
Consistent dictionary learning for signal
declipping

Lucas Rencker1?(�), Francis Bach2, Wenwu Wang1, and Mark D. Plumbley1

1Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, UK
2SIERRA-project team, INRIA, Paris, France

{l.rencker,w.wang,m.plumbley}@surrey.ac.uk

francis.bach@inria.fr

Abstract. Clipping, or saturation, is a common nonlinear distortion in
signal processing. Recently, declipping techniques have been proposed
based on sparse decomposition of the clipped signals on a fixed dictio-
nary, with additional constraints on the amplitude of the clipped samples.
Here we propose a dictionary learning approach, where the dictionary
is directly learned from the clipped measurements. We propose a soft-
consistency metric that minimizes the distance to a convex feasibility
set, and takes into account our knowledge about the clipping process.
We then propose a gradient descent-based dictionary learning algorithm
that minimizes the proposed metric, and is thus consistent with the clip-
ping measurement. Experiments show that the proposed algorithm out-
performs other dictionary learning algorithms applied to clipped signals.
We also show that learning the dictionary directly from the clipped sig-
nals outperforms consistent sparse coding with a fixed dictionary.

1 Introduction

Clipping is a common nonlinear distortion in digital or analog systems, that
often occurs due to dynamic range limitations. When a signal reaches a certain
maximum allowed amplitude, the waveform is truncated and samples are said to
be clipped. Declipping is the task of recovering the clipped samples from the sur-
rounding, unclipped samples. Early strategies to recover a clipped signal include
autoregressive modelling [1], bandwidth limited models [2], or Bayesian estima-
tion [3]. More recently, sparsity-based declipping techniques have attracted a
lot of interest. The idea is that the original signal can be sparsely represented
using a known dictionary of atoms. Declipping can be treated as a simple sig-
nal inpainting problem, i.e. by discarding the clipped samples and solving a
sparse decomposition problem on the unclipped samples [4]. However it was
noted in [4, 5] that the reconstruction can be greatly improved by using extra
information in the reconstruction process: indeed, we know that the clipped sam-
ples should have an amplitude that is greater than the clipping threshold. Several
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approaches have been proposed in the literature in order to enforce clipping con-
sistency, i.e. taking into account the clipping threshold. Sparse decomposition
with amplitude constraints were proposed in [4–9], and solved using a two-step
algorithm [4], Alternating Direction Method of Multipliers (ADMM) [6, 10], or
using general purpose convex optimization toolboxes [7–9, 11]. However these
approaches can be computationally intensive, and possibly non robust to mea-
surement noise. Smooth regularizers were proposed in [12, 13], which lead to
simple unconstrained cost functions, and can be optimized using variants of
well known algorithms such as Iterative Hard Thresholding (IHT) or Iterative
Shrinkage/Thresholding (ISTA). Additional information has also been used, such
as perceptual weights [8], social sparsity priors [13], or multichannel data [14].

Sparsity-based declipping techniques proposed in the literature use fixed dic-
tionaries such as discrete cosine transform (DCT) or Gabor. However, dictio-
nary learning has proved to perform better in a variety of signal reconstruction
tasks, such as denoising [15] or inpainting [16]. Well known dictionary learn-
ing algorithms have been proposed for denoising or inpainting [15–17], however
dictionary learning from clipped measurements has not been addressed in the
literature. In this paper we propose a dictionary learning algorithm that is able
to learn directly from nonlinearly clipped measurements. We formulate the de-
clipping problem as a problem of minimizing the distance between a sparse signal
and a convex feasibility set. This provides a convex and smooth cost function
which generalizes the Euclidean distance commonly used in sparse coding and
dictionary learning. We then propose a gradient-descent based sparse coding
and dictionary learning algorithm, that takes into account our knowledge about
the clipping process. Experiments show that the proposed consistent dictionary
learning algorithm performs better on the task of declipping than state-of-the
art dictionary learning algorithms for signal inpainting. We also show that the
proposed consistent dictionary learning improves the reconstruction, compared
to consistent sparse coding with a fixed dictionary.

The paper is organized as follows: in Section 2 we briefly give an overview of
sparsity-based declipping techniques, and of dictionary learning. In Section 3 we
propose a new formulation of the declipping problem, and a consistent dictionary
learning algorithm for signal declipping. Experiments are presented in Section
4, before the conclusion is drawn.

2 Background

2.1 Signal declipping

Let x ∈ RN be a clean input signal, and y ∈ RN its clipped measurement. In this
paper we consider the case of hard clipping, where each sample yi is measured
as:

yi =


θ+ if xi ≥ θ+

θ− if xi ≤ θ−

xi otherwise,

(1)
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where θ+ > 0 and θ− < 0 are positive and negative clipping thresholds respec-
tively, and xi is the input sample. This can be written in vector form as:

y = Mr x + θ+ Mc+ 1 + θ−Mc- 1, (2)

where 1 is the all-ones vector in RN , and Mr,Mc+ and Mc- are diagonal sensing
matrices in {0, 1}N×N that define the reliable, positive and negative clipped
samples respectively. These matrices can be estimated by detecting samples that
have reached the clipping threshold, e.g. [Mc+]i,i = 1 if yi = θ+, or 0 otherwise.
Since the clipped samples are missing, a simple way to treat declipping is to
formulate it as an inpainting problem, i.e. a problem of interpolating missing
samples [4]. Assuming that the original signal can be sparsely represented in a
known dictionary D ∈ RN×M , the inpainting problem can be formulated as:

min
α∈RM

‖Mr(y −Dα)‖22 s.t. ‖α ‖0 ≤ K, (3)

where ‖.‖0 is the `0 pseudo-norm, and K is a parameter that controls the sparsity
level. Eqn. (3) is a classical sparse coding problem, which can be solved using well
known algorithms like IHT [18]. However, we can use extra information about
the clipping process. Indeed, we know that the clipped samples should have an
amplitude that is above (resp. below) the clipping threshold θ+ (resp. θ−). This
can be enforced using amplitude constraints in the reconstruction process [4,5]:

min
α∈RM

‖Mr(y −Dα)‖22 s.t.


‖α ‖0 ≤ K
Mc+ Dα � θ+ Mc+ 1

Mc- Dα � θ−Mc- 1

(4)

Eqn. (4) is a difficult non-convex and constrained optimization problem, which
cannot be readily solved using off-the-shelf sparse decomposition solvers such as
IHT. A two-step algorithm was proposed in [4], where the support of non-zero
atoms is first estimated using (3), and the signal is then estimated using a con-
strained least squares on the estimated support. However, the support selection
does not take into account the clipping constraints and is thus suboptimal. A
similar constraint-based formulation was proposed in [6]:

min
α∈RM

‖α ‖0 + 1C(y)(Dα), (5)

where 1C(y) is the indicator function of the set C(y), and:

C(y) , {x|Mr y = Mr x,Mc+ x �Mc+ y,Mc- x �Mc- y} (6)

is the set of feasible signals, i.e. the set of signals that are consistent with the
observation y. The authors in [6] proposed an ADMM based algorithm to solve
(5). The ADMM-based declipper [6] leads to good performance, but proves to
be computationally expensive since it involves non-orthogonal projections which
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need to be computed iteratively1. Similar `1-based constrained formulation were
also proposed in [7–9], and solved using general purpose convex optimization
toolboxes [11], which can also be time consuming. Moreover, constrained formu-
lation like (5) might not be robust to measurement noise, as will be discussed in
the experimental section. Several authors proposed to enforce consistency with
the clipped samples in a more tractable way. A smooth regularizer that penalizes
clipped samples was proposed in [12]:

min
α∈RM

‖Mr(y −Dα)‖22 + ‖Mc+(θ+1−Dα)+‖22

+‖Mc-(θ−1−Dα)−‖22 s.t. ‖α ‖0 ≤ K,
(7)

where (u)+ = max(0, u) and (u)− = −(−u)+. Since the cost in (7) is smooth,
gradient-based sparse coding algorithms can easily be extended to the clipping
consistent model (7). A consistent IHT was proposed in [12] in order to en-
force clipping consistency. A similar formulation with an `1 norm was proposed
in [13] along with ISTA-like algorithms. Although the algorithm in [12] did not
perform as well as the ADMM based declipper [6], the soft consistency met-
ric in (7) provides a simple, unconstrained way to enforce consistency with the
clipped samples. Moreover, simple iterative thresholding algorithms can be de-
rived, which are computationally faster than solving constrained optimization
problems like (5).

2.2 Dictionary learning

Previously mentioned declipping techniques use fixed dictionaries, such as DCT
or Gabor. However in many applications, learning a dictionary that is adaptive to
the data has proved to lead to much better signal estimates [15,16]. A dictionary
learning problem (from clean signals) is often formulated as [19]:

min
D∈D,αt

∑
t

‖xt −Dαt ‖22 s.t. ∀t, ‖αt ‖0 ≤ K (8)

where {xt}1...T is a collection of T signals in RN . The dictionary is often con-
strained to be in D = {D ∈ RN×M |∀i, ‖di‖2 ≤ 1} in order to avoid scaling ambi-
guity [19]. Many dictionary learning algorithms have been proposed to learn from
clean or noisy data, such as MOD [17] or K-SVD [15]. In the case of inpainting,
a weighted K-SVD (wK-SVD) has been proposed in order to deal with missing
samples [16]. Dictionary learning from nonlinearly clipped data has not been
addressed in the literature. Since dictionary learning usually alternates between
several iterations of sparse coding and dictionary update over large datasets, a
computationally tractable and stable formulation is needed. In the next section,
we propose a soft data-consistency metric, that provides a simple optimization
problem for dictionary learning. We then propose a consistent dictionary learning
algorithm that is able to learn from the clipped measurements.

1 An analysis sparsity version of (5) was also proposed in [6], which proved to be
computationally more tractable. In this paper we focus on the synthesis sparsity
model, and leave the analysis sparsity counterpart for future work.
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3 Consistent dictionary learning for signal declipping

3.1 Proposed problem formulation

We first reformulate declipping as a problem of minimizing the distance between
the approximated signal, and the feasible set C(yt) defined in (6):

min
D∈D,αt

∑
t

d(Dαt, C(yt))
2 s.t. ∀t, ‖αt ‖0 ≤ K, (9)

where d(x, C(y)) is the Euclidean distance between x and the set C(y), defined
as:

d(x, C(y)) = min
z∈C(y)

‖x− z‖2. (10)

The formulation (9) thus enforces the estimated signals to be “close” to their
feasibility sets C(yt) in a Euclidean-distance sense, unlike the formulation in
(5) which constrains the signals to be exactly in C(yt). We thus have proposed
here a problem of minimizing the distance to a set, which differs from classical
sparse coding and dictionary learning approaches which minimize the distance
to a point in RN . Using (10), (9) can further be reformulated as a “min-min”
problem:

min
D∈D,αt

∑
t

min
z∈C(yt)

‖Dαt−z‖22 s.t. ∀t, ‖αt ‖0 ≤ K. (11)

Note that as a minimum of a family of convex functions ‖.‖2 over a non-empty
and convex set C(y), d(x, C(y)) is a convex cost function [20, Section 3.2.5].
Moreover, using Danskin’s Min-Max theorem ( [21, Theorem 4.1], originally
proposed in [22]), it can be shown that d(x, C(y))2 is differentiable with gradient
[23]:

∇x d(x, C(y))2 = 2(x−ΠC(y)(x)), (12)

where ΠC(y)(x) is the Euclidean projection of x onto C(y). The proposed formu-
lation in (9) is thus a problem of minimizing a smooth and convex cost function,
with a sparsity constraint, which is similar to the classical dictionary learning
problem (8). The proposed cost function thus generalizes the linear least-squares
commonly used in sparse coding and dictionary learning.

3.2 Algorithm

We propose a simple gradient descent-based algorithm, which we present in Al-
gorithm 1. The proposed algorithm alternates between a sparse coding step and
a dictionary update step. Similarly to IHT, the sparse coding step alternates
between gradient descent (13) and a hard thresholding (14). The dictionary is
updated using projected gradient descent (15). ni and µi (i = 1, 2) are parame-
ters that control the number of gradient descent steps and step sizes respectively.
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Algorithm 1 Dictionary learning for declipping

Require: {yt}1...T , D0, n1, n2, µ1, µ2

initialize: D← D0, αt ← 0
while stopping criterion not reached do

for t = 1...T do . Sparse coding step
for i = 1, ..., n1 do

αt ← αt +µ1D
T (ΠC(yt)(Dαt)−Dαt) (13)

αt ← HK(αt) (14)

for j = 1, ..., n2 do . Dictionary update step

D← ΠD
(
D + µ2

∑
t

(ΠC(yt)(Dαt)−Dαt)α
T
t

)
(15)

return D̂, {α̂t}1...T

3.3 Computation of the residuals, and interpretation

Alg. 1 involves the computation of residuals ΠC(y)(Dα) − Dα at every step.
These residuals can be easily computed in closed form. It can be easily verified
that the projection operator ΠC(y) is computed as:

ΠC(y)(x) = Mr y + Mc+ max(y,x) + Mc- min(y,x). (16)

Note that this is a simple 1-dimensional orthogonal projection on each sample,
that can be computed at a negligible cost. The residuals can be computed as:

ΠC(y)(Dα)−Dα = Mr(y−Dα) +Mc+(y−Dα)+ + Mc-(y−Dα)−. (17)

This also shows that the proposed soft-consistency metric (9) can be written in
closed form as:

d(Dα, C(y))2 =‖Mr(y −Dα)‖22 + ‖Mc+(y −Dα)+‖22
+ ‖Mc-(y −Dα)−‖22,

(18)

which (noticing that Mc+ y = θ+ Mc+ 1) is the same as the cost (7) used in
[12, 13]. The proposed approach is thus a different way to motivate the soft-
consistency metric (7), and the sparse coding step in Alg. 1 is equivalent to the
“consistent IHT” [12]. Note also that when no sample is clipped, we have C(y) =
{y}, d(Dα, C(y))2 = ‖Dα−y‖22, and ΠC(y)(Dα) = y. Thus (9) becomes a
classical dictionary learning problem, and Alg. 1 a classical dictionary learning
algorithm. The proposed method is thus a generalization of dictionary learning
to nonlinearly clipped measurements.
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4 Evaluation

We evaluate the performance of the proposed algorithm on audio declipping
tasks 2. The test set consists of 10 speech and 10 music signals of 10s each,
sampled at 16kHz. The signals were processed with Hamming windows of size
N = 256 samples, with 75% overlap, for a total of approximately T = 2500
frames per signal. The dictionary learning algorithm was initialized with a DCT
dictionary of M = 512 atoms, and the sparse coefficients initialized to zero.
Each gradient descent step was then initialized with a warm restart strategy, i.e.
using the estimate from the previous iteration [19]. We performed 50 iterations of
gradient descent, with 20 iterations for each inner sparse coding and dictionary
update step. The gradient descent steps were chosen as µ1 = 1/‖D‖22 and µ2 =
1/‖A‖22 (with A = [α1, ...,αT ]), and updated at each iteration using the current
estimates D and A. When no noise is present, the estimated signals x̂ can be
re-projected on the set {x|Mr x = Mr y} as a final step, in order to avoid
approximation errors. The quality of the estimated signal can then be evaluated
using the signal to distortion ratio (SDR) computed on the clipped samples:

SDRc(x̂,x) = 20 log ‖(Mc+ +Mc-)x‖2
‖(Mc+ +Mc-)(x−x̂)‖2 .
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Fig. 1: Comparison with state-of-the-art dictionary learning algorithms

Figure 1 shows the performance of the proposed consistent dictionary learn-
ing (DL) algorithm compared to other dictionary learning algorithms for inpaint-
ing. We show the average performance for different clipping levels, ranging from
severe clip (SDR = 1dB) to light clip (SDR = 19dB). As a baseline, we show
the performance of IHT, computed on the unclipped samples and with a fixed

2 The MATLAB code and some examples are available at http://www.cvssp.org/

Personal/LucasRencker/software.html

http://www.cvssp.org/Personal/LucasRencker/software.html
http://www.cvssp.org/Personal/LucasRencker/software.html
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Fig. 2: Comparison with state-of-the-art declipping algorithms
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Fig. 3: Robustness to measurement noise

DCT dictionary. We show the performance of two dictionary learning algorithms
computed on the unclipped samples: a gradient descent-based algorithm similar
to Alg. 1, and wK-SVD which achieved state-of-the art performance in signal in-
painting [16]. Although these two algorithms slightly improve the reconstruction
compared to IHT, the overall performance is quiet poor. Consistent IHT [12]
clearly outperforms methods that discard clipped samples. The proposed con-
sistent DL algorithm further improves the reconstruction, with an improvement
of up to 3dB in the case of speech signals. This shows that learning the dictio-
nary directly from the clipped signals outperforms fixed dictionaries, and that
the learned dictionary generalizes well to the clipped samples. Note also that
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while standard dictionary learning algorithms fail to improve the reconstruction
when the data is heavily clipped (SDR ≤ 5dB), the proposed dictionary learning
algorithm is still able to improve compared to consistent IHT with fixed DCT.

Figure 2 shows the performance comparison with other declipping algorithms
proposed in the literature. We compare with consistent IHT, the `1-constrained
formulation proposed in [9] solved using CVX [11], and the `0-constrained formu-
lation (5) solved using the ADMM-based algorithm proposed in [6], considered as
the current state-of-the-art. All `0-based algorithms were computed with a fixed
K = 32, except the ADMM algorithm which we have found does not converge
when K is fixed. We have thus implemented ADMM with the adaptive sparsity
strategy proposed in [6], which might favor it. Although the proposed consistent
DL algorithm does not match ADMM’s performance on average, our algorithm
bridges the gap between consistent IHT and ADMM, and outperforms ADMM
in the case of music signals when SDR ≥ 12dB. However as shown in the next
experiment, the proposed algorithm is more robust to measurement noise. Figure
3 shows the reconstruction performance for signals contaminated with additive
Gaussian noise with variance σ2, and clipped at θ = 0.3. Figure 3 shows that
algorithms based on soft-consistency metric such as consistent IHT or the pro-
posed algorithm are more robust to noise than constrained-based formulation.
In particular, the proposed algorithm outperforms every other algorithms for
noise levels above 0.01 in speech, and 0.03 in music. From a computational point
of view, consistent IHT takes about 5s to process a 10s signal, the proposed
consistent DL and ADMM about 2-3 min, and CVX about an hour.

5 Conclusion

We proposed a smooth and convex cost function for signal declipping, and a
dictionary learning algorithm that is able to learn from clipped measurements.
The proposed algorithm outperforms classical dictionary learning algorithms,
and improves the declipping performance compared to consistent sparse coding
with a fixed dictionary. The proposed algorithm is simple and efficient, and the
model proposed in (9) could potentially be applied to other nonlinear measure-
ments, such as quantization or 1-bit measurements, which will be addressed in a
future publication. Analysis sparsity has shown promising results in [6], so future
work will also investigate analysis dictionary learning for declipping.
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