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On the Effectiveness of Richardson Extrapolation in Data Science\ast 

Francis Bach\dagger 

Abstract. Richardson extrapolation is a classical technique from numerical analysis that can improve the ap-
proximation error of an estimation method by combining linearly several estimates obtained from
different values of one of its hyperparameters without the need to know in details the inner structure
of the original estimation method. The main goal of this paper is to study when Richardson extrap-
olation can be used within data science beyond the existing applications to step-size adaptations
in stochastic gradient descent. We identify two situations where Richardson interpolation can be
useful: (1) when the hyperparameter is the number of iterations of an existing iterative optimization
algorithm with applications to averaged gradient descent and Frank--Wolfe algorithms (where we
obtain asymptotically rates of O(1/k2) on polytopes, where k is the number of iterations) and (2)
when it is a regularization parameter with applications to Nesterov smoothing techniques for mini-
mizing nonsmooth functions (where we obtain asymptotically rates close to O(1/k2) for nonsmooth
functions) and kernel ridge regression. In all these cases, we show that extrapolation techniques come
with no significant loss in performance but with sometimes strong gains, and we provide theoretical
justifications based on asymptotic developments for such gains, as well as empirical illustrations on
classical problems from machine learning.
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1. Introduction. Many machine learning and signal processing methods can be cast as
looking for approximations of some ideal quantity which cannot be readily computed from
the data at hand: This ideal quantity can be the predictor learned from infinite data or
an iterative algorithm run for infinitely many iterations. Taking their roots in optimization
and more generally numerical analysis, many accelerations techniques have been developed to
tighten these approximations with as few changes as possible to the original method.

While some acceleration techniques add some simple modifications to a known algorithm,
such as Nesterov acceleration for the gradient descent method [41], extrapolation techniques
do not need to know the fine inner structure of the method to be accelerated. These methods
are only based on the observations of solutions of the original method. They have a long
history in numerical analysis and more generally applied mathematics (see, e.g., [13, 12] and
references therein), where they have been extensively used, for example, in order to derive
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1252 FRANCIS BACH

asymptotic perturbations of solutions of nonlinear or differential equations or for the analysis
of potentially diverging series (see, e.g., [10, 11, 49]).

Extrapolation techniques work on the vector-valued output xt \in \BbbR d of the original method
that depends on some controllable real-valued quantity t, which can be the number of iterations
or some regularization parameter and, more generally, any parameter that controls both the
running time and the approximation error of the algorithm. When t tends to t\infty (which is
typically 0 or +\infty ), we will assume that xt has an asymptotic expansion of the form

xt = x\ast + gt +O(ht),

where x\ast is the desired output, gt \in \BbbR d is the asymptotic equivalent of xt - x\ast , and ht = o(\| gt\| ).
The key question in extrapolation is the following: From the knowledge of xt for potentially
several t's, how can we better approximate x\ast without the full knowledge of gt?

For exponentially converging algorithms, there exist several ``nonlinear"" schemes that
combine linearly several values of xt with weights that depend nonlinearly on the iterates,
such as Aitken's \Delta 2 process [2] or Anderson acceleration [3], which has recently been shown
to provide significant acceleration to linearly convergent gradient-based algorithms [47]. In
this paper, we consider dependence in powers of t, where Richardson extrapolation excels (see,
e.g., [45, 34, 28]).

We thus assume that
gt = t\alpha \cdot \Delta ,

and ht = t\beta is a power of t such that ht = o(\| gt\| ), where \alpha \in \BbbR is known but \Delta \in \BbbR d is
unknown, that is,

xt = x\ast + t\alpha \Delta +O(t\beta ).

In all our cases, \alpha =  - 1 when t\infty = +\infty , and \alpha = 1 when t\infty = 0. Richardson extrapolation
is simply combining two iterates with different values of t so that the zeroth-order term x\ast is
preserved, while the first-order term cancels, for example,

2xt  - x21/\alpha t = 2(x\ast + t\alpha \Delta +O(t\beta )) - (x\ast + 2t\alpha \Delta +O(t\beta )) = x\ast +O(t\beta ).

See an illustration in Figure 1 for \alpha = 1, \beta = 2, and t\infty = 0. Note that (a) the choice of
21/\alpha \not = 1 as a multiplicative factor is arbitrary and chosen for its simplicity when | \alpha | = 1 and

xt

2xt − x2t

x2t

x∗

x∗ + t∆

x∗ + 2t∆

Figure 1. Illustration of Richardson extrapolation for t\infty = 0 and xt = x\ast + t\Delta +O(t2). Iterates (in black)
with their first-order expansions (in red). The deviations (represented by circles) are of order O(t2). Adapted
from [22].
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ON THE EFFECTIVENESS OF RICHARDSON EXTRAPOLATION 1253

(b) Richardson extrapolation can be used with m+1 iterates to remove the first m terms in an
asymptotic expansion, where the powers of the expansion are known and not the associated
vector-valued constants (see examples in section 3).

The main goal of this paper is to study when Richardson extrapolation can be used within
machine learning. Classical applications include the wide use within integration methods,
where the technique is often called Richardson--Romberg extrapolation [28], and for bias re-
moval in constant-step-size stochastic gradient descent for sampling [24] and optimization [22].
We identify two generic situations where Richardson interpolation can be useful:

\bullet t = k is the number of iterations of an existing iterative optimization algorithm con-
verging to x\ast , where then \alpha =  - 1 and t\infty = +\infty , and Richardson extrapolation

considers, for k even, x
(1)
k = 2xk  - xk/2. We consider in section 2 averaged gradient

descent and Frank--Wolfe algorithms (where we obtain asymptotically rates of O(1/k2)
on polytopes, where k is the number of iterations).

\bullet t = \lambda is a regularization parameter, where then \alpha = 1 and t\infty = 0, and Richardson

extrapolation considers x
(1)
\lambda = 2x\lambda  - x2\lambda . We consider in section 3 Nesterov smoothing

techniques for minimizing nonsmooth functions (where we obtain asymptotically rates
close to O(1/k2) for nonsmooth functions) and kernel ridge regression (where we obtain
estimators with lower bias).

As we will show, extrapolation techniques come with no significant loss in performance but
with sometimes strong gains, and the goal of this paper is to provide theoretical justifications
for such gains, as well as empirical illustrations on classical problems from machine learning.
Note that we aim for the simplest asymptotic results (most can be made nonasymptotic with
extra assumptions).

2. Extrapolation on the number of iterations. In this section, we consider extrapolation
based on the number of iterations k for optimization algorithms aimed at minimizing a function
f on \BbbR d, that is, for the simplest case

x
(1)
k = 2xk  - xk/2.

If xk is converging to a minimizer x\ast , then so is xk/2 and thus also x
(1)
k = 2xk - xk/2; moreover,

we have \| x(1)k  - x\ast \| 2 \leqslant 2\| xk - x\ast \| 2+\| xk/2 - x\ast \| 2, so even if there are no cancellations, perfor-
mance is never significantly deteriorated (the risk is essentially to lose half of the iterations).

The potential gains depend on the way xk converges to x\ast . The existence of a convergence
rate of the form f(xk) - f(x\ast ) = O(1/k) or O(1/k2) is not enough, as Richardson extrapolation
requires a specific direction of asymptotic convergence. As illustrated in Figure 2, some
algorithms are oscillating around their solutions, while some converge with a specific direction.
Only the latter ones can be accelerated with Richardson extrapolation, while the former ones
are good candidates for Anderson acceleration [3, 47].

We now consider three algorithms: (1) averaged gradient descent, where extrapolation
is at its best, as it transforms an O(1/t2) convergence rate into an exponential one; (2)
accelerated gradient descent, where extrapolation does not bring anything; and (3) Frank--
Wolfe algorithms, where the situation is mixed (sometimes it helps, sometimes it does not).
In situations where we show benefits of extrapolation, the improvements are (asymptotically)
present for all input data.D
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x0

x1

x2

x0

x1

x2

∆

Figure 2. Left: Oscillating convergence, where Richardson extrapolation does not lead to any gain. Right:
Nonoscillating convergence with a main direction \Delta (in red dotted), where Richardson extrapolation can be
beneficial if the oscillations orthogonal to the direction \Delta are negligible compared to convergence along the
direction \Delta .

2.1. Averaged gradient descent. We consider the usual gradient descent algorithm

xk = xk - 1  - \gamma f \prime (xk - 1),

where \gamma \geqslant 0 is a step-size with Polyak--Ruppert averaging [44, 46]:

\=xk =
1

k

k - 1\sum 
i=0

xi.

Averaging is key to robustness to potential noise of the gradients [44, 38]. However, it comes
with the unintended consequence of losing the exponential forgetting of initial conditions for
strongly convex problems [9].

A common way to restore exponential convergence (up to the noise level in the stochastic
case) is to consider ``tail averaging,"" that is, to replace \=xk by the average of only the latest k/2
iterates [33]. As shown below for k even, this corresponds exactly to Richardson extrapolation
(Richardson is here providing an interpretation to an existing algorithm):

2

k

k - 1\sum 
i=k/2

xi =
2

k

k - 1\sum 
i=0

xi  - 
2

k

k/2 - 1\sum 
i=0

xi = 2\=xk  - \=xk/2.

While [33] focuses on a nonasymptotic analysis for stochastic problems for least-squares re-
gression, we now provide an asymptotic analysis for general convex objective functions and
nonstochastic problems (see a proof in Appendix B based on a local quadratic approximation
of f around x\ast ).

Proposition 2.1. Assume f convex, three times differentiable with Hessian eigenvalues be-
tween 0 and L, with bounded third-order derivatives, and with a unique minimizer x\ast \in \BbbR d

such that f \prime \prime (x\ast ) is positive definite. If \gamma \leqslant 1/L, then

\=xk = x\ast +
1

k
\Delta +O(exp( - k\lambda )),

where \Delta =
\sum \infty 

i=0(xi  - x\ast ) and \lambda is proportional to \gamma \lambda \mathrm{m}\mathrm{i}\mathrm{n}(f
\prime \prime (x\ast )).D
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Figure 3. Left: Averaged gradient descent on a logistic regression problem in dimension d = 400, and
with n = 4000 observations minx\in \BbbR d f(x) = 1

n

\sum n
i=1 log(1 + exp( - bix

\top ai)) with (ai, bi) \in \BbbR d \times \{  - 1, 1\} . The
covariance matrix of (Gaussian) inputs has eigenvalues 1/j, j = 1, . . . , d; the lowest eigenvalue is 1/400, and
therefore we can see the effect of strong convexity starting between k = 100 and 1, 000 iterations; moreover, for
the regular averaged recursion, the line in the log-log plot has slope  - 2. Right: Accelerated gradient descent on a
quadratic optimization problem in dimension d = 1, 000 and a Hessian whose eigenvalues are 1/j2, j = 1, . . . , d;
with such eigenvalues, the local linear convergence is not observed and we have a line of slope  - 2.

Note that (a) before Richardson extrapolation, the asymptotic convergence rate will be
of the order O(1/k2), which is better than the usual O(1/k) upper bound for the rate of
gradient descent, but with a stronger assumption that in fact leads to exponential convergence
before averaging; (b) while \Delta has a simple expression, it cannot be computed in practice; (c)
Richardson extrapolation leads to an exponentially convergent algorithm from an algorithm
converging asymptotically in O(1/k2) for functions values; and (d) in the presence of noise in
the gradients, the exponential convergence would only be up to the noise level. See Figure 3
(left plot) for an illustration with noisy gradients.

2.2. Accelerated gradient descent. In the section above, we considered averaged gradient
descent, which is asymptotically converging asO(1/k2) and on which Richardson extrapolation
could be used with strong gains. Is it possible also for the accelerated gradient descent [41],
which has a nonasymptotic convergence rate of O(1/k2) for convex functions, that is, a rate
which is valid for all k and without local conditions on the Hessians?

It turns out that the behavior of the iterates of accelerated gradient descent is exactly
of the form depicted in the left plot of Figure 2: That is, the iterates xk oscillate around
the optimum, as can be seen from the spectral analysis for quadratic problems, in continuous
time [50] or discrete time [25]. Richardson extrapolation is of no help but is not degrading
performance too much. See Figure 3 (right plot) for an illustration.

2.3. Frank--Wolfe algorithms. We now consider Frank--Wolfe algorithms (also known as
conditional gradient algorithms) for minimizing a smooth convex function f on a compact
convex set K. These algorithms are dedicated to situations where one can easily minimize
linear functions on K (see, e.g., [32] and references therein). The algorithm is

\=xk \in argmin
x\in K

f(xk - 1) + f \prime (xk - 1)
\top (x - xk - 1),

xk = (1 - \rho k)xk - 1 + \rho k\=xk.D
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x∗

K

y2

y1

x0 x1

x2

∆

Figure 4. Frank--Wolfe algorithm zigzagging. Starting from x0, the algorithm always moves toward one of
the extreme points of K with an average direction of \Delta .

That is, the first-order Taylor expansion of f at xk - 1 is minimized, ending up typically in an
extreme point \=xk of K and a convex combination of xk - 1, and \=xk is considered. While some
form of line search can be used to find \rho k, we consider so-called open loop schemes, where
\rho k = 1/k or \rho k = 2/(k + 1) [23, 32].

In terms of function values, these two variants are known to converge at respective rates
O(log(k)/k) and O(1/k). Moreover, as illustrated in Figure 4, they are known to zigzag toward
the optimal point. Avoiding this phenomenon can be done in several ways, for example,
through optimizing over all convex combinations of the \=xi's for i \leqslant k [53] or through so-called
away steps [30, 36]. In this section, we consider Richardson extrapolation and assume for
simplicity that K is a polytope (which is a typical use case for Frank--Wolfe algorithms). Note
here that we are considering asymptotic convergence rates, and even without extrapolation
(but with a local strong-convexity assumption), we can beat the O(1/k) rates for the step-size
\rho k = 2/(k + 1).1

Asymptotic expansion. In order to provide the proposition below (see Appendix C for a
proof based on a local quadratic approximation of f around x\ast and an orthogonal projection
of xk onto the optimal face of K) that characterizes the zigzagging phenomenon, we assume
regularity properties similar to section 2.1 and that the unique minimizer is ``in the middle of
a face"" of K, which is often referred to as constraint qualification in optimization [42].

Proposition 2.2. Assume f convex and three times differentiable with bounded third-order
derivatives in the polytope K and with a unique minimizer x\ast \in \BbbR d such that f \prime \prime (x\ast ) is positive
definite. Moreover, we assume x\ast is strictly in a (m - 1)-dimensional face of K, which is the
convex hull K\ast of extreme points y1, . . . , ym \in \BbbR d, and for which miny\in K f

\prime (x\ast )
\top y is attained

only by elements of K\ast . Then
\bullet For \rho k = 1/k, xk = x\ast +

1
k\Delta 1 +O(1/k2). This implies f(xk) - f(x\ast ) =

1
k\Delta 

\top 
1 f

\prime (x\ast ) +
O(1/k2) and f(2xk  - xk/2) - f(x\ast ) = O(1/k2).

\bullet For \rho k = 2/(k + 1), xk = x\ast +
1

k(k+1)\Delta 2 + O(1/k2). This implies f(xk)  - f(x\ast ) =

O(1/k2) and f(2xk  - xk/2) - f(x\ast ) = O(1/k2).
The two vectors \Delta 1 and \Delta 2 are orthogonal (for the dot product defined by f \prime \prime (x\ast )) to the span
of all yi  - x\ast , i = 1, . . . ,m.

1Note that (a) the lower bound with dependence O(1/k) from [14] only applies to Frank--Wolfe algorithms
with line search and (b) that our bounds are local and the constants have to depend on the dimension so as to
not contradict the lower bound from [32].D
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We now discuss the consequences of the proposition above.
Step-size \rho k = 1/k. Although it leads to a worse performance than the step-size \rho k =

2/(k + 1) both in theory (extra logarithmic term) and in practice, we consider that (1) this
is the ``historical"" step-size [23] with an interesting behavior in our setup and (2) the corre-
sponding dual algorithm is the subgradient method with plain averaging (see, e.g., [6]), which
is sometimes preferred in online learning [31].

As shown in Proposition 2.2, Richardson extrapolation allows us to go from an O(1/k)
to an O(1/k2) convergence rate. In the left plots of Figure 5 and Figure 6, we can observe
the benefits of Richardson extrapolation on two optimization problems with the step-size
\rho k = 1/k. Note that (a) asymptotically, there is provably no extra logarithmic factor like we
have for the existing nonasymptotic convergence rate and (b) the Richardson extrapolated
iterate may not be within K but is provably O(1/k) away from it (in our simulations, we
simply make the iterate feasible by rescaling).
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Figure 5. Frank--Wolfe for the ``constrained logistic Lasso,"" that is, minx\in \BbbR d f(x) such that \| x\| 1 \leqslant c, with
f(x) = 1

n

\sum n
i=1 log(1 + exp( - bix

\top ai)). We consider n = 400 observations in dimension d = 400 sampled from
a standard normal distribution and with a constraint on the \ell 1-norm. Left: Step size 1/k with slopes  - 1 (blue)
and  - 2 (red). Right: Step size 2/(k + 1) with slope approximately  - 2 for the two curves.
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Figure 6. Frank--Wolfe for the dual of robust regression. We consider the dual of absolute loss regres-
sion with n = 400 observations in dimension d = 200 sampled from a standard normal distribution with a
squared Euclidean norm penalty. The primal problem is infy\in \BbbR d

1
n
\| b - Ax\| 1 + \lambda 

2
\| y\| 22, while the dual problem is

sup\| x\| \infty \leqslant 1  - f(x) with f(x) =  - 1
n
x\top b+ 1

2n2\lambda 
x\top AA\top x. Left: Step size 1/k with slopes  - 1 (blue) and  - 2 (red).

Right: Step size 2/(k + 1), with slope  - 2 for the two curves.
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Step-size \rho k = 2/(k + 1). As shown in Proposition 2.2, we already get a performance
of O(1/k2) without extrapolation (which is a new asymptotic result for the Frank--Wolfe
algorithm on polytopes), and Richardson extrapolation does not lead to any acceleration. In
the right plots of Figure 5 and Figure 6, we indeed see no benefits (but no strong degradation).

Note that here (and for both step-sizes), higher-order Richardson would not lead to fur-
ther cancellation, as within the span of the supporting face, we have an oscillating behavior
similar to the left plot of Figure 2. Moreover, although we do not have a proof, the closed loop
algorithm exhibits the same behavior as the step \rho k = 1/k, both with and without extrapola-
tion, which is consistent with the analysis of [14]. It would also be interesting to consider the
benefits for Richardson extrapolation for strongly convex sets [27].

3. Extrapolation on the regularization parameter. In this section, we explore the appli-
cation of Richardson extrapolation to regularization methods. In a nutshell, regularization
allows us to make an estimation problem more stable (less subject to variations for statistical
problems) or the algorithm faster (for optimization problems). However, regularization adds
a bias that needs to be removed. In this section, we apply Richardson extrapolation to the
regularization parameter to reduce this bias. We consider two applications where we can
provably show some benefits: (a) smoothing for nonsmooth optimization in section 3.1 and
(b) kernel ridge regression in section 3.2.

3.1. Smoothing nonsmooth problems. We consider the minimization of a convex func-
tion of the form f(x) = h(x) + g(x), where h is smooth and g is nonsmooth. These opti-
mization problems are ubiquitous in machine learning and signal processing, where the lack of
smoothness can come from (a) nonsmooth losses, such as max-margin losses used in support
vector machines and more generally structured output classification [51, 52], and (b) sparsity-
inducing regularizers (see, e.g., [8] and references therein). While many algorithms can be
used to deal with this nonsmoothness, we consider a classical smoothing technique below.

Nesterov smoothing. In this section, we consider the smoothing approach of [39] where the
nonsmooth term is ``smoothed"" into g\lambda , where \lambda is a regularization parameter and accelerated
gradient descent is used to minimize h+ g\lambda .

A typical way of smoothing the function g is to add \lambda times a strongly convex regularizer
to the Fenchel conjugate of g (see an example below); as shown by [39], this leads to a function
g\lambda which has a smoothness constant (defined as the maximum of the largest eigenvalues of
all Hessians) proportional to 1/\lambda with a uniform error of \lambda between g and g\lambda . Given that
accelerated gradient descent leads to an iterate with excess function values proportional to
1/(\lambda k2) after k iterations, with the choice of \lambda \propto 1/k, this leads to an excess in function values
proportional to 1/k, which improves on the subgradient method which converges in O(1/

\surd 
k).

Richardson extrapolation. If we denote by x\lambda the minimizer of h + g\lambda and x\ast the global

minimizer of f = h+g and if we can show that x\lambda = x\ast +\lambda \Delta +O(\lambda 2), then x
(1)
\lambda = 2x\lambda  - x2\lambda =

x\ast + O(\lambda 2) and we can expand f(x
(1)
\lambda ) = f(x\ast ) + O(\lambda 2), which is better than the O(\lambda )

approximation without extrapolation.
Then, with \lambda \propto k - 2/3, to balance the two terms 1/(\lambda k2) and \lambda 2, we get an overall

convergence rate for the nonsmooth problem of k - 4/3. We now make this formal for the special
(but still quite generic) case of polyhedral functions g and also consider m-step Richardson
extrapolation, which leads to a convergence rate arbitrarily close to O(1/k2).D
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Polyhedral functions. We consider a polyhedral function of the form

g(x) = max
i\in \{ 1,...,m\} 

a\top i x - bi = max
i\in \{ 1,...,m\} 

(Ax - b)i,

where A \in \BbbR m\times d and b \in \BbbR m. This form includes traditional regularizers, such as the \ell 1-norm,
the \ell \infty -norm, grouped \ell 1-\ell \infty -norms [37], or more general sparsity-inducing norms [4].

We consider the smoothing of g as

g\lambda (x) = max
\eta \in \Delta m

\eta \top (Ax - b) - \lambda \varphi (\eta )

for some strongly convex function \varphi on the simplex \Delta m (defined as the vectors in \BbbR m with
nonnegative components summing to one), typically, the negative entropy

\sum m
i=1\{ \eta i log \eta i - \eta i\} 

or 1
2\| \eta \| 

2
2. For our asymptotic expansion, we also need a form of constraint qualification (see

a proof in Appendix D based on expanding the primal-dual optimality conditions).

Proposition 3.1. Assume h convex, three times differentiable with bounded third-order de-
rivatives g convex, and with a unique minimizer x\ast \in \BbbR d of h+ g such that h\prime \prime (x\ast ) is positive
definite. Assume there exists \eta \ast \in \Delta m such that for the support I \subset \{ 1, . . . ,m\} of \eta \ast (that is,
the set of nonzeros),

h\prime (x\ast ) +A\top \eta \ast = 0

and

max
i\in \{ 1,...,m\} 

(Ax\ast  - b)i is only attained for all i \in I.

Assume moreover the submatrix AI obtained by taking the the rows of A indexed by I has full
rank. We denote by x\lambda a minimizer of h(x) + g\lambda (x) and \eta \lambda the corresponding dual variable.
Then

x\lambda = x\ast + \lambda \Delta +O(\lambda 2)

with \Delta = h\prime \prime (x\ast )
 - 1A\top 

I [AIh
\prime \prime (x\ast )

 - 1A\top 
I ]

 - 1(\eta \ast )I for the quadratic penalty and a similar expres-
sion for the entropic penalty.

The proposition above implies that (see detailed proof in Appendix D for details) the
smoothing technique asymptotically adds a bias of order \lambda :

f(x\lambda ) = f(x\ast ) +O(\lambda ),

where we recover (asymptotically) the usual upper bound in O(\lambda ), confirming the result
from [39]. The key other consequence is that

f(x
(1)
\lambda ) = f(2x\lambda  - x2\lambda ) = f(x\ast ) +O(\lambda 2),

which shows the benefits of Richardson extrapolation.D
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1260 FRANCIS BACH

Multiple-step Richardson extrapolation. Given that 1-step Richardson extrapolation allows
us to go from a bias of O(\lambda ) to O(\lambda 2), a natural extension is to consider m-step Richardson
extrapolation [28], that is, a combination of m+ 1 iterates:

x
(m)
\lambda =

m+1\sum 
i=1

\alpha 
(m)
i xi\lambda ,

where the weights \alpha 
(m)
i are such that the first m powers in the Taylor expansion of x\lambda , when

it exists,2 cancel out.
This can be done by solving the linear system based on the following equations:

m+1\sum 
i=1

\alpha 
(m)
i = 1(3.1)

for all j \in \{ 1, . . . ,m\} ,
m+1\sum 
i=1

\alpha 
(m)
i ij = 0.(3.2)

Using the same technique as [43, Lemma 3.1], this is a Vandermonde system with a closed-form
solution (see proof in Appendix E.3):

\alpha 
(m)
i = ( - 1)i - 1

\biggl( 
m+ 1

i

\biggr) 
.

We show in Appendix D the following proposition, which is based on a novel mth-order Taylor
expansion of x\lambda .

Proposition 3.2. On top of assumptions from Proposition 3.1, assume h is (m + 2) times
differentiable with bounded derivatives. Then

f(x
(m)
\lambda ) = f(x\ast ) +O(\lambda m+1).

Thus, within the smoothing technique, if we consider \lambda \propto 1/k2/(m+2) to balance the terms
1/(\lambda k2) and \lambda m+1, we get an error for the nonsmooth problem of 1/k2(m+1)/(m+2), which can
get arbitrarily close to 1/k2 when m gets large. The downsides are that (a) the constants in
front of the asymptotic equivalent may blow up (a classical problem in high-order expansions),
and thus the gain in the power of \lambda or k may only appear for \lambda 's which are too small or k's which
are too large (for example, in the right plot of Figure 7, the third-order extrapolation improves
convergence only for large k); and (b) m-step extrapolation requires running the algorithm m
times (this can be done in parallel). In our experiments below, 3-step extrapolation already
brings in most of the benefits.

2This is the case when performing extrapolation on the regularization parameters, typically not when
applied to iterative algorithms like in section 2.D
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Figure 7. Richardson extrapolation for Nesterov smoothing on a penalized Lasso problem, with regulariza-
tion by the quadratic penalty. Left: Dependence of f(x\lambda )  - f(x\ast ) on \lambda , for Richardson extrapolation of order
m, we indeed recover a slope of m+1 in the log-log plot. Right: Optimization error versus number of iterations;
where we go from a slope of  - 1 (blue curves) to improved slopes of  - 4/3 (red curve) and  - 8/5 (black curve).
See text for details.

Experiments. We consider the penalized Lasso problem:

min
x\in \BbbR d

1

2n

n\sum 
i=1

(bi  - x\top ai)
2 + \lambda \| x\| 1,

where (ai, bi) \in \BbbR d\times \BbbR for i = 1, . . . , n for d = 100 and n = 100 and with input data distributed
as a standard normal vector. We use either a dual entropic penalty or a dual quadratic penalty
for smoothing each component | xj | of the \ell 1-norm of x. Plots for the quadratic penalty are
presented here in Figure 7, while plots for the entropic penalty are presented in Figure 9 in
Appendix D with the same conclusions.

In the left plot of Figure 7, we illustrate the dependence of f(x\lambda ) - f(x\ast ) on \lambda for Richard-
son extrapolation with various orders, while in the right plot of Figure 7, we study the effect
of extrapolation to solve the nonsmooth problem. For a series of regularization parameters
equal to 2i for i between  - 18 and 1 (sampled every 1/5), we run accelerated gradient descent
on h + g\lambda , and we plot the value of f(x)  - f(x\ast ) for the various estimates, where for each
number of iterations, we minimize over the regularization parameter. This is an oracle version
of varying \lambda as a function of the number of iterations (a detailed evaluation where \lambda depends
on k could also be carried out). In Figure 7, we plot the excess function values as a function
of the number of iterations, taking into account that m-step Richardson extrapolation requires
m-times more iterations. We see that we get a strong improvement approaching 1/k2.

From nonlinear programming to linear programming. When we use the entropic penalty,
the smoothing framework is generally applicable in most nonlinear programming problems
(see, e.g., [19]). It is interesting to note that typically when applying the entropic penalty,
the deviation to the global optimizer is going to zero exponentially in  - 1/\lambda for some of the
components (see a proof for our particular case in Appendix D) but not for the corresponding
dual problem (which is our primal problem).

Another classical instance of entropic regularization in machine learning leads to the
Sinkhorn algorithm for computing optimal transport plans [21]. For that problem, the entropicD

ow
nl

oa
de

d 
11

/2
6/

21
 to

 1
09

.2
21

.1
83

.1
42

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1262 FRANCIS BACH

penalty is put directly on the original problem, and the deviation in estimating the optimal
transport plan can be shown to be asymptotically exponential in  - 1/\lambda [20], and thus there
the Richardson extrapolation is not helpful (unless one wants to estimate the Kantorovich
dual potentials). See also an application of the Richardson extrapolation to the estimation of
the Wasserstein distance in [17].

3.2. Improving bias in ridge regression. We consider the ridge regression problem; that
is, w\lambda is the unique minimizer of

min
w\in \BbbR d

1

2n
\| y  - \Phi w\| 22 +

\lambda 

2
\| w\| 22,

where \Phi \in \BbbR n\times d is a feature vector and y \in \BbbR n a vector of responses [26]. The solution may
be obtained in closed form by solving the normal equations, as w\lambda = (\Phi \top \Phi + n\lambda I) - 1\Phi \top y.

The regularization term \lambda 
2\| w\| 

2
2 is added to avoid overfitting and control the variability of

w\lambda due to the randomness in the training data (the higher the \lambda , the more control); however,
it does create a bias that goes down as \lambda goes to zero. Richardson extrapolation can be used

to reduce this bias. We thus consider w
(1)
\lambda = 2w\lambda  - w2\lambda and more generally

w
(m)
\lambda =

m\sum 
i=0

\alpha 
(m)
i wi\lambda 

with the same weights as defined in (3.1) and (3.2). In order to compute w
(m)
\lambda , either m ridge

regression problems can be solved or a closed-form spectral formula can be used based on a
single singular value decomposition of the kernel matrix (see section E.3 for details).

Theoretical analysis. Following [5], we assume for simplicity that \Phi is deterministic and
that y = z+ \varepsilon , where \varepsilon has zero mean and covariance matrix \sigma 2I. We consider the in-sample
error of \^y\lambda = \Phi w\lambda = K(K + n\lambda I) - 1y = \^H\lambda y, where K = \Phi \Phi \top is the usual kernel matrix and
\^H\lambda is the smoothing matrix, which is equal to I for very small \lambda and equal to zero for very
large \lambda . We consider the so-called in-sample generalization error; that is, we want to minimize

1

n
\BbbE \| \^y\lambda  - z\| 22 = bias( \^H\lambda ) + variance( \^H\lambda ),

where bias( \^H\lambda ) =
1
n\| ( \^H\lambda  - I)z\| 22 and variance( \^H\lambda ) =

\sigma 2

n tr \^H2
\lambda .

The bias term is increasing in \lambda , while the variance term is decreasing in \lambda , and there is
thus a trade-off between these two terms. To find the optimal \lambda , assumptions need to be made
on the problem regarding the eigenvalues of K and the components of z in the eigenbasis of
K. That is, following the notations of [5, section 4.3], we assume that the eigenvalues of K are
\Theta (n\mu i) (that is, bounded from above and below by constants times n\mu i) and the coordinates
of z in the eigenbasis of K are \Theta (

\surd 
n\nu i). The precise trade-off depends on the rates at which

\mu i and \nu i decay to zero.
A classical situation is \mu i \sim i - 2\beta and \nu i \sim i - 2\delta , where \beta > 1/2 and \delta > 1/2 (to ensure

finite energy). As detailed in Appendix E,D
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\bullet The variance term is equivalent to \sigma 2

n \lambda 
 - 1/2\beta and does not depend on z or \delta 

\bullet The bias term depends on both \delta and \beta for signals which are not too smooth (i.e., not
too fast decay of \nu i and thus small \delta ); that is, if \delta < 2\beta + 1/2, then the bias term is
equivalent to \lambda (2\delta  - 1)/2\beta and we can thus find the optimal \lambda as (\sigma 2/n)\beta /\delta , leading to
predictive performance of (\sigma 2/n)1 - 1/2\delta , which happens to be optimal [15]. However,
when \delta > 2\beta + 1/2, a phenomenon called ``saturation"" occurs, and the bias term
is equivalent to \lambda 2 (independent of \delta ), and the optimized predictive performance is
(\sigma 2/n)1 - 1/(4\beta +1), which is not optimal anymore.

As shown in Appendix E, by reducing the bias, with m-step Richardson interpolation, we can
show that the variance term is bounded by a constant times the usual one, while the bias term
is equivalent to \lambda (2\delta  - 1)/2\beta for a wider range of \delta , that is, \delta < 2(m+1)\beta +1/2, which recovers
for m = 0 the nonextrapolated estimate. This leads to optimal statistical performance for a
wider range of problems.

Experiments. As an illustration, we consider a ridge regression problem with data uni-
formly sampled on the unit sphere in dimension d = 40 with n = 200 observations and y
generated as a linear function of the input plus some noise. We consider the rotation invari-
ant kernel equal to the expectation k(x, x\prime ) = \BbbE \tau (1 + x\top x\prime )\sigma (\tau \top x)\sigma (\tau \top x\prime ) for \tau uniform on
the sphere. This is equal to, for \sigma (\alpha ) = 1\alpha >0 (see [18, 7]),

k(x, y) \propto (1 + x\top x\prime )
\bigl[ 
\pi  - arccos(x\top x\prime )

\bigr] 
.

When the number of observations n tends to infinity, the eigenvalues of 1
nK are known to

converge to the eigenvalues of a certain infinite-dimensional operator [35]. As shown by [7],
the corresponding eigenvalues of the kernel matrix decay as i - 1 - 1/d. We consider z generated
as a linear function so that \nu i has a finite number of nonzero components in the eigenbasis of
K.

In the left plot of Figure 8, we consider 1-step and 3-step Richardson extrapolation and
plot the generalization error (averaged over 10 replications) as a function of the regularization
parameter: We can see that, as expected, (a) with extrapolation the curves move to the right
(we can use a larger \lambda for a similar performance, which is advantageous as iterative algorithms
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Figure 8. Left: Regularization path for the classical iterate w\lambda , one step of Richardson w
(1)
\lambda and 3 steps

w
(3)
\lambda . Right: Optimal error as a function of the order of the Richardson step.D
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1264 FRANCIS BACH

are typically faster) and (b) the minimal error is smaller (which is true here because we learn
a smooth function). In the right plot of Figure 8, we study the effect of increasing the order
m of extrapolation, showing that the larger the better with some saturation. With m infinite,
there will be overfitting as the corresponding spectral filter is nonstable, but this happens very
slowly (see Appendix E.3 for details).

4. Conclusion. In this paper, we presented various applications of Richardson extrapola-
tion to machine learning optimization and estimation problems, each time with an asymptotic
analysis showing the potential benefits. For example, when using the number of iterations of
an iterative algorithm to perform extrapolation, we can accelerate Frank--Wolfe algorithms to
have asymptotic rates of O(1/k2) on polytopes for the step-size \rho k = 1/k and locally strongly
convex functions (this is achieved without extrapolation for the step-size \rho k = 2/(k + 1)).
When extrapolating based on the regularization parameter, we can accelerate the Nesterov
smoothing technique to have asymptotic rates close to O(1/k2).

We also highlighted situations where Richardson extrapolation does not bring any benefits
(but does not degrade performance much), namely, when applied to accelerated gradient
descent or the Sinkhorn algorithm for optimal transport.

The analysis in this paper can be extended in a number of ways: (1) While the paper has
focused on asymptotic analysis for simplicity, nonasymptotic analysis could be carried out to
study more finely when acceleration starts; (2) we have focused on deterministic optimization
algorithms, and extensions to stochastic algorithms could be derived along the lines of the
work of [22]; (3) we have primarily focused on convex optimization algorithms, but nonconvex
extensions, like done by [48] for Anderson acceleration, could also lead to acceleration.

Appendix A. Preliminary considerations.
We first start with lemmas that we will need in subsequent proofs; the second one shows

strong convexity on a level set once we assume that the Hessian at optimum is positive definite.

Lemma A.1. Assume f convex, three times differentiable, with bounded third-order deriv-
atives, and with a point x\ast such that f \prime \prime (x\ast ) is positive definite. Then there exists c > 0 such
that for any x \in \BbbR d, 1

2(x - x\ast )
\top f \prime \prime (x\ast )(x - x\ast ) \leqslant c\Rightarrow f \prime \prime (x) \succcurlyeq 1

2f
\prime \prime (x\ast ).

Proof. Since f \prime \prime (x\ast ) is positive definite, \lambda \mathrm{m}\mathrm{i}\mathrm{n}(f
\prime \prime (x\ast )) > 0, and 1

2(x  - x\ast )
\top f \prime \prime (x\ast )(x  - 

x\ast ) \leqslant c implies that \| x  - x\ast \| 22 \leqslant 2c
\lambda \mathrm{m}\mathrm{i}\mathrm{n}(f \prime \prime (x\ast ))

. Thus, since third-order derivatives of f are

bounded, if 1
2(x  - x\ast )

\top f \prime \prime (x\ast )(x  - x\ast ) \leqslant c, we have \| f \prime \prime (x)  - f \prime \prime (x\ast )\| \mathrm{o}\mathrm{p} \leqslant Ac for some
constant A, and thus f \prime \prime (x) \succcurlyeq f \prime \prime (x\ast )  - AcI \succcurlyeq f \prime \prime (x\ast )  - Ac

\lambda \mathrm{m}\mathrm{i}\mathrm{n}(f \prime \prime (x\ast ))
f \prime \prime (x\ast ) \succcurlyeq 1

2f
\prime \prime (x\ast ) if

Ac \leqslant 1
2\lambda \mathrm{m}\mathrm{i}\mathrm{n}(f

\prime \prime (x\ast )).

As suggested by one of the reviewers, the lemma above is true with the weaker condition
that f \prime \prime is continuous at x\ast but without the possibility of deriving nonasymptotic bounds.

Lemma A.2. Assume that f is convex and three times differentiable with bounded third-
order derivatives and that x\ast \in \BbbR d is a minimizer of f on \BbbR d such that f \prime \prime (x\ast ) is positive
definite. Then x\ast is the unique minimizer of f , and there exists c > 0 such that for any
x \in \BbbR d,

f(x) - f(x\ast ) \leqslant c\Rightarrow f \prime \prime (x) \succcurlyeq 
1

2
f \prime \prime (x\ast ).
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Proof. Using the above Lemma A.1, then there exists c > 0 such that

1

4
(x - x\ast )

\top f \prime \prime (x\ast )(x - x\ast ) \leqslant c\Rightarrow f \prime \prime (x) \succcurlyeq 
1

2
f \prime \prime (x\ast ).

We will prove the lemma by showing that

f(x) - f(x\ast ) \leqslant c\Rightarrow 1

4
(x - x\ast )

\top f \prime \prime (x\ast )(x - x\ast ) \leqslant c.

We now show that f(x)  - f(x\ast ) \leqslant c/2 implies that we stay in the region where 1
2(x  - 

x\ast )
\top f \prime \prime (x\ast )(x - x\ast ) \leqslant c. Indeed, using the Taylor formula with integral remainder, for 1

2(x - 
x\ast )

\top f \prime \prime (x\ast )(x - x\ast ) \leqslant c (where the lower bound on Hessians above holds), we have

f(x) - f(x\ast ) = 0 +

\int 1

0
(x - x\ast )

\top f \prime \prime (x\ast + t(x - x\ast ))(x - x\ast )(1 - t)dt

\geqslant 
1

2

\biggl( \int 1

0
(1 - t)dt

\biggr) 
(x - x\ast )

\top f \prime \prime (x\ast )(x - x\ast ) =
1

4
(x - x\ast )

\top f \prime \prime (x\ast )(x - x\ast ).

Thus f(x)  - f(x\ast ) \leqslant c implies 1
4(x  - x\ast )

\top f \prime \prime (x\ast )(x  - x\ast ) \leqslant c, and we get the desired
result.

Appendix B. Proof of Proposition 2.1 (averaged gradient descent).
In this particular case of unconstrained gradient descent, f(xk)  - f(x\ast ) \leqslant 1

\gamma k\| x0  - x\ast \| 2
as soon as \gamma \leqslant 1/L [40]. This implies from Lemma A.2 in Appendix A that for k larger than
some k0, all iterates are such that f \prime \prime (xk) \succcurlyeq 1

2f
\prime \prime (x\ast ), and thus, after that k, we are in the

strongly convex case, where \| xk  - x\ast \| \leqslant c\prime \rho k, where c\prime , \rho depend on the lowest eigenvalue \mu 
of f \prime \prime (x\ast ) as c

\prime = \| xk0  - x\ast \| \rho  - k0 and \rho = (1 - \gamma \mu /2).
Thus, with \=xk = 1

k

\sum k - 1
i=0 xi, k(\=xk  - x\ast ) tends to

\sum \infty 
i=0(xi  - x\ast ) when k \rightarrow +\infty (since the

series is convergent), and

k(\=xk  - x\ast ) - 
\infty \sum 
i=0

(xi  - x\ast ) =  - 
\infty \sum 
i=k

(xi  - x\ast ),

leading to k(\=xk  - x\ast ) - 
\sum \infty 

i=0(xi  - x\ast ) = O(\rho k), and thus, with \Delta =
\sum \infty 

i=0(xi  - x\ast ) (which is
hard to compute a priori), \=xk = x\ast +

1
k\Delta +O(\rho k).

Appendix C. Proof of Proposition 2.2 (Frank--Wolfe).
Preliminary remarks. We consider the step-sizes \rho k = 1

k and \rho k = 2
k+1 , for which the

respective convergence rates for f(xk)  - f(x\ast ) are of the form c
k and c \mathrm{l}\mathrm{o}\mathrm{g} kk , for constants c

depending on the smoothness of f and the diameter of the compact set (see, e.g., [32]). When
running Frank--Wolfe (with any of the classical versions with open loop step-sizes), we thus
have f(xk) - f(x\ast ) = O((log k)\beta /k) with \beta \in \{ 0, 1\} .

Because of the affine invariance of the Frank--Wolfe algorithm (and because f \prime \prime (x\ast ) is
invertible), we can assume without loss of generality that f \prime \prime (x\ast ) = I. Moreover, the constraint
qualification implies that f \prime (x\ast ) \not = 0; thus, using Taylor expansion with integral remainder
like in Lemma A.2, if \| x - x\ast \| 2 is small enough, then

f(x) - f(x\ast ) \geqslant f \prime (x\ast )
\top (x - x\ast ) +

1

4
\| x - x\ast \| 22.D
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1266 FRANCIS BACH

Since x\ast is the minimizer of f on K and x \in K, then f \prime (x\ast )
\top (x - x\ast ) \geqslant 0 and, thus, we have

that xk  - x\ast = O((log k)\beta /2/
\surd 
k) and (from Lemma A.1) that f is locally strongly convex.

Analysis of Frank--Wolfe. The assumption which is made implies that there exists \sigma > 0
such that the ball of center x\ast and radius \sigma intersected with the affine hull of y1, . . . , ym is
included in the convex hull of y1, . . . , ym, as well as \alpha \in (0, 1), such that if cos(f \prime (x\ast ), z) \geqslant 1 - \alpha ,
then miny\in K z

\top y is attained only by elements of the convex hull of y1, . . . , ym.
Thus, for k large enough, that is, greater than some k0 (which can be quantified from

\sigma , \alpha , and other quantities), all elements of argminy\in K f
\prime (xk - 1)

\top y are in the convex hull of
y1, . . . , ym; that is, only the correct extreme points are selected. Denoting \Pi the orthogonal
projection on the span of y1  - x\ast , . . . , ym  - x\ast , we have

xk = (1 - \rho k)xk - 1 + \rho k\=xk, where \=xk \in argmin
y\in K

f \prime (xk - 1)
\top y,

and thus, subtracting x\ast ,

xk  - x\ast = (1 - \rho k)(xk - 1  - x\ast ) + \rho k(\=xk  - x\ast ),

leading to, using the projections \Pi and I  - \Pi ,

\Pi (xk  - x\ast ) = (1 - \rho k)\Pi (xk - 1  - x\ast ) + \rho k(\=xk  - x\ast )

and, because \=xk  - x\ast is in the span of y1  - x\ast , . . . , ym  - x\ast ,

(I  - \Pi )(xk  - x\ast ) = (1 - \rho k)(I  - \Pi )(xk - 1  - x\ast ).

We now consider these two terms separately.
Convergence of (I  - \Pi )(xk  - x\ast ). For \rho k = 2

k+1 , we have, in closed form for k \geqslant k0,

(I  - \Pi )(xk  - x\ast ) =
k  - 1

k + 1
(I  - \Pi )(xk - 1  - x\ast ) =

k0(k0 + 1)

k(k + 1)
(I  - \Pi )(xk0  - x\ast ).

For \rho k = 1
k , we have,

(I  - \Pi )(xk  - x\ast ) =
k  - 1

k
(I  - \Pi )(xk - 1  - x\ast ) =

k0
k
(I  - \Pi )(xk0  - x\ast ).

Convergence of \Pi (xk  - x\ast ). We now look at the convergence of \Pi (xk  - x\ast ). We have

\| \Pi (xk  - x\ast )\| 2 = \| (1 - \rho k)\Pi (xk - 1  - x\ast ) + \rho k(\=xk  - x\ast )\| 2

= (1 - \rho k)
2\| \Pi (xk - 1  - x\ast )\| 2 + \rho 2k\| \=xk  - x\ast \| 2

+ 2(1 - \rho k)\rho k(\=xk  - x\ast )
\top \Pi (xk - 1  - x\ast ).

Because of the ball assumption (that is, the existence of a ball around x\ast that is contained in
the supporting face of K), we have

f \prime (xk - 1)
\top (xk - 1  - \=xk) = max

y\in K
f \prime (xk - 1)

\top (xk - 1  - y) \geqslant f \prime (xk - 1)
\top (xk - 1  - x\ast ) + \| \Pi f \prime (xk - 1)\| \sigma ,D
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ON THE EFFECTIVENESS OF RICHARDSON EXTRAPOLATION 1267

which leads to
f \prime (xk - 1)

\top (x\ast  - \=xk) \geqslant \| \Pi f \prime (xk - 1)\| \sigma .

Moreover, using a Taylor expansion with f \prime \prime (x\ast ) = I, we have f \prime (xk - 1) = f \prime (x\ast ) +
f \prime \prime (x\ast )(xk - 1  - x\ast ) + O((log k)\beta /k) = f \prime (x\ast ) + (xk - 1  - x\ast ) + O((log k)\beta /k). Moreover, by
optimality of x\ast , f

\prime (x\ast )
\top (\=xk  - x\ast ) = 0. Therefore we have, for \rho k = O(1/k),

\| \Pi xk  - x\ast \| 2 \leqslant (1 - \rho k)
2\| \Pi xk - 1  - x\ast \| 2 + \rho 2kdiam(K)2  - 2(1 - \rho k)\rho k\| \Pi f \prime (xk - 1)\| \sigma 

+ O((log k)\beta /k2)

\leqslant (1 - \rho k)
2\| \Pi xk - 1  - x\ast \| 2  - 2(1 - \rho k)\rho k\| \Pi xk - 1  - x\ast \| \sigma +O((log k)\beta /k2).

For \rho k = 1/k, we get

k2\| \Pi xk  - x\ast \| 2 \leqslant (k  - 1)2\| \Pi xk - 1  - x\ast \| 2  - 2
\sqrt{} 

(k  - 1)2\| \Pi xk - 1  - x\ast \| 2\sigma +O(log k).

For \rho k = 2/(k + 1), we get

(k + 1)2\| \Pi xk  - x\ast \| 2 \leqslant (k  - 1)2\| \Pi xk - 1  - x\ast \| 2  - 4
\sqrt{} 
(k  - 1)2\| \Pi xk - 1  - x\ast \| 2\sigma +O(1).

We then can use the following simple lemma on sequences3: If uk \geqslant 0 such that u0 = 0
and uk \leqslant uk - 1 - A

\surd 
uk - 1+Bvk - 1 for (vk) nondecreasing and positive, then uk \leqslant B2

A2 v
2
k+Bvk.

This leads to a bound in O(1) for k2\| \Pi xk  - x\ast \| 2 for \rho k = 2/(k+1) and in O((log k)2) for
\rho k = 1/k.

Note that this is similar to the proof of the convergence of Frank--Wolfe algorithms to an
interior point of the feasible set, for which we have a rate of convergence of f(xk) - f(x\ast ) =
O(1/k2) [16].

Putting things together. We then have for \rho k = 1
k ,

xk = x\ast +
k0
k
(I  - \Pi )xk0 +O((log k)2/k2),

which leads to f(xk) - f(x\ast ) =
k0
k f

\prime (x\ast )
\top (I  - \Pi )xk0 +O((log k)2/k2), which can be put back

into the original bound to obtain the bound without the logarithmic factor (since we have now
replaced O(log(k)/k) by O((log k)2/k2) = o(1/k) in the start of the proof). The dependence
in k can here lead to an acceleration.

For \rho k = 2
k+1 ,

xk = x\ast +
k0(k0 + 1)

k(k + 1)
(I  - \Pi )xk0 +O(1/k2),

which leads to f(xk)  - f(x\ast ) =
k0(k0+1)
k(k+1) f

\prime (x\ast )
\top (I  - \Pi )xk0 + O(1/k2). The dependence in k

does not lead to an acceleration.
Note that the terms in O(1/k2) are not amenable to Richardson extrapolation because

they are oscillating.

3The proof is by induction. This is true for k = 0. If this is true for k  - 1, then either (a) uk - 1 \geqslant B2

A2 vk - 1,

then uk \leqslant uk - 1 \leqslant B2

A2 v
2
k + Bvk because vk - 1 \leqslant vk, or (b) uk - 1 \leqslant B2

A2 vk - 1, and then uk \leqslant uk - 1 + Bvk - 1 \leqslant 
B2

A2 v
2
k - 1 +Bvk - 1 \leqslant B2

A2 v
2
k +Bvk.D
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Appendix D. Proofs of Propositions 3.1 and 3.2 (Nesterov smoothing).
We denote by x\lambda the minimizer of h(x) + g\lambda (x) and \eta \lambda the corresponding dual variable.

The dual variable \eta \lambda is unique because of the strong convexity of \varphi , while the primal variable
is unique due to the same reasoning as in Appendix A (when \lambda tends to zero, x\lambda has to be
close to x\ast , and in the neighborhood of x\ast , h is strongly convex).

The primal problem is

min
x\in \BbbR d

h(x) + \lambda \varphi \ast 
\Bigl( Ax - b

\lambda 

\Bigr) 
,

while the dual problem is

max
\eta \in \Delta m

 - \lambda \varphi (\eta ) - h\ast ( - A\top \eta ) - \eta \top b.

The primal and dual solutions x\lambda and \eta \lambda are related through duality for \varphi , that is,

\eta \lambda = \partial \varphi \ast 
\Bigl( Ax\lambda  - b

\lambda 

\Bigr) 
,

and through duality for h, that is, x\lambda = \partial h\ast ( - A\top \eta \lambda ).
Since we consider functions \varphi which are uniformly bounded, then we know that f(x\lambda )  - 

f(x\ast ) = O(\lambda ), and thus because the function is locally strongly convex, we have x\lambda  - x\ast =
O(\lambda 1/2).

D.1. Quadratic penalty. With a quadratic penalty and small enough \lambda , the solution \eta \lambda 
will have the same sparsity pattern using standard techniques from active set methods [42]---
that is, show that the dual solution constrained to the same active set leads to a globally
optimal primal/dual solution.

Moreover, because, once restricted to I, the dual function is locally strongly convex and
because \varphi is bounded, the deviation in dual function values is less than O(\lambda ), and thus
\eta \lambda  - \eta \ast = O(\lambda 1/2) (which is a bound we are going to improve below).

The optimality conditions for the dual problem become (stationarity with respect to \eta I)

0 =  - \lambda (\eta \lambda )I +AI\partial h
\ast ( - A\top 

I (\eta \lambda )I) - bI .

Since h is twice differentiable at x\ast , h
\prime \prime (x\ast ) is invertible, and x\ast \in \partial h\ast ( - A\top \eta \ast ), by the implicit

function theorem, h\ast is twice differentiable at  - A\top \eta \ast , and its Hessian is h\prime \prime (x\ast )
 - 1. We can

thus further expand the optimality condition above as

0 =  - \lambda (\eta \lambda )I +AI\partial h
\ast ( - A\top 

I (\eta \ast )I) - AI\partial 
2h\ast ( - A\top 

I (\eta \ast )I)A
\top 
I ((\eta \lambda )I  - (\eta \ast )I) - bI +O(\| \eta \lambda  - \eta \ast \| 2).

Since \partial 2h\ast ( - A\top 
I (\eta \ast )I) = h\prime \prime (x\ast )

 - 1 and bI = AI\partial h
\ast ( - A\top 

I (\eta \ast )I) (because of optimality of x\ast 
and \eta \ast ), this leads to 0 =  - \lambda (\eta \lambda )I +AIh

\prime \prime (x\ast )
 - 1A\top 

I ((\eta \lambda )I  - (\eta \ast )I) +O(\| \eta \lambda  - \eta \ast \| 2). Since we
know already that \eta \lambda  - \eta \ast = O(\lambda 1/2), this leads to \eta \lambda  - \eta \ast = O(\lambda ), which in turn leads to

(\eta \lambda )I = (\eta \ast )I  - \lambda 
\bigl[ 
AIh

\prime \prime (x\ast )
 - 1A\top 

I

\bigr]  - 1
(\eta \ast )I +O(\lambda 2),

which is the desired expansion for the dual variable. We then get

x\lambda = \partial h\ast ( - A\top \eta \lambda ) = x\ast + \lambda h\prime \prime (x\ast )
 - 1A\top 

I

\bigl[ 
AIh

\prime \prime (x\ast )
 - 1A\top 

I

\bigr]  - 1
(\eta \ast )I +O(\lambda 2) = x\ast + \lambda \Delta +O(\lambda 2).D
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Thus, 2x\lambda  - x2\lambda = O(\lambda 2), and

h(x\lambda ) + g(x\lambda ) = h(x\ast ) + g(x\ast ) + \lambda h\prime (x\ast )
\top \Delta + g(x\ast + \lambda \Delta ) - g(x\ast ) +O(\lambda 2)

= h(x\ast ) + g(x\ast ) +
\bigl[ 
g(x\ast + \lambda \Delta ) - g(x\ast ) + \lambda h\prime (x\ast )

\top \Delta 
\bigr] 
+O(\lambda 2).

Since by optimality h\prime (x\ast ) \in  - \partial g(x\ast ), the term
\bigl[ 
g(x\ast +\lambda \Delta ) - g(x\ast )+\lambda h\prime (x\ast )\top \Delta 

\bigr] 
resembles

a Taylor expansion of g at x\ast , but in general, we cannot have a term in O(\lambda 2) because of the
nonsmoothness of g. For example, for the \ell 1-norm, we get

\bigl[ 
g(x\ast +\lambda \Delta ) - g(x\ast )+\lambda f \prime (x\ast )\top \Delta 

\bigr] 
=

\lambda \| \Delta Ic\| 1 + \lambda f \prime (x\ast )
\top \Delta , and the l1-norm is not zero and only O(\lambda ).

For Richardson extrapolation, we get

h(2x\lambda  - x2\lambda ) + g(2x\lambda  - x2\lambda ) = h(x\ast ) + g(x\ast ) +O(\lambda 2)

and thus an improvement from O(\lambda ) to O(\lambda 2).

D.2. Entropic penalty. For \varphi (\eta ) =
\sum m

i=1

\bigl\{ 
\eta i log \eta i  - \eta i

\bigr\} 
, we have \varphi \prime (\eta )i = log \eta i, and we

cannot use anymore the fact that \eta \lambda has the same sparsity pattern as \eta \ast since all components
of \eta \lambda are nonzero. However, since the entropy is bounded over the simplex, we still have
\eta \lambda  - \eta \ast = O(\lambda 1/2), and from the same reasoning as for the quadratic penalty, x\lambda  - x\ast = O(\lambda 1/2).

Thus, by writing primal-dual optimality conditions, we get

 - \lambda log \eta \lambda +Ax\lambda  - b = 0,

h\prime (x\lambda ) +A\top \eta \lambda = 0.

This implies that for i /\in I,

log \eta i \sim (Ax\ast  - b)i  - sup
j
(Ax\ast  - bj),

which is strictly negative by assumption. Thus (\eta Ic)\lambda = O(\rho  - 1/\lambda ) for a certain \rho \in (0, 1). We
now show that (\eta I)\lambda = (\eta \ast )I + \lambda \Delta +O(\lambda 2). From the optimality conditions, we get

0 =  - \lambda (log(\eta )\lambda )I +AI\partial h
\ast ( - A\top \eta \lambda ) - bI ,

which leads to, with an additional Taylor expansion, up to terms in O(\| \eta \lambda  - \eta \ast \| 2+\lambda \| \eta \lambda  - \eta \ast \| ):

0 =  - \lambda (log(\eta )\ast )I +AI\partial h
\ast ( - A\top 

I (\eta \ast )I) - AI\partial 
2h\ast ( - A\top 

I (\eta \ast )I)A
\top (\eta \lambda  - \eta \ast ) - bI .

Since \partial 2h\ast ( - A\top 
I (\eta \ast )I) = h\prime \prime (x\ast )

 - 1 and bI = AI\partial h
\ast ( - A\top 

I (\eta \ast )I) (because of optimality of x\ast 
and \eta \ast ), with moreover (\eta Ic)\lambda = O(\rho  - 1/\lambda ), this leads to

 - \lambda (log(\eta )\ast )I  - AIh
\prime \prime (x\ast )

 - 1A\top 
I ((\eta \lambda )I  - (\eta \ast )I) = O(\| (\eta \lambda )I  - (\eta \ast )I\| 2+\lambda \| (\eta \lambda )I  - (\eta \ast )I\| +\rho  - 1/\lambda ),

which in turn leads to

(\eta \lambda )I = (\eta \ast )I  - \lambda 
\bigl[ 
AIf

\prime \prime (x\ast )
 - 1A\top 

I

\bigr]  - 1
(log(\eta \ast ))I +O(\lambda 2),

which is the desired expansion for the dual variable. We then get

x\lambda = \partial h\ast ( - A\top \eta \lambda ) = x\ast + \lambda h\prime \prime (x\ast )
 - 1A\top 

I

\bigl[ 
AIh

\prime \prime (x\ast )
 - 1A\top 

I

\bigr]  - 1
(log(\eta \ast ))I +O(\lambda 2),

which leads to x\ast + \lambda \Delta + O(\lambda 2). Note that following [19], we could get a single proof for
all \varphi (\eta ) =

\sum n
i=1 \psi (\eta i) by replacing log \eta \ast by \psi \prime (\eta \ast ) with a condition to ensure that the zero

variables lead to vanishing terms.D
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Figure 9. Richardson extrapolation for Nesterov smoothing on a penalized Lasso problem, with regulariza-
tion by the entropic penalty. Left: Dependence of f(x\lambda ) - f(x\ast ) on \lambda ; for Richardson extrapolation of order m,
we indeed recover a slope of m + 1 in the log-log plot. Right: Optimization error versus number of iterations;
where we go from a slope of  - 1 (blue curves) to improved slopes of  - 4/3 (red curve) and  - 8/5 (black curve).
See text for details.

D.3. Higher-order expansions (Proposition 3.2). In order to use m-step Richardson
extrapolation, we need to have a bound of the form

x\lambda = x\ast +
m\sum 
i=1

\Delta i\lambda i +O(\lambda m+1).

We only consider for simplicity the quadratic penalty, where we simply need an expansion of
(\eta \lambda )I (minor modifications would lead to a proof for the entropic penalty since there \eta Ic is
exponentially small).

The expansion can be obtained from the implicit function theorem applied to the equation
0 =  - \lambda (\eta \lambda )I + AI\partial h

\ast ( - A\top 
I (\eta \lambda )I)  - bI , which is of the form H((\eta \lambda )I , \lambda ) = 0, where H has

high-order derivatives as long as h\ast is sufficiently differentiable and the partial derivative with
respect to (\eta \lambda )I is an invertible matrix. The high-order differentiability of h\ast around  - A\top \eta \ast 
comes from the implicit function theorem applied to the definition of the gradient of the
Fenchel conjugate.

Appendix E. Ridge regression.

E.1. Standard extrapolation. We have \^y\lambda = K(K + n\lambda I) - 1y = \^H\lambda y; thus 2\^y\lambda  - \^y2\lambda =
[(2 \^H\lambda  - \^H2\lambda )]y, and we can compute explicitly

2 \^H\lambda  - \^H2\lambda  - I = 2K(K + n\lambda I) - 1  - K(K + 2n\lambda I) - 1  - I

= 2n\lambda 
\bigl[ 
(K + 2n\lambda I) - 1  - (K + n\lambda I) - 1

\bigr] 
=  - 2(n\lambda )2(K + n\lambda I) - 1(K + 2n\lambda I) - 1.

Thus,

bias(2 \^H\lambda  - \^H2\lambda ) \leqslant 4n3\lambda 4z\top (K + n\lambda I) - 4z,

variance(2 \^H\lambda  - \^H2\lambda ) \leqslant 
\sigma 2

n

\bigl[ 
4 tr[K(K + n\lambda I) - 1]2 + tr[K(K + 2n\lambda I) - 1]2

\bigr] 
\leqslant 

5\sigma 2

n
tr[K(K + n\lambda I) - 1]2.D
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Table 1
Variance, bias, optimal regularization parameter, and corresponding prediction performance for several

decays of eigenvalues and signal coefficients and mth-order Richardson extrapolation (we always assume \delta > 1/2,
\beta > 1/2, \rho > 0, and \kappa > 0 to make the series summable). All entries are functions of i, n, or \lambda and are only
asymptotically bounded below and above, i.e., correspond to the asymptotic notation \Theta (\cdot ). Adapted from [5],
changes due to potential Richardson extrapolation are highlighted in red.

(\mu i) (\nu i) Var. Bias Optimal \lambda Pred. perf. Condition

i - 2\beta i - 2\delta \sigma 2

n
\lambda  - 1/2\beta \lambda 2(m+1) (\sigma 

2

n
)1/(2(m+1)+1/2\beta ) (\sigma 

2

n
)1 - 1/(4(m+1)\beta +1) if 2\delta >4(m+1)\beta +1

i - 2\beta i - 2\delta \sigma 2

n
\lambda  - 1/2\beta \lambda (2\delta  - 1)/2\beta (\sigma 

2

n
)\beta /\delta (\sigma 

2

n
)1 - 1/(2\delta ) if 2\delta <4(m+1)\beta +1

i - 2\beta e - \kappa i \sigma 2

n
\lambda  - 1/2\beta \lambda 2(m+1) (\sigma 

2

n
)1/(2(m+1)+1/2\beta ) (\sigma 

2

n
)1 - 1/(4(m+1)\beta +1)

e - \rho i i - 2\delta \sigma 2

n
log 1

\lambda 
(log 1

\lambda 
)1 - 2\delta exp( - (\sigma 

2

n
) - 1/(2\delta )) (\sigma 

2

n
)1 - 1/(2\delta )

e - \rho i e - \kappa i \sigma 2

n
log 1

\lambda 
\lambda 2(m+1) (\sigma 

2

n
)1/2 (\sigma 

2

n
) log( n

\sigma 2 ) if \kappa > 2\rho 

e - \rho i e - \kappa i \sigma 2

n
log 1

\lambda 
\lambda \kappa /\rho (\sigma 

2

n
)\rho /\kappa (\sigma 

2

n
) log( n

\sigma 2 ) if \kappa < 2\rho 

We have bias(2 \^H\lambda  - \^H2\lambda ) \leqslant 4bias( \^H\lambda ) and variance(2 \^H\lambda  - \^H2\lambda ) \leqslant 5variance( \^H\lambda ) so the two
terms never incur more than a constant factor.

However, the bias can be much improved. Following [5, section 4.3], if the eigenvalues of
K are \Theta (n\mu i) and the coordinates of z in the eigenbasis of K are \Theta (

\surd 
n\nu i), we can compute

equivalents (up to constant terms) of the bias and variance terms for different types of decays.

See Table 1 with m = 0. Since the optimal predictive performance is (\sigma 
2

n )1 - 1/(2\delta ), the only
potential gains to go from m = 0 (no extrapolation) to m > 0 (extrapolation) occur when (\nu i)
has a fast decay (that is, first, third, and fifth lines).

For the first line in Table 1, we will show that the bias term for Richardson extrapolation
is of the order \lambda 4 if 2\delta >8\beta +1 and equal to \lambda (2\delta  - 1)/2\beta when 2\delta <8\beta +1. We will thus increase
the regime of validity of the bias term that leads to optimal performance from 2\delta < 4\beta +1
to 2\delta < 8\beta +1. More generally, as we show below in Appendix E.2, the bias for m-step
extrapolation is proportional to n2m+1\lambda 2m+2z\top (K + n\lambda I) - 2m - 2z, and we bound it directly
following closely the computations of [5, Appendix C.2]:

n2m+1\lambda 2m+2z\top (K + n\lambda I) - 2m - 2z

= n2m+2\lambda 2m+2
n\sum 

i=1

\nu i
(n\mu i + n\lambda )2m+2

= \lambda 2m+2
n\sum 

i=1

\nu i
(\mu i + \lambda )2m+2

= \lambda 2m+2
n\sum 

i=1

i - 2\delta 

(i - 2\beta + \lambda )4
\leqslant 2\lambda 2m+2

\int n

1

t - 2\delta 

(t - 2\beta + \lambda )2m+2
dt

= 2\lambda 2m+2

\int n

1

t4(m+1)\beta  - 2\delta 

(1 + \lambda t2\beta )2m+2
dt.

If 2\delta  - 4(m+1)\beta > 1, then we have an upper bound of 2\lambda 2m+2
\int n
1 t

4(m+1)\beta  - 2\delta dt = O(\lambda 2m+2).
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If 2\delta  - 4(m+ 1)\beta < 1, then we can further bound

2\lambda 2m+2

\int n

1

t4(m+1)\beta  - 2\delta 

(1 + \lambda t2\beta )2m+2
dt

= 2\lambda 2m+2

\int \lambda n2\beta 

\lambda 

[(u/\lambda )1/2\beta ]4(m+1)\beta  - 2\delta +1

(1 + u)2m+2

1

2\beta 
du

with the change of variable u = \lambda t2\beta ,

= 2\lambda 2m+2 - (2m+2)+\delta /\beta  - 1/(2\beta )

\int \lambda n2\beta 

\lambda 

u(4(m+1)\beta  - 2\delta +1))/((4(m+1)\beta )

(1 + u)2m+2

1

2\beta 
du = O(\lambda (2\delta  - 1)/(2\beta )),

because the integral in convergent. The bias term for the third and fifth lines of Table 1 needs
modifications in exactly the same way the corresponding proof from [5, Appendix C.2].

In order to find the optimal regularization parameter, we minimize with respect to \lambda , which
leads to \lambda 2(m+1)+1/2\beta \propto (\sigma 2/n), leading to an optimal prediction performance proportional to

(\sigma 2/n)\tau , with \tau = 2(m+1)

2(m+1)+ 1
2\beta 

= 1 - 
1
2\beta 

2(m+1)+ 1
2\beta 

= 1 - 1
4(m+1)\beta +1 .

E.2. Multiple extrapolation steps. Using m steps of Richardson interpolation, we prove
that we can get this regime as long as 2\delta <4(m+ 1)\beta +1 and thus with no limit if m is large
enough.

We thus consider

\^H
(m)
\lambda =

m+1\sum 
i=1

\alpha 
(m)
i

\^Hi\lambda =
m+1\sum 
i=1

\alpha 
(m)
i K(K + n\lambda iI) - 1 = I  - n\lambda 

m+1\sum 
i=1

i\alpha 
(m)
i (K + n\lambda iI) - 1,

using
\sum m+1

i=1 \alpha 
(m)
i = 1. We then use

(K + n\lambda iI) - 1

= (K + n\lambda I) - 1/2
\bigl[ 
I + n\lambda (i - 1)(K + \lambda I) - 1

\bigr]  - 1
(K + n\lambda I) - 1/2

= (K + n\lambda I) - 1/2
m - 1\sum 
j=0

( - 1)j
\bigl[ 
n\lambda (K + n\lambda (i - 1)I) - 1

\bigr] j
(K + n\lambda I) - 1/2

+( - 1)m(K + n\lambda I) - 1/2
\bigl[ 
n\lambda (i - 1)(K + n\lambda I) - 1

\bigr] m\bigl[ 
I + n\lambda (K + \lambda (i - 1)I) - 1

\bigr]  - 1
(K + n\lambda I) - 1/2

=

m - 1\sum 
j=0

( - 1)j(n\lambda )j(K + n\lambda I) - j - 1(i - 1)j + ( - 1)m(n\lambda )m(K + n\lambda I) - m(i - 1)m(K + n\lambda iI) - 1,

where we have used the sum of a geometric series with A = n\lambda (i - 1)(K + \lambda I) - 1:

(I +A) - 1 =
m - 1\sum 
j=0

( - 1)jAj + ( - 1)m(I +A) - 1Am.
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Putting things together, we get

\^H
(m)
\lambda  - I =  - n\lambda 

m+1\sum 
i=1

i\alpha 
(m)
i

m - 1\sum 
j=0

( - 1)j(n\lambda )j(K + n\lambda I) - j - 1(i - 1)j

 - n\lambda 
m+1\sum 
i=1

i\alpha 
(m)
i ( - 1)m(n\lambda )m(K + n\lambda I) - m(i - 1)m(K + n\lambda iI) - 1.

The first term is exactly zero by definition of the Richardson weights \alpha 
(m)
i , and we are left

with

( - 1)m+1
\bigl[ 
\^H
(m)
\lambda  - I

\bigr] 
= (n\lambda )m+1

m+1\sum 
i=1

i\alpha 
(m)
i (i - 1)m(K + n\lambda I) - m(K + n\lambda iI) - 1.

Thus
(n\lambda ) - m - 1(K + n\lambda I) - m/2 - 1/2

\bigl[ 
\^H
(m)
\lambda  - I

\bigr] 
(K + n\lambda I) - m/2 - 1/2

has an operator norm bounded by a constant that depends on m (and not on other quantities
like \lambda or n). This allows to bound the bias as

bias( \^H
(m)
\lambda ) =

1

n
\| ( \^H(m)

\lambda  - I)z\| 2 \leqslant \square mn
2m+1\lambda 2m+2z\top (K + n\lambda I) - 2m - 2z.

Similar to the case m = 1, ( \^H
(m)
\lambda )2 is upper bounded by a sum of matrices which are all less

than K2(K + n\lambda I) - 2 (for the order between symmetric matrices), leading to a bound on the
variance term as

variance( \^H
(m)
\lambda ) = \sigma 2 tr[ \^H

(m)
\lambda ]2 \leqslant \bigtriangleup m

\sigma 2

n
tr[K(K + n\lambda I) - 1]2.

Here \square m and \bigtriangleup m are constants that could be explicitly computed. As shown in the section,
these constants have to diverge when m tends to +\infty .

E.3. Explicit expression.

Expression for \alpha 
(m)
i . We first give a proof for the explicit expression for \alpha 

(m)
i . One ap-

proach is to solve Vandermonde matrices like done by [43] in a similar context, but given the
conjecture, we can simply check that it satisfies (3.1) and (3.2).

For (3.1), we have

m+1\sum 
i=1

( - 1)i - 1

\biggl( 
m+ 1

i

\biggr) 
= 1 - 

m+1\sum 
i=0

( - 1)i
\biggl( 
m+ 1

i

\biggr) 
= 0

using the binomial formula. For (3.2), we have

m+1\sum 
i=1

( - 1)i - 1

\biggl( 
m+ 1

i

\biggr) 
i =

m+1\sum 
i=1

( - 1)i - 1(m+ 1)

\biggl( 
m

i - 1

\biggr) 
= (m+ 1)\times 0 = 0,
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and, more generally for any j \in \{ 1, . . . ,m\} ,
m+1\sum 
i=j

( - 1)i - 1

\biggl( 
m+ 1

i

\biggr) 
i(i - 1) \cdot \cdot \cdot (i - j + 1)

=
m+1\sum 
i=j

( - 1)i - 1(m+ 1)m \cdot \cdot \cdot (m - j + 2)

\biggl( 
m - j + 1

i - j

\biggr) 
= 0,

also using the binomial formula. This shows that
\sum m+1

i=j ( - 1)i - 1(m+1
i )ij = 0 for all j \in 

\{ 1, . . . ,m\} , which finishes the proof of the formula for \alpha 
(m)
i .

Expression for the smoothing matrix. We can now provide an explicit expression for the
extrapolated smoothing matrix. We have

\^H
(m)
\lambda =

m+1\sum 
i=1

\alpha 
(m)
i

\^Hi\lambda 

=

m+1\sum 
i=1

\alpha 
(m)
i K(K + n\lambda iI) - 1 = I  - n\lambda 

m+1\sum 
i=1

i\alpha 
(m)
i (K + n\lambda iI) - 1

= I  - n\lambda 

m+1\sum 
i=1

i( - 1)i - 1

\biggl( 
m+ 1

i

\biggr) 
(K + n\lambda iI) - 1 = s(K/(n\lambda )),

where s : \BbbR n\times n \rightarrow \BbbR n\times n is a spectral function defined on symmetric matrices from a function
(note the classical overloaded notation) s : \BbbR \rightarrow \BbbR by keeping eigenvectors unchanged and
applying s to eigenvalues ([29], Chapter 11). We have, using a representation by an integral
and the binomial formula,

s(\mu ) = 1 - 
m+1\sum 
i=1

i( - 1)i - 1

\biggl( 
m+ 1

i

\biggr) 
1

\mu + i
= 1 - 

m+1\sum 
i=1

(m+ 1)( - 1)i - 1

\biggl( 
m

i - 1

\biggr) \int 1

0
t\mu +i - 1dt

= 1 - (m+ 1)

\int 1

0
t\mu 

\Biggl[ 
m+1\sum 
i=1

( - 1)i - 1

\biggl( 
m

i - 1

\biggr) 
ti - 1

\Biggr] 
dt

= 1 - (m+ 1)

\int 1

0
t\mu (1 - t)mdt = 1 - (m+ 1)

\Gamma (1 + \mu )\Gamma (1 +m)

\Gamma (2 +m+ \mu )
,

using the expression of the Beta function in terms of the Gamma function \Gamma [1]. We can
simply the expression as follows:

s(\mu ) = 1 - (m+ 1)!

(\mu + 1)(\mu + 2) \cdot \cdot \cdot (\mu +m+ 1)
.

This provides a new closed-form expression for Richardson extrapolation, as well as it provides
an equivalent when m tends to +\infty as s(\mu ) \sim 1  - \Gamma (1+\mu )

m\mu . Therefore, when m \rightarrow +\infty and
\mu > 0, then s(\mu ) tends to one (which implies that the constants \square m and \bigtriangleup m cannot remain
bounded). Therefore, the variance term converges to \sigma 2 but very slowly: The method does
not blow up but does not learn either.D
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