Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions

Adrien Taylor, Francis Bach

Conference on Learning Theory (COLT) - June 2019

Computer-assisted analyses of first-order optimization methods

Computer-assisted analyses of first-order optimization methods

(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017), and few others.

Computer-assisted analyses of first-order optimization methods

(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017), and few others.

Focus on *simple* proofs, relying on (quadratic) *potential functions*

(Nesterov 1983), (Beck & Teboulle 2009), (Bansal & Gupta 2017), (Hu & Lessard 2017), (Wilson, Recht & Jordan 2016), and many others.

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

It is known that $f(x_N) - f_* = O(\frac{1}{N})$ with small enough step sizes (e.g., $\frac{1}{L}$).

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

It is known that $f(x_N) - f_* = O(\frac{1}{N})$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f,\, x_k \in \mathbb{R}^d,$ and $k \geq 0,$ easy to show $\phi_{k+1}^f \leq \phi_k^f$ with

$$\phi_k^f = k(f(x_k) - f_\star) + \frac{L}{2} ||x_k - x_\star||^2$$
 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

It is known that $f(x_N) - f_* = O(\frac{1}{N})$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex f, $x_k \in \mathbb{R}^d$, and $k \ge 0$, easy to show $\phi_{k+1}^f \le \phi_k^f$ with

$$\phi_k^f = k(f(x_k) - f_\star) + \frac{L}{2} ||x_k - x_\star||^2$$
 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

It is known that $f(x_N) - f_* = O(\frac{1}{N})$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex f, $x_k \in \mathbb{R}^d$, and $k \ge 0$, easy to show $\phi_{k+1}^f \le \phi_k^f$ with

$$\phi_k^f = k(f(x_k) - f_\star) + \frac{L}{2} ||x_k - x_\star||^2$$
 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

$$\phi_N^f \le \phi_{N-1}^f \le \ldots \le \phi_0^f$$

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

It is known that $f(x_N) - f_* = O(\frac{1}{N})$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex f, $x_k \in \mathbb{R}^d$, and $k \ge 0$, easy to show $\phi_{k+1}^f \le \phi_k^f$ with

$$\phi_k^f = k(f(x_k) - f_\star) + \frac{L}{2} ||x_k - x_\star||^2$$
 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

$$N(f(x_N) - f_\star) \le \phi_N^f \le \phi_{N-1}^f \le \ldots \le \phi_0^f$$

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

It is known that $f(x_N) - f_* = O(\frac{1}{N})$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex $f,\, x_k \in \mathbb{R}^d,$ and $k \geq 0,$ easy to show $\phi_{k+1}^f \leq \phi_k^f$ with

$$\phi_k^f = k(f(x_k) - f_\star) + \frac{L}{2} ||x_k - x_\star||^2$$
 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

$$N(f(x_N) - f_{\star}) \leq \phi_N^f \leq \phi_{N-1}^f \leq \ldots \leq \phi_0^f = \frac{L}{2} ||x_0 - x_{\star}||^2,$$

What guarantees for gradient descent when minimizing a L-smooth convex function

 $f_{\star} = \min_{x \in \mathbb{R}^d} f(x)?$

It is known that $f(x_N) - f_* = O(\frac{1}{N})$ with small enough step sizes (e.g., $\frac{1}{L}$).

For all L-smooth convex f, $x_k \in \mathbb{R}^d$, and $k \ge 0$, easy to show $\phi_{k+1}^f \le \phi_k^f$ with

$$\phi_k^f = k(f(x_k) - f_\star) + \frac{L}{2} ||x_k - x_\star||^2$$
 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

$$N(f(x_N) - f_*) \le \phi_N^f \le \phi_{N-1}^f \le \ldots \le \phi_0^f = \frac{L}{2} \|x_0 - x_*\|^2$$

hence: $f(x_N) - f_* \leq \frac{L \|x_0 - x_*\|^2}{2N}$.

Gradient descent, take II: how to bound $\|f'(x_N)\|^2$ using potentials?

Gradient descent, take II: how to bound $||f'(x_N)||^2$ using potentials?

Key idea: forget how x_k was generated and prove $\phi_{k+1}^f \leq \phi_k^f$.

- Only need to study one iteration
- \bigcirc where does this ϕ_k^f comes from ?? (structure and dependence on k)

Gradient descent, take II: how to bound $\|f'(x_N)\|^2$ using potentials?

Key idea: forget how x_k was generated and prove $\phi_{k+1}^f \leq \phi_k^f$.

- Only need to study one iteration
- O where does this ϕ_k^f comes from !? (structure and dependence on k)

Starting point: candidate quadratic ϕ_k^f with all the available information at iteration k

$$\phi_k^f = a_k \|x_k - x_\star\|^2 + b_k \|f'(x_k)\|^2 + 2c_k \langle f'(x_k), x_k - x_\star \rangle + d_k (f(x_k) - f_\star).$$

Gradient descent, take II: how to bound $\|f'(x_N)\|^2$ using potentials?

Key idea: forget how x_k was generated and prove $\phi_{k+1}^f \leq \phi_k^f$.

- Only need to study one iteration
- O where does this ϕ_k^f comes from !? (structure and dependence on k)

Starting point: candidate quadratic ϕ_k^f with all the available information at iteration k

$$\phi_k^f = a_k \|x_k - x_\star\|^2 + b_k \|f'(x_k)\|^2 + 2c_k \langle f'(x_k), x_k - x_\star \rangle + d_k (f(x_k) - f_\star).$$

How to choose a_k, b_k, c_k, d_k 's?

Gradient descent, take II: how to bound $\|f'(x_N)\|^2$ using potentials?

Key idea: forget how x_k was generated and prove $\phi_{k+1}^f \leq \phi_k^f$.

- Only need to study one iteration
- \bigcirc where does this ϕ_k^f comes from!? (structure and dependence on k)

Starting point: candidate quadratic ϕ_k^f with all the available information at iteration k

$$\phi_k^f = a_k \|x_k - x_\star\|^2 + b_k \|f'(x_k)\|^2 + 2c_k \langle f'(x_k), x_k - x_\star \rangle + d_k (f(x_k) - f_\star).$$

How to choose a_k, b_k, c_k, d_k 's?

1. choice should satisfy " $\phi_{k+1}^f \leq \phi_k^f$ ",

Gradient descent, take II: how to bound $\|f'(x_N)\|^2$ using potentials?

Key idea: forget how x_k was generated and prove $\phi_{k+1}^f \leq \phi_k^f$.

- Only need to study one iteration
- \bigcirc where does this ϕ_k^f comes from ? (structure and dependence on k)

Starting point: candidate quadratic ϕ_k^f with all the available information at iteration k

$$\phi_k^f = a_k \|x_k - x_\star\|^2 + b_k \|f'(x_k)\|^2 + 2c_k \langle f'(x_k), x_k - x_\star \rangle + d_k (f(x_k) - f_\star).$$

How to choose a_k, b_k, c_k, d_k 's?

- 1. choice should satisfy " $\phi_{k+1}^f \leq \phi_k^f$ ",
- 2. choice should result in bound on $||f'(x_N)||^2$.

Given ϕ_{k+1}^f, ϕ_k^f , how to verify that for all L-smooth convex $f, x_k \in \mathbb{R}^d$, and $d \in \mathbb{N}$:

 $\phi_{k+1}^f \leq \phi_k^f ?$

Given ϕ_{k+1}^f, ϕ_k^f , how to verify that for all L-smooth convex $f, x_k \in \mathbb{R}^d$, and $d \in \mathbb{N}$:

$$\phi_{k+1}^f \le \phi_k^f?$$

(notations: the set of such pairs (ϕ_k^f,ϕ_{k+1}^f) is denoted $\mathcal{V}_k.)$

Given ϕ_{k+1}^f, ϕ_k^f , how to verify that for all L-smooth convex $f, x_k \in \mathbb{R}^d$, and $d \in \mathbb{N}$:

$$\phi_{k+1}^f \le \phi_k^f?$$

(notations: the set of such pairs (ϕ_k^f, ϕ_{k+1}^f) is denoted \mathcal{V}_k .)

Answer:

$$\phi_{k+1}^{f} \leq \phi_{k}^{f} \text{ for all } L\text{-smooth convex } f, x_{k} \in \mathbb{R}^{d}, \text{ and } d \in \mathbb{N}$$

$$\Leftrightarrow$$

some small-sized *linear matrix inequality (LMI)* is feasible.

Given ϕ_{k+1}^f, ϕ_k^f , how to verify that for all L-smooth convex $f, x_k \in \mathbb{R}^d$, and $d \in \mathbb{N}$:

$$\phi_{k+1}^f \le \phi_k^f?$$

(notations: the set of such pairs (ϕ_k^f, ϕ_{k+1}^f) is denoted \mathcal{V}_k .)

Answer:

$$\phi_{k+1}^f \leq \phi_k^f \text{ for all } L\text{-smooth convex } f, \ x_k \in \mathbb{R}^d \text{, and } d \in \mathbb{N}$$

$$\Leftrightarrow$$

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters $\{a_k, b_k, c_k, d_k\}_k$.

Given ϕ_{k+1}^f , ϕ_k^f , how to verify that for all L-smooth convex f, $x_k \in \mathbb{R}^d$, and $d \in \mathbb{N}$:

$$\phi_{k+1}^f \le \phi_k^f?$$

(notations: the set of such pairs (ϕ_k^f, ϕ_{k+1}^f) is denoted \mathcal{V}_k .)

Answer:

$$\phi_{k+1}^f \leq \phi_k^f \text{ for all } L\text{-smooth convex } f, \ x_k \in \mathbb{R}^d, \text{ and } d \in \mathbb{N}$$

$$\Leftrightarrow$$

some small-sized *linear matrix inequality (LMI)* is feasible.

Furthermore: LMI is linear in parameters $\{a_k, b_k, c_k, d_k\}_k$.

In others words: efficient (convex) representation of V_k available!

Recap: we want to bound $\|f'(x_N)\|^2$; choose

Recap: we want to bound $\|f'(x_N)\|^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

Recap: we want to bound $\|f'(x_N)\|^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

with $\phi_0^f = L^2 \|x_0 - x_\star\|^2$ and $\phi_N^f = b_N \|f'(x_N)\|^2$.

Recap: we want to bound $\|f'(x_N)\|^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

with $\phi_0^f = L^2 \|x_0 - x_\star\|^2$ and $\phi_N^f = b_N \|f'(x_N)\|^2$.

Motivation: this structure would result in $\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$.

Recap: we want to bound $\|f'(x_N)\|^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

with $\phi_0^f = L^2 \|x_0 - x_\star\|^2$ and $\phi_N^f = b_N \|f'(x_N)\|^2$.

Motivation: this structure would result in $\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_*\|^2}{b_N}$.

Question: largest provable b_N using such potentials?

Recap: we want to bound $||f'(x_N)||^2$; choose

$$\phi_k^f = a_k \|x_k - x_\star\|^2 + b_k \|f'(x_k)\|^2 + 2c_k \langle f'(x_k), x_k - x_\star \rangle + d_k (f(x_k) - f_\star).$$

with $\phi_0^f = L^2 ||x_0 - x_\star||^2$ and $\phi_N^f = b_N ||f'(x_N)||^2$.

Motivation: this structure would result in $\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$.

Question: largest provable b_N using such potentials?

 $\max_{\phi_1^f,\ldots,\phi_{N-1}^f,b_N} b_N \text{ such that } (\phi_0^f,\phi_1^f) \in \mathcal{V}_0,\ldots,(\phi_{N-1}^f,\phi_N^f) \in \mathcal{V}_{N-1}$

Recap: we want to bound $||f'(x_N)||^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

with $\phi_0^f = L^2 ||x_0 - x_\star||^2$ and $\phi_N^f = b_N ||f'(x_N)||^2$.

Motivation: this structure would result in $\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$.

Question: largest provable b_N using such potentials?

$$\max_{\phi_1^f,\dots,\phi_{N-1}^f,b_N} b_N \text{ such that } (\phi_0^f,\phi_1^f) \in \mathcal{V}_0,\dots, (\phi_{N-1}^f,\phi_N^f) \in \mathcal{V}_{N-1}$$

Recap: we want to bound $||f'(x_N)||^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

with $\phi_0^f = L^2 ||x_0 - x_\star||^2$ and $\phi_N^f = b_N ||f'(x_N)||^2$.

Motivation: this structure would result in $\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$.

Question: largest provable b_N using such potentials?

$$\max_{\phi_1^f,\dots,\phi_{N-1}^f,b_N} b_N \text{ such that } (\phi_0^f,\phi_1^f) \in \mathcal{V}_0,\dots, (\phi_{N-1}^f,\phi_N^f) \in \mathcal{V}_{N-1}$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

Recap: we want to bound $||f'(x_N)||^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

with $\phi_0^f = L^2 \|x_0 - x_\star\|^2$ and $\phi_N^f = b_N \|f'(x_N)\|^2$.

Motivation: this structure would result in $\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$.

Question: largest provable b_N using such potentials?

$$\max_{\phi_1^f, \dots, \phi_{N-1}^f, b_N} b_N \text{ such that } (\phi_0^f, \phi_1^f) \in \mathcal{V}_0, \dots, (\phi_{N-1}^f, \phi_N^f) \in \mathcal{V}_{N-1}$$

- 1. Solve the SDP for some values of N.
- 2. Observe the a_k, b_k, c_k, d_k 's for some values of N.

Recap: we want to bound $||f'(x_N)||^2$; choose

$$\phi_{k}^{f} = a_{k} \|x_{k} - x_{\star}\|^{2} + b_{k} \|f'(x_{k})\|^{2} + 2c_{k} \langle f'(x_{k}), x_{k} - x_{\star} \rangle + d_{k} (f(x_{k}) - f_{\star}).$$

with $\phi_0^f = L^2 ||x_0 - x_\star||^2$ and $\phi_N^f = b_N ||f'(x_N)||^2$.

Motivation: this structure would result in $\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$.

Question: largest provable b_N using such potentials?

$$\max_{\phi_1^f, \dots, \phi_{N-1}^f, b_N} b_N \text{ such that } (\phi_0^f, \phi_1^f) \in \mathcal{V}_0, \dots, (\phi_{N-1}^f, \phi_N^f) \in \mathcal{V}_{N-1}$$

- 1. Solve the SDP for some values of N.
- 2. Observe the a_k, b_k, c_k, d_k 's for some values of N.
- 3. Try to simplify the ϕ_k^f 's without loosing too much.

Recap: we want to bound $||f'(x_N)||^2$; choose

$$\phi_k^f = a_k \|x_k - x_\star\|^2 + b_k \|f'(x_k)\|^2 + 2c_k \langle f'(x_k), x_k - x_\star \rangle + d_k (f(x_k) - f_\star).$$

with $\phi_0^f = L^2 ||x_0 - x_\star||^2$ and $\phi_N^f = b_N ||f'(x_N)||^2$.

Motivation: this structure would result in $||f'(x_N)||^2 \leq \frac{L^2 ||x_0 - x_*||^2}{b_N}$.

Question: largest provable b_N using such potentials?

$$\max_{\phi_1^f,\dots,\phi_{N-1}^f,b_N} b_N \text{ such that } (\phi_0^f,\phi_1^f) \in \mathcal{V}_0,\dots,(\phi_{N-1}^f,\phi_N^f) \in \mathcal{V}_{N-1}$$

- 1. Solve the SDP for some values of N.
- 2. Observe the a_k, b_k, c_k, d_k 's for some values of N.
- 3. Try to simplify the ϕ_k^f 's without loosing too much.
- 4. Prove target result by analytically playing with V_k (i.e., study single iteration).

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

$$N = b_N =$$

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

$$N = 1$$

 $b_N =$

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

$$N = 1$$

 $b_N = 4$

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

$$\begin{array}{rrrr} N=&1&2\\ b_N=&4&9 \end{array}$$

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

$$N = 1 2 3$$

 $b_N = 4 9 16$

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$||f'(x_N)||^2 \leq \frac{L^2 ||x_0 - x_\star||^2}{b_N}$$

N =	1	2	3	4	 100
$b_N =$	4	9	16	25	 10201

2. Observe the a_k, b_k, c_k, d_k 's for some values of N.

Fixed horizon N = 100, L = 1, and

$$\phi_{k}^{f} = a_{k} \left\| x_{k} - x_{\star} \right\|^{2} + b_{k} \left\| f'(x_{k}) \right\|^{2} + 2c_{k} \left\langle f'(x_{k}), x_{k} - x_{\star} \right\rangle + d_{k} \left(f(x_{k}) - f_{\star} \right).$$

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

N =	1	2	3	4	 100
$b_N =$	4	9	16	25	 10201

2. Observe the a_k, b_k, c_k, d_k 's for some values of N.

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

N =	1	2	3	4	 100
$b_N =$	4	9	16	25	 10201

- 2. Observe the a_k, b_k, c_k, d_k 's for some values of N.
- 3. Try to simplify the ϕ_k^f 's without loosing too much.

1. Solve the SDP for some values of N; recall final guarantee of the form:

$$\|f'(x_N)\|^2 \leq \frac{L^2 \|x_0 - x_\star\|^2}{b_N}$$

N =	1	2	3	4	 100
$b_N =$	4	9	16	25	 10201

- 2. Observe the a_k, b_k, c_k, d_k 's for some values of N.
- 3. Try to simplify the ϕ_k^f 's without loosing too much.
- 4. Prove target result by analytically playing with V_k :

$$\phi_k^f(x_k) = (2k+1)L(f(x_k) - f_\star) + k(k+2) \|f'(x_k)\|^2 + L^2 \|x_k - x_\star\|^2,$$

hence $f(x_N) - f_* = O(N^{-1})$ and $||f'(x_N)||^2 = O(N^{-2})$.

Overall philosophy:

Overall philosophy:

 $\diamond~$ numerically obtain best "fixed-horizon" potential-based guarantees,

Overall philosophy:

- o numerically obtain best "fixed-horizon" potential-based guarantees,
- ◊ helps designing & benchmarking proofs,

Overall philosophy:

- o numerically obtain best "fixed-horizon" potential-based guarantees,
- ◊ helps designing & benchmarking proofs,
- ◊ before trying to prove your new crazy first-order method works; give it a try!

Overall philosophy:

- o numerically obtain best "fixed-horizon" potential-based guarantees,
- ◊ helps designing & benchmarking proofs,
- ◊ before trying to prove your new crazy first-order method works; give it a try!

More examples in the paper (T. and Bach, 2019):

Overall philosophy:

- o numerically obtain best "fixed-horizon" potential-based guarantees,
- ◊ helps designing & benchmarking proofs,
- ◊ before trying to prove your new crazy first-order method works; give it a try!

More examples in the paper (T. and Bach, 2019):

- accelerated variants (also automated parameter selection),
- ◊ proximal variants,
- \diamond stochastic variants (e.g., under bounded variance or over-parametrization),
- randomized block-coordinate variants,
- ... and probably many others (but not in the paper)!

Thanks!

Interested? Poster #174

"Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions"