂ by the
spectral relaxation λmax (which is larger), which is equivalent to replacing Ĉ by the
PSD cone H+

d (which is larger).
Starting from Eq. (17), this thus leads to:

sup
M,N∈Hd

tr[MA] + tr[N B] such that ∀r ≥ 0, rM + N � f (r)I . (19)

The following lemma, taken from [40, Section 9.1] and with a proof shown in
Appendix C, shows that we obtain exactly the “maximal” quantum information diver-
gence D̃QT

max(A‖B) defined in Sect. 3.2.

Lemma 1 [40, Section 9.1] Assume A, B � 0 and f is operator-convex. The maximal
value of Eq. (19) is equal to tr

[
B f

(
B−1/2AB−1/2

)]
(see proof for minimizer).

The simplest spectral relaxation thus satisfies D̃QT
max(A‖B) ≤ DSOS(A‖B). Note

that this is already an improvement on [4], which considers the larger “standard”
quantum divergence.

In the relaxation D̃QT
max,we keep the joint convexity, butwe lose the partial invariance

by invertible linear transform that both DOPT and DSOS had. This can be remedied by
defining DQT as the largest possible value of D̃QT

max once these invariances are taken
into account. This link will be explored in Sect. 7.3, and for now we define DQT as
follows:

DQT(A‖B) = sup
M,N ,V∈Hd

tr[MA] + tr[N B] such that ∀r ≥ 0, rM + N � f (r)V ,

V � 0, V − I ∈ V⊥, (20)

where the only difference with Eq. (19) is the introduction of the matrix V which can
be different from I . Comparing to Eq. (17), we get that it is between D̃QT

max(A‖B) and
DSOS(A‖B), because the constraint rM + N � f (r)V in Eq. (20) implies f (r)I −
rM − N ∈ H

+
d + V⊥ (and we thus get a feasible point for Eq. (17)).

It turns out that we can also optimize in closed form with respect to M , N leading
to a similar expression for DQT(A‖B) in Eq. (20). The following lemma is proved in
Appendix C, and is a slight modification of Lemma 1.
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Lemma 2 Assume A, B � 0 and f is operator-convex. The maximal value of Eq. (20)
is equal to:

DQT(A‖B) = sup
V�0, V−I∈V⊥

tr
[
V B1/2 f

(
B−1/2AB−1/2)B1/2]. (21)

We can thus obtain the value of DQT(A‖B) by a convex optimization problem that
does not involve any spectral function, is finite-dimensional, and can be solved using
any semi-definite programming solver.

7.1 Properties of DQT(A‖B)

We start by deriving an alternative formulation. Defining the matrix Q = B1/2 f(
B−1/2AB−1/2

)
B1/2 � 0, we get:

DQT(A‖B) = max
V

tr[QV ] such that V � 0 and ∀x ∈ X, ϕ(x)∗Vϕ(x) = 1

= max
V

tr[QV ] such that V � 0 and V − I ∈ V⊥

= min
�∈V

tr[�] such that � � Q, by Lagrange duality,

= min
�∈V

tr[�] such that � � B1/2 f
(
B−1/2AB−1/2)B1/2.

Note that like DOPT and DSOS, DQT is jointly convex, and DQT(�p‖�q) is invariant
by invertible linear transform of ϕ (which would not be the case without optimizing
with respect to V ) (see Sect. 7.3). Moreover, DQT(A‖B) is finite only if A and B are
positive semi-definite (as opposed to be also in V for DSOS(A‖B)).

In terms of algorithms to approximate DQT(A‖B), we can use interior-point meth-
ods to solve Eq. (21) as this is not a computational bottleneck.

7.2 Unconstrained Formulation

In order to compute the lower-bound on the f -divergence DQT the formulations
above are the most appropriate. However, when dealing with variational inference in
Sect. 9.4, we will the need the following unconstrained formulation, akin to Eq. (18),
and obtained by replacing 
̂ by λmax:

DQT(A‖B) = sup
M,N ,V∈Hd

tr[MA] + tr[N B] − (tr[A] + tr[B])

sup
r≥0

λmax(rM + N − f (r)V )

r + 1

such that V � 0, V − I ∈ V⊥. (22)
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7.3 Link with Quantum Information Theory andMetric Learning

Given a fixed feature map ϕ : X → C
d , we consider an invertible matrix T ∈ C

d×d ,
such that V = T ∗T is such that ϕ(x)∗Vϕ(x) = 1 for all x ∈ X. This corresponds to
invertible matrices V such that V � 0 and V − I ∈ V⊥. Writing Ã = T AT ∗, and
B̃ = T BT ∗, we get, using the maximal divergence defined in Sect. 3.2:

D̃QT
max(T AT ∗‖T BT ∗) = D̃QT

max( Ã‖B̃) = tr(B̃1/2 f (B̃−1/2 Ã B̃−1/2)B̃1/2).

Since B̃1/2 and T B1/2 are two square roots of B̃, there exists a unitary matrix R such
that B̃1/2 = T B1/2R. We then get B̃−1/2 Ã B̃−1/2 = R∗B−1/2AB−1/2R, leading to
f (B̃−1/2 Ã B̃−1/2) = R∗ f (B−1/2AB−1/2)R, which in turn leads to

D̃QT
max( Ã‖B̃) = tr(B̃1/2 f (B̃−1/2 Ã B̃−1/2)B̃1/2) = tr

[
T B1/2 f (B−1/2AB−1/2)B1/2T ∗]

= tr
[
T ∗T B1/2 f (B−1/2AB−1/2)B1/2]

= tr
[
V B1/2 f (B−1/2AB−1/2)B1/2],

which is exactly the objective function maximized to define DQT(A‖B) in Eq. (21).
Thus, by optimizing over all matrices T , and thus with respect to all matrices V , we
have:

DQT(A‖B) = sup
T∈Cd×d , ∀x∈X,‖Tϕ(x)‖=1

D̃QT
max(T AT ∗‖T BT ∗).

As observed in [4] for D̃QT
standard, we have D̃QT

max(T AT ∗‖T BT ∗) ≤ D(p‖q) for any
p, q ∈ M+(X) such that �p = A and �q = B, as soon as T ∗T ∈ I + V⊥. Our new
relaxation is thus equivalent to estimating the best feature vector in a linear model
defined by ϕ. A simple consequence is that, while D̃QT

max is not invariant by invertible
linear transforms, DQT is (just like DOPT and DSOS). Note finally, that the use of
D̃QT
standard instead of D̃

QT
max, as done in [4] for the particular case of the KL divergence,

leads to a weaker relaxation and a more complex optimization problem in V (concave
maximization instead of linear maximization).

8 Variational Inference with f -Divergences

Now that we have explored convex lower-bounds for the f -divergence, we can explore
the Fenchel-dual equivalent, that is, convex upper-bounds on f -partition functions,
and the natural link with variational inference. We start with a review of probabilistic
concepts without any feature map in Sect. 8.1 and then with a feature map in Sect. 8.2,
before exploring relaxations in subsequent sections.
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8.1 f-Partition Function

Given a function h : X → R, and q a fixed positive measure not necessarily summing
to one (that is, in M+(X)), we can define the “ f -partition function” as the Fenchel
dual with respect to a probability measure p of D(p‖q), that is:

cq(h) = sup
p∈P(X)

∫
X
h(x)dp(x) − D(p‖q). (23)

Using the variational formulation in Eq. (3), we can optimize with respect to w to
obtain

cq(h) = sup
p∈M(X)

inf
v:X→R

∫
X
h(x)dp(x) −

∫
X

v(x)dp(x)

+
∫
X

f ∗(v(x))dq(x) such that
∫
X
dp(x) = 1,

where it is sufficient to consider p ∈ M(X) rather than p ∈ M+(X) because the
infimum is only finite for non-negative measures. We can then introduce a Lagrange
multiplierρ for the single equality constraint

∫
X dp(x) = 1, and using strong duality to

swap infimum and supremum [39, Section 8.6], we get (see [50] for similar derivations
in the context of PAC-Bayes analysis):

cq(h) = sup
p∈M(X)

inf
ρ∈R, v:X→R

∫
X
h(x)dp(x) −

∫
X

v(x)dp(x) +
∫
X

f ∗(v(x))dq(x)

−ρ
( ∫

X
dp(x) − 1

)

= inf
ρ∈R, v:X→R

sup
p∈M(X)

∫
X
h(x)dp(x) −

∫
X

v(x)dp(x) +
∫
X

f ∗(v(x))dq(x)

−ρ
( ∫

X
dp(x) − 1

)
.

We can then optimize in closed form with respect to p, which leads to v = h −ρ, and
then with respect to v, which leads to

cq(h) = inf
ρ∈R ρ +

∫
X

f ∗(h(x) − ρ)dq(x). (24)

The optimality condition for ρ is that
∫
X( f ∗)′(h(x) − ρ)dq(x) = 1. Moreover, the

set of functions h : X → R such that cq(h) is finite is a convex set.
Thismeans thatwe can define a probability distributionwith density ( f ∗)′(h(x)−ρ)

with respect toq, whichwe denote p(x |h). For f (t) = t log t−t+1,where ( f ∗)′(u) =
eu , we recover classical exponential families (see [43, 62] and references therein), and
cq(h) = log

( ∫
X eh(x)dq(x)

) + 1 − ∫
X q(x), which is the traditional log-partition

function, and Eq. (23) is often referred to as the Donsker–Varadhan inequality [20].
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8.1.1 Variational Formulation

We can use the variational formulation in Eq. (3), but without first optimizing w

out, still using strong duality, and adding a Lagrange multiplier ρ for the constraint∫
X dp(x) = 1:

cq(h) = sup
p∈P(X)

∫
X
h(x)dp(x) − D(p‖q)

= sup
p∈M(X)

inf
v,w:X→R

∫
X
h(x)dp(x) −

∫
X

v(x)dp(x)

−
∫
X

w(x)dq(x) such that
∫
X
dp(x) = 1

such that ∀x ∈ X,∀r ≥ 0, rv(x) + w(x) ≤ f (r)

= sup
p∈M(X)

inf
ρ, v,w:X→R

∫
X
h(x)dp(x) −

∫
X

v(x)dp(x) −
∫
X

w(x)dq(x)

−ρ

( ∫
X
dp(x) − 1

)
such that ∀x ∈ X,∀r ≥ 0, rv(x) + w(x) ≤ f (r)

= inf
ρ, w:X→R

ρ −
∫
X

w(x)dq(x) such that ∀x ∈ X,∀r ≥ 0,

rh(x) + w(x) ≤ f (r) + ρr , (25)

since the optimization with respect to p ∈ M(X) leads to v = h. Like in earlier varia-
tional formulations, we can replace the constrained formulation by an unconstrained
one using the function F defined in Eq. (4) in Sect. 2.3. By replacing w by w −ρ, and
optimizing with respect to ρ in Eq. (25), we get:

cq(h) = inf
w:X→R

(
1 +

∫
X
dq(x)

)
sup
x∈X

sup
r≥0

rh(x) + w(x) − f (r)

r + 1
−

∫
X

w(x)dq(x)

= inf
w:X→R

(
1 +

∫
X
dq(x)

)
sup
x∈X

F(h(x), w(x)) −
∫
X

w(x)dq(x), (26)

where the optimal value of ρ is obtained as ρ = supx∈X supr≥0
rh(x)+w(x)− f (r)

r+1 =
supx∈X F(h(x), w(x)). In variational inference, we will need to obtain the probability
distribution p in Eq. (23) from w. Here, it simply has density ( f ∗)′(h(x) − ρ) with
respect to q.

8.2 Variational Inference with Feature Maps

In the previous section, we have considered probability densities and partition func-
tions for potentials that were allowed to take any functional form in x ∈ X. We now
specialize to potentials that are quadratic forms in ϕ(x).
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In this section, we thus extend the notion of exponential families, which is classical
for f (t) = t log t − t + 1, to all f -divergences. These are also called “q-exponential
families” for α-divergences [2].

8.2.1 f -Family of Probability Distributions

Following Sect. 8.1, given thematrix featuremap x �→ ϕ(x)ϕ(x)∗ ∈ Hd , we define the
distribution p(·|H)with density with respect to q of the form ( f ∗)′

(
ϕ(x)∗Hϕ(x)−ρ

)
for a certain Hermitian matrix H ∈ Hd , and with the normalizing constant ρ =
ρ(H) ∈ R that makes the density sum to one. We can then define

Cq(H) = sup
p∈P(X)

∫
X

ϕ(x)∗Hϕ(x)dp(x) − D(p‖q) = cq
(
ϕ(·)∗Hϕ(·)), (27)

with the optimal probability distribution p (which is unique since we have assumed
that f is strictly convex) exactly being the density p(·|H) defined above. The set of
H ∈ Hd such that Cq(H) is finite is convex.

From the representation in Eq. (27) as amaximumof affine functions, we obtain that
the gradientC ′

q(H) is equal to
∫
X p(x |H)ϕ(x)ϕ(x)∗dq(x) as p(·|H) is themaximizer

in Eq. (27), that is,C ′
q(H) is exactly the expectation of ϕ(x)ϕ(x)∗ under p(·|H). Thus,

a classical task in variational inference is to compute C ′
q(H) [62]. For example, for

the traditional Ising model, where X = {−1, 1}n and ϕ(x) = (x�, 1)�, C ′
q(H) is a

matrix composed of the expectations of xx� and x .
We can then define the Fenchel conjugate C∗

q of Cq as:

C∗
q (�) = sup

H∈Hd

tr[H�] − Cq(H).

The domain ofC∗
q is then exactly the set of attainable moments (denotedK in Sect. 4),

and the moment �(H) = C ′
q(H) is exactly the maximizer in

sup
�∈Hd

tr[H�] − C∗
q (�).

Note that in the future approximations of C∗
q or Cq , there is both an approximation of

the value and potentially of the domain.

8.2.2 Estimation

Given some data x1, . . . , xn ∈ X, we can form the empirical moment �̂ =
1
n

∑n
i=1 ϕ(xi )ϕ(xi )∗, and estimate H ∈ Hd by minimizing D(p‖q) such that

�p = �̂. For f (t) = t log t − t + 1, this is exactly maximum entropy estima-
tion, which is classsicaly equivalent to finding the exponential family distributions
with feature x �→ ϕ(x)ϕ∗(x) and matching moment. This happens to be true for
all f -divergences, that is, the optimal distribution p is exactly p = p(·|H) for H
maximizing tr[H�̂] − Cq(H), and with matching moments. Note however that the
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formulation as the minimum (right) Kullback–Leibler divergence does not readily
generalize beyond the Shannon entropy.

9 Relaxed f -Partition Function

Given the sequence of lower bounds on the f -divergence DOPT ≥ DSOS ≥ DQT ≥
D̃QT
max ≥ D̃QT

standard, we get a sequence of upper-bounds for Cq(H) defined in Eq. (27)
for any Hermitian matrix H ∈ Hd . Since q (which is now assumed to sum to one)
only appears through B = �q , we define our upper-bound as the maximal potential
Cq(H) for all distributions q such that �q = B, that is,

COPT
B (H) = sup

q∈P(X)

Cq(H) such that �q = B.

We can now use the definition of Cq(H) from Eq. (27) to get:

COPT
B (H) = sup

p,q∈P(X)

∫
X

ϕ(x)∗Hϕ(x)dp(x) − D(p‖q) such that �q = B

= sup
A∈C, tr[A]=1

sup
p,q∈P(X)

∫
X

ϕ(x)∗Hϕ(x)dp(x) − D(p‖q) such that �q

= B and �p = A

= sup
A∈Hd

tr[AH ] − DOPT(A‖B) such that tr[A] = 1,

by definition of DOPT. (28)

Note that the constraints that A ∈ V and A � 0 are implied by the finiteness of
DOPT(A‖B) (this will not be the case for the other relaxations).

We use the variational representation of DOPT(A‖B) in Eq. (16), to get, using the
Lagrange multiplier ρ for the constraint tr[A] = 1:

COPT
B (H) = sup

A∈Hd

inf
M,N∈Hd

tr[AH ] − tr[MA] − tr[N B] such that

∀r ≥ 0, 
(rM + N ) ≤ f (r) and tr[A] = 1

= sup
A∈Hd

inf
M,N∈Hd , ρ∈R tr[AH ] − tr[MA] − tr[N B] − ρ

(
tr[A] − 1) such that

∀r ≥ 0, 
(rM + N ) ≤ f (r).

The convex set {(M, N ) ∈ Hd × Hd , ∀r ≥ 0, 
(rM + N ) ≤ f (r)} has non empty
interior since (0,−I ) is in the interior; thus strong duality holds [39, Section 8.6], and
we can swap infimum and supremum. Taking the supremum with respect to A leads
to the equality constraint H − M − ρ I = 0, and thus

COPT
B (H) = inf

N∈Hd , ρ∈R ρ − tr[N B] such that ∀r ≥ 0, 
(r H + N )

≤ f (r) + ρr . (29)
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By replacing N by N̄ − ρ I , and then optimizing in closed form with respect to ρ, we
get:

COPT
B (H) = inf

N̄∈Hd , ρ∈R
2ρ − tr[N̄ B] such that ∀r ≥ 0, 
(r H + N̄ ) ≤ f (r) + ρ(r + 1)

= inf
N̄∈Hd

2 sup
r≥0


(r H + N̄ ) − f (r)

r + 1
− tr[N̄ B]

= inf
N∈Hd

2G(H , N̄ ) − tr[N̄ B]. (30)

This corresponds to the formulation in Eq. (25). This can now be solved with Kelley’s
method, like described in Sect. 6.

9.1 Recovering the Optimal Moment Matrix6p = A

Given the solution N̄ of Eq. (30), we get the optimal ρ and N of Eq. (29) as ρ =
supr≥0


(r H+N̄ )− f (r)
r+1 and N = N̄ − ρ I , and M = H − ρ I . Optimality conditions

for Eq. (30) lead to B = ∫
X×R+

1
r+1ϕ(x)ϕ(x)∗dν(x, r), where ν is a probability

distribution supported on themaximizers of ϕ(x)∗(rM+N )ϕ(x)− f (r)
r+1 . Since tr[B] = 1,we

have
∫
X×R+

1
r+1dν(x, r) = 1. The optimal A is A = ∫

X×R+
r

r+1ϕ(x)ϕ(x)∗dν(x, r).

We then have: tr[AM] + tr[N B] = ∫
X×R+

f (r)
r+1 dν(x, r) = DOPT(A‖B).

9.2 Tightness

In this paper, we focus on the computation of upper-bounds of the partition function.
The study of the approximation capabilities when the feature vector grows is left for
future work. In particular, it would be interesting to compare to other convex upper-
bounds on the log partition functions such as the “tree-reweighted representation”
framework [62].

We now consider computable relaxations, first based on SOS in Sect. 9.3, then on
quantum information divergences in Sect. 9.4.

9.3 Sum-of-Squares Relaxation

We get the SOS relaxation where 
 is replaced by 
̂ in Eqs. (29) and (30):

CSOS
B (H) = inf

N∈Hd , ρ∈R ρ − tr[N B] such that ∀r ≥ 0, ( f (r) + ρr)I − r H − N ∈ Ĉ∗

= inf
N̄∈Hd

2 sup
r≥0


̂(r H + N̄ ) − f (r)

r + 1
− tr[N̄ B] = inf

N̄∈Hd

2Ĝ(H , N̄ ) − tr[N̄ B].

This is now approximable in polynomial time and is an upper bound on COPT(H).
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To obtain the optimal A from an optimal N , optimality conditions lead to a
probability measure ν on K̂ × R+, corresponding to the maximizers of supr≥0

sup�∈K̂
tr[�(r H+N̄ )]− f (r)

r+1 and A = ∫
X×R+

r
r+1�dν(�, r).

9.3.1 Algorithms

Wecan use the same technique as for computing DSOS(A‖B) and useKelley’smethod.
It can be initialized by considering the spectral relaxation detailed below.

9.4 Quantum Relaxation

We now consider the quantum relaxation instead of the sum-of-squares relaxation,
for H ∈ Hd (the constraint that A � 0 is automatically satisfied but not the one that
A ∈ V), using convex duality:

CQT
B (H) = sup

A∈V
tr[AH ] − DQT(A‖B) such that tr[A] = 1.

In order to derive estimation algorithms, we also propose a formulation based on
the unconstrained formulation of DQT from Eq. (22), and introducing a Lagrange
multipler Y ∈ V⊥ for the constraint A ∈ V, as (assuming tr[B] = 1):

CQT
B (H) = inf

N̄ ,V∈Hd ,Y∈V⊥
− tr[N̄ B] + 2 sup

r≥0

λmax(r H + rY + N̄ − f (r)V )

r + 1

such that V � 0, V − I ∈ V⊥. (31)

We can recover the optimal A (which may not be in V) like for the other relaxations.

9.4.1 Spectral Relaxation

In order to obtain approximate closed-form expressions for initialization, we could
consider the spectral relaxation with V = I , and A not constrained to be in V, leading
to:

sup
A∈H+

d

tr[AH ] − tr
[
B f (B−1/2AB−1/2)

]
such that tr[A] = 1,

which cannot be solved in closed form in general. We can also consider the standard
quantum relaxation, which does not lead to a closed form expression, except for the
function f (t) = t log t − t + 1, where we need to solve

sup
A∈H+

d

tr[AH ] − tr[A log A − A log B − A + B] such that tr[A] = 1, (32)
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which is equal to log tr exp(H+log B),with A = exp(H+log B)
tr exp(H+log B)

. The resulting function
of B is concave, its gradient is an initializer for −N , and it can be computed from the
Jacobians of the exponential and logarithm maps. The last expression is not invariant
to the addition of an element ofV⊥ to H (while it should). Following [6, Appendix B],
we can make it invariant by projecting H onto V.

10 Experiments

In this section,6 we illustrate our various relaxations and algorithms presented in earlier
sections. We illustrate our results with the function f (t) = t log t − t + 1, and thus
the estimation of relative Shannon entropies and log-partition functions. We focus on
two particular examples, [0, 1]n with trigonometric polynomials, and {−1, 1}n with
regular polynomials, as they correspond togenericmultivariate continuous anddiscrete
situations. In the discrete case of {−1, 1}n , exact computations have an exponential
complexity in n, which is unavoidable [61]. In contrast, the approximation methods
provided in this paper have polynomial time in n, though with an exponent that grows
fast with the maximal cardinality size in the feature ϕ. The continuous case creates
extra difficulties depending on the order of polynomials that we consider (with the
need to use high-order quadrature formulas [24] to compute quantities exactly).

We first consider in Sect. 10.1 computing relative entropies and compare there all
relaxations, from the more costly ones based on sums-of-squares (SOS) to quantum-
based ones (QT) which rely on faster spectral computations. Given that the quantum-
based ones have a very similar performance a much lower computational cost, we only
consider these in Sect. 10.2 where we compute log-partition functions.

10.1 Computing Relative Entropies

We consider three classical situations, trigonometric polynomials on [0, 1], where the
SOS relaxation is tight (and thus DOPT = DSOS), aswell as trigonometric polynomials
on [0, 1]n , and polynomials on {−1, 1}n .

10.1.1 Trigonometric Polynomials onX = [0, 1]

We consider q the uniform distribution on [0, 1] (with density 1 with respect to the
Lebesguemeasure), and pwithdensity 8

π

√
x(1 − x).Wehave the followingmoments:

∫ 1

0
e2iπωxdq(x) = 1 if ω = 0, and 0 otherwise,

∫ 1

0
e2iπωxdp(x) = 2(−1)ω

ωπ
J1(ωπ) for ω �= 0,

6 Matlab code to reproduce all experiments can be downloaded from www.di.ens.fr/~fbach/
fdiv_quantum_var.zip.
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Fig. 1 Comparison of relative entropy estimates for several numbers of frequencies, showing the effect of
varying r . Left: D(p‖q) is the exact value, with moment-based approximations OPT/SOS (here equal),
and the ones based on quantum information divergences, with full metric learning (QT) or diagonal metric
learning (QT-diag), with also the use of the weaker quantum divergences proposed by [4]. In several cases
the red curve associated with OPT/SOS bounds is not visible as it coincides with the blue curve of QT
bounds. Right: same experiment without OPT/SOS, with deviation to f -divergence reported in a log–log
plot (Color figure online)

where J1 is the Bessel function of the first kind, as well as the relative entropy
D(p‖q) ≈ 0.0484, which can be approximated with high precision with quadrature
formulas [24].

We consider ω ∈ {−r , . . . , r}, and compute the various bounds: OPT, SOS (which
are equal), and QT (together with a version only optimized over diagonal V ), and the
old version of QT from [4] (where we only learn diagonal matrices V ).

We see in the left plot of Fig. 1 that the optimal/SOS bound is numerically identical
to the full quantum bound, and close to the one with diagonal V , but with a strong
improvement over the bound from [4]. For the SOS relaxations, results are obtained
using Kelley’s method described in Sect. 6.

In the right plot of Fig. 1, we only compute the spectral relaxations, for significantly
larger r , showing that, as r grows, we get a tighter approximation of D(p‖q) for all
methods.

10.1.2 Trigonometric Polynomial onX = [0, 1]n

We consider x1 uniform on [0, 1] and xi+1 = �xi + ηi+1�, where ηi+1 is uniform on
[−ρ/2, ρ/2]. When ρ = 0, all xi ’s are equal almost surely, while when ρ = 1, all
xi ’s are independent and uniform (we use ρ = 3/10 in our simulations).

We can then compute the Kullback–Leibler divergence to the uniform distribution
by noticing that the sequence (xi ) forms a Markov chain, so that (using classical
entropy decomposition results for tree-structured graphical models [62]):

D(p‖q) =
∫

[0,1]n
p(x) log p(x)dx

=
n−1∑
i=1

∫
[0,1]2

p(xi , xi+1) log p(xi , xi+1)dxidxi+1
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Fig. 2 Comparison of relative entropy estimates for several numbers of maximal marginal frequency r ,
for n = 2 (left) and n = 3 (right). D(p‖q) is the exact value, with moment SOS-based approximations
(only plotted in the left plot, and for which we only compute the cost function of Eq. (18) with the optimal
quantum solution from Eq. (20), which is close to optimal for Eq. (18)), and the ones based on quantum
information divergences, with full metric learning (QT) or diagonal metric learning (QT-diag), with also
the use of the weaker quantum divergences done by [4]

−
n−1∑
i=2

∫
[0,1]

p(xi ) log p(xi )dxi = (n − 1) log
1

ρ
.

We can also get all Fourier moments by introducing the n × (n − 1) {0, 1}-valued
matrix M such that xi = (Mη)i + x1 for i ∈ {2, . . . , n}. We then have

E[e2iπω�x ] = 1ω�1=0 ·
n−1∏
k=1

sin
[
(M�ω)kπρ

]
(M�ω)kπρ

.

In order to estimate entropies, we consider ‖ω‖∞ ≤ r . See Fig. 2, where we can
draw similar conclusions as for n = 1.

10.1.3 Polynomials onX = {−1, 1}n

We consider the task of estimating entropies from moments on a simple example,
where we consider x1 uniform on {−1, 1} and xi+1 = xiηi+1, where ηi+1 ∈ {−1, 1}
is independent and equal to 1 with probability 1 − ρ/2, and −1 otherwise. When
ρ = 0, all xi ’s are equal almost surely, while when ρ = 1, all xi ’s are independent
and uniform (we use ρ = 1/2 in our simulations).

We can then compute the Kullback–Leibler divergence to the uniform distribu-
tion in the same way as for data in [−1, 1]n , leading to D(p‖q) = (n − 1)

[
(1 −

ρ
2 ) log(2 − ρ) + ρ

2 log ρ
]
. We can also get all Fourier moments as E

[∏
i∈A xi

] =
(1 − (−1)|A|)

∏n−1
i=1 (1 − ρ)1−(−1)(M

�1A)i
. In order to estimate entropies, we consider

subsets of cardinality less then r . See Fig. 3, for n = 10 and n = 20, where we can
draw similar conclusions as for n = 1.
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Fig. 3 Comparison of relative entropy estimates for several numbers of frequencies for all subsets of
cardinality less than r , for n = 10 and n = 20. D(p‖q) is the exact value, with moment SOS-based
approximations, and the ones based on quantum information divergences, with full metric learning (QT) or
diagonal metric learning (QT-diag), with also the use of the weaker quantum divergences done by [4]

Fig. 4 Comparison of
log-partition function estimates
for several numbers of
frequencies for n = 1. See text
for details
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10.2 Computing Log-Partition Functions

We now compare algorithms to upper-bound log-partition functions, by only focusing
on the more efficient quantum relaxations. We do so for trigonometric polynomials
on [0, 1].

10.2.1 Log-Partition Functions onX = [0, 1]

We consider h(x) = cos(4πx), with log
∫ 1
0 ecos(4πx)dx = log I0(1) ≈ 0.2359, where

we use the same feature map ϕ : [0, 1] → C
2r+1 as before, which enables us to write

h(x) = ϕ(x)∗Hϕ(x) for some Hermitian matrix H . The matrix H is not unique, and,
following [6, Appendix B], we consider the spectral relaxation from Eq. (32), with H
orthogonally projected on the set V of Toeplitz matrices. This spectral relaxation was
considered in [4] but in a positive definite kernel context where the projection onto
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Table 1 Summary of relaxations ordered by strength (function values and domains), from stronger (top) to
weaker (bottom)

DOPT Sect. 5 Not computable

DSOS Sect. 6 Computable with SOS

DQT Sect. 7 Computable with spectral method + single SDP

D̃QT
max Sect. 7 Computable with spectral method

D̃QT
standard Bach [4] Computable with spectral method

Toeplitz matrices is not applicable. Such a projection is crucial to obtain a meaningful
result.

We then compute the approximation CQT
B by using Kelley’s method to solve

Eq. (31), and we also report results without the optimization with respect to V , with an
almost identical curve (showing that the benefits of metric learning are here marginal).
While for small r , the new quantum relaxation improves over the bound adapted from
[4], it does not for larger r (Fig. 4).

11 Conclusion

In this paper, we have proposed to combine tools from information theory, both classi-
cal such as f -divergences, andmore recent, such as quantum information divergences,
with sum-of-squares optimization. This leads to several relaxations of f -divergences
based on sum-of-squares relaxations or quantum information divergences, together
with efficient estimation algorithms for the tasks of divergence estimation from
moments and the computation of log-partition functions. These relaxations are sum-
marized in Table 1. While the relaxation based on sums-of-squares (DSOS) is strictly
superior, it is only mildly so in our experiments compared to the one based on quan-
tum divergences (DQT), while being more costly to compute. This thus highlights the
benefits of the quantum relaxation.

This quantum information relaxation takes its roots in earlier work [4] with signif-
icant improvements: (a) the use of a tighter quantum divergence (the “maximal” one
rather than the “standard” one), (b) the introduction of the optimal lower bound, (c)
taking into account the particular geometries of feature vectors using sum-of-square
techniques that improve over spectral relaxations, and (d) the proposal of generic
optimization algorithms. Several avenues are worth exploring: (a) check if the new
notion of relative entropy with maximal divergence preserves properties from [4], in
particular its use in probabilistic modelling and within graphical models, (b) poten-
tially extend the positive definite kernel motivation that allows infinite-dimensional
moments, along the lines of [25] which explored this connection for Renyi entropies,
(c) obtain convergence rates for entropies and log-partition function estimation to go
with our encouraging empirical results, (d) develop algorithms to deal with larger scale
problems using approximation techniques from kernel methods [12, 55].
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Appendix A: NewtonMethod for Computing F

In order to compute F(v,w) = supr≥0
rv+w− f (r)

r+1 in Sect. 2.3, we assume (v,w) ∈ R
2

fixed and define ϕ(r) = rv+w− f (r)
r+1 , which is twice differentiable, and so that, ϕ′(r) =

1
(r+1)2

[
v − w − (

(r + 1) f ′(r) − f (r)
)]
. Since the function r �→ (r + 1) f ′(r) − f (r)

has derivative r �→ (r + 1) f ′′(r), it is strictly positive. Thus the derivative ϕ′ thus has
at most one zero, and we aim to solve the equation (r + 1) f ′(r) − f (r) = v − w.

We now focus on the special case f (t) = t log t − t + 1, where ψ(r) = (r +
1) f ′(r) − f (r) = r − 1 + log r , and has full range on R+ so that the equation
above has a unique solution. In order to compute its solution, for v−w ≥ 0, we iterate
Newton’s method [24, Section 4.8] r ← r+ v−w−ψ(r)

ψ ′(r) = 2−log(r)+v−w
1+1/r for 5 iterations

to reach machine precision, while for v − w ≤ 0 we iterate Newton’s method on the
logarithm of r log r ← log r + v−w−ψ(r)

rψ ′(r) = 1+v−w+(log r−1)r
1+r for 5 iterations.

Appendix B: Decomposition of Operator-Convex Functions

We have the following particular cases from Sect. 2.

• α-divergences: f (t) = 1
α(α−1)

[
tα − αt + (α − 1)

] = 1
α
sin(α−1)π
(α−1)π (t −

1)2
∫ +∞
0

1
t+λ

λαdλ
(1+λ)2

for α ∈ (−1, 2). Other representations exist for α = −1
and α = 2 (see below), but other cases are not operator-convex.

• KL divergence (α = 1): f (t) = t log t − t + 1 = ∫ +∞
0

(t−1)2

t+λ
λdλ

(λ+1)2
.

• Rerverse KL divergence (α = 0): f (t) = − log t + t − 1 = ∫ +∞
0

(t−1)2

t+λ
dλ

(λ+1)2
.

• Pearson χ2 divergence (α = 2): f (t) = 1
2 (t − 1)2 is operator convex.

• Reverse Pearson χ2 divergence (α = −1): f (t) = 1
2

( 1
t + t

) − 1 = 1
2

(t−1)2

t is
operator convex, with dν(λ) proportional to a Dirac at λ = 0.

• Le Cam distance: f (t) = (t−1)2

t+1 is operator convex with dν(λ) proportional to a
Dirac at λ = 1.

• Jensen–Shannon divergence: f (t) = 2t log 2t
t+1 + 2 log 2

t+1 = 2t log t − 2(t +
1) log(t + 1) + 2(t + 1) log 2 = 2t log t − 4 t+1

2 log t+1
2 is operator convex, as

it can be written f (t) = 2(t − 1)2
∫ +∞
0

( 1
t+λ

− 1
t+1+2λ

)
λdλ

(1+λ)2
, which leads to

f (t) = 2(t − 1)2
∫ +∞
0

1
t+λ

λdλ
(1+λ)2

− 2(t − 1)2
∫ +∞
1

1
t+λ

(λ−1)dλ

(1+λ)2
.
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Appendix C: Proofs of Lemmas 1 and 2

In this section, we prove Lemma 1 from Sect. 7, taken from [40, Section 9.1] and
shown in here for completeness and the expression of the maximizers. We also prove
the extension Lemma 2.

We start by the dual formulation:

sup
M,N∈Hd

tr[MA] + tr[N B] such that ∀r ≥ 0, rM + N � f (r)I

= inf
� H

+
d −valued measure on R+

∫ +∞

0
f (r) tr

[
d�(r)] such that

∫ +∞

0
d�(r)

= B and
∫ +∞

0
rd�(r) = A,

which can be solved in closed form.
Indeed, given the eigendecomposition B−1/2AB−1/2 = ∑d

i=1 λi ui u∗
i , we consider

� = ∑d
i=1 B

1/2uiu∗
i B

1/2δλi , where δλi is the Dirac measure at λi , so that we get a

feasible measure �, and an objective equal to
∑d

i=1 f (λi ) tr
[
B1/2V B1/2uiu∗

i

] =
tr

[
B1/2V B1/2 f

(
B−1/2AB−1/2

)]
. Thus the infimum is less than tr

[
B1/2V B1/2

f
(
B−1/2AB−1/2

)]
.

The other direction is a direct consequence of the operator Jensen’s inequality [28]:
for any feasible measure � approached by an empirical measure

∑m
i=1 Miδri , with

Mi � 0, we have
∑n

i=1(M
1/2
i B−1/2)∗(M1/2

i B−1/2) = I , and thus

∫
R+

f (r)d�(r) = B1/2
( m∑

i=1

(M1/2
i B−1/2)∗ f (ri I )(M1/2

i B−1/2)
)
B1/2

� B1/2 f
( m∑

i=1

(M1/2
i B−1/2)∗(ri I )(M1/2

i B−1/2)
)
B1/2

= B1/2 f
(
B−1/2AB−1/2)B1/2.

The lower bound follows by letting the number m of Diracs go to infinity to tightly
approximate any feasible matrix �.

In order to obtain the minimizers M and N , we simply notice that they are the
gradients of the function (A, B) �→ tr

[
B f

(
B−1/2AB−1/2

)]
with respect to A and B.

We thus get, using gradients of spectral functions

M∗ =
d∑

i, j=1

f (λi ) − f (λ j )

λi − λ j
u�
i Bu j · B−1/2uiu

∗
j B

−1/2,
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with the convention that for λi = λ j ,
f (λi )− f (λ j )

λi−λ j
= f ′(λi ). To obtain N∗, we simply

consider the identity tr
[
B f

(
B−1/2AB−1/2

)] = tr
[
Ag

(
A−1/2BA−1/2

)]
, for g(t) =

t f (1/t), and use the corresponding formula.

Proof of Lemma 2 We simply need to change slightly the proof of the lemma above,
by replacing

∫ +∞
0 f (r) tr

[
d�(r)

]
by

∫ +∞
0 f (r) tr

[
Vd�(r)

]
with all inequalities pre-

served because V � 0.

Appendix D: Computing Integrals

A third task is related to f -divergences beyond computing the divergences themselves
and the associated log-partition functions. In this section, we consider the task of
computing

∫
X f ∗(h(x))dq(x), where q is a finite positive measure on X, f ∗ is the

Fenchel conjugate of f , and h : X → R an arbitrary function (such that the integral
is finite). The difference with computing log-partition functions in Eq. (24) is minor
and we thus extend only a few results from Sect. 8 and Sect. 9, most without proofs as
they follow the same lines as results for f -partition functions.

For f (t) = t log t − t +1, we have f ∗(u) = eu −1, and we there aim at estimating
integrals of exponential functions, a classical task in probabilistic modelling (see [43,
62] and references therein), which up to a logarithm is the same as computing the
log-partition function; however, they are different for other functions f .

This computational task can be classically related to f -divergences by Fenchel
duality as we have:

∫
X

f ∗(h(x))dq(x) = sup
p positive measure on X

∫
X
h(x)dp(x) − D(p‖q),

where the only difference with Eq. (23) is that p is not assumed to sum to one. Below,
we show that for functions h(x) which are quadratic forms in ϕ(x), we can replace
D(p‖q) by the lower-bound we just defined above, and obtain a computable upper
bound of the integral.

We also have the representation corresponding to Eq. (25), that will be useful later:

∫
X

f ∗(h(x))dq(x) = inf
w:X→R

−
∫
X

w(x)dq(x) such that ∀x ∈ X,

∀r ≥ 0, rh(x) + w(x) ≤ f (r). (33)

RelatedWork

There exist many ways of estimating integrals, in particular in compact sets in small
dimensions, where various quadrature rules, such as the trapezoidal or Simpson’s rule,
can be applied to compute integrals based on function evaluations, with well-defined
convergence rates [18]. In higher dimensions, still based on function evaluations,
Bayes–Hermite quadrature rules [48], and the related kernel quadrature rules [5,
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16] come with precise convergence rates linking approximation error and number of
function evaluations [3]. An alternative in our context is Monte-Carlo integration from
samples from q [52], with convergence rate in O(1/

√
n) from n function evaluations.

In this paper, we follow [8] and consider computing integrals given a specific
knowledge of the integrand, here of the form f ∗(h(x)), where h is a known quadratic
form in a feature vector ϕ(x). While we also use a sum-of-squares approach as in [8],
we rely on different tools (link with f -divergences and partition functions rather than
integration by parts).

Relaxations

In order to compute integrals, we simply use the same technique but without the
constraint that measures sum to one, that is, without the constraint that tr[A] = 1.
Starting from Eq. (33), we get, with B = �q :

C̃q(H) =
∫
X

f ∗(ϕ(x)∗Hϕ(x)
)
dq(x) = sup

p∈M+(X)

∫
X

ϕ(x)∗Hϕ(x)dp(x) − D(p‖q)

≤ sup
A∈C

tr[H A] − DOPT(A‖B) = C̃OPT
q (H)

= inf
N∈Hd

− tr[N B] such that ∀r ≥ 0, 
(r H + N ) ≤ f (r).

Note that we only have an inequality here because we are not optimizing over q.
We then get two computable relaxations by considering DSOS(A‖B) and DQT(A‖B)

instead of DOPT(A‖B), with the respective formulations:

C̃SOS
q (H) = inf

N∈Hd
− tr[N B] such that ∀r ≥ 0, f (r)U − r H − N ∈ Ĉ∗

C̃QT
q (H) = sup

A∈Hd

inf
V�0, V−I∈V⊥

tr[AH ] − tr
[
B1/2V B1/2 f

(
B−1/2AB−1/2)].

Dual formulations and algorithms can then easily be derived.

Appendix E: Dual Formulations

In this appendix we present dual variational formulations to most of the formula-
tions proposed in the main paper. We only consider the relaxations of f -divergences.
Formulations for f -partition functions can be derived similarly.

f-Divergences

We can consider the Lagrangian dual of Eq. (3), by introducing a Lagrange multiplier
λ for the infinite-dimensional constraint ∀x ∈ X,∀r ≥ 0, rv(x) + w(x) ≤ f (r) in
the form of a positive finite measure λ on X × R+ [30]. We then obtain, using strong
duality for equality constraints [39, Section 8.6]:
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D(p‖q) = inf
λ∈M+(X×R+)

sup
v,w:X→R

∫
X

v(x)dp(x) +
∫
X

w(x)dq(x)

+
∫
X

∫
R+

[
f (r) − rv(x) − w(x)

]
dλ(x, r)

= inf
λ∈M+(X×R+)

∫
X

∫
R+

f (r)dλ(x, r) (34)

such that
∫
R+

dλ(·, r) = dq(·) and
∫
R+

rdλ(·, r) = dp(·),

with the two constraints resulting from the maximization with respect to v and w.

Optimal Relaxation of f-Divergences (DOPT)

We can also formulate Eq. (15) as a minimization problem; we we can use Lagrangian
duality, akin to Eq. (34). This requires to introduce a Lagrange multiplier for the
constraint ∀r ≥ 0, 
(rM + N ) ≤ f (r), which is equivalent to, ∀r ≥ 0, f (r) −
rM − N ∈ Ĉ∗, which leads to a C-valued finite measure on R+ [30], to get:

DOPT(A‖B) = inf
� C−valued measure on R+

sup
M,N∈Hd

tr[AM] + tr[BN ]

+
∫ +∞

0
tr

[
d�(r)( f (r) − rM − N )

]

= inf
� C−valued measure on R+

∫ +∞

0
f (r) tr

[
d�(r)] such that

∫ +∞

0
d�(r) = B and

∫ +∞

0
rd�(r) = A. (35)

SOS Relaxation of f-Divergences (DSOS)

We can also get a formulation for Eq. (17), akin to Eqs. (34) and (35). This requires to
introduce a Lagrange multiplier for the constraint ∀r ≥ 0, f (r)U − rM − N ∈ Ĉ∗,
which is a Ĉ-valued finite measure on R+ [30], to get:

DSOS(A‖B) = inf
� Ĉ−valued measure on R+

sup
M,N∈Hd

tr[AM] + tr[BN ]

+
∫ +∞

0
tr

[
d�(r)( f (r) − rM − N )

]

= inf
� Ĉ−valued measure on R+

∫ +∞

0
f (r) tr

[
d�(r)] such that

∫ +∞

0
d�(r) = B and

∫ +∞

0
rd�(r) = A, (36)
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as maximizing out M, N ∈ Hd introduces linear constraints.

Quantum Relaxations of f-Divergences (DSOS)

Equation (21) also has a primal–dual form as

DQT(A‖B) = sup
V�0, V−I∈V⊥

inf
� H

+
d −valued measure on R+

∫ +∞

0
f (r) tr

[
d�(r)V ]

such that
∫ +∞

0
d�(r) = B and

∫ +∞

0
rd�(r) = A. (37)

We also have a formulation akin to Eq. (36), that is, adding a Lagrange multiplier
� ∈ V in Eq. (37) for the constraint I − V ∈ V⊥:

DQT(A‖B) = inf
�∈V, � H

+
d −valued measure on R+

∫ +∞

0
f (r) tr

[
d�(r)] + tr[�]

such that
∫ +∞

0
d�(r) = B,

∫ +∞

0
rd�(r) = A, and

∫ +∞

0
f (r)d�(r) � �,

which shows the additional relaxation compared to DSOS(A‖B), for which � is a
measure (almost everywhere) valued in V, while here it is only in H+

d .
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