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What is this work about?

Computer-assisted analyses of first-order optimization methods
(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017),

and few others.

Focus on simple proofs, relying on (quadratic) potential functions
(Nesterov 1983), (Beck & Teboulle 2009), (Bansal & Gupta 2017), (Hu & Lessard 2017),

(Wilson, Recht & Jordan 2016), and many others.
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Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f? = min
x∈Rd

f (x)?

It is known that f (xN)− f? = O( 1
N
) with small enough step sizes (e.g., 1

L
).

For all L-smooth convex f , xk ∈ Rd , and k ≥ 0, easy to show φfk+1 ≤ φ
f
k with

φfk = k(f (xk )− f?) +
L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) ≤ φfN ≤ φ
f
N−1 ≤ . . . ≤ φ

f
0 = L

2‖x0 − x?‖2,

hence: f (xN)− f? ≤ L‖x0−x?‖2
2N .
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How does it work for the gradient method?
Gradient descent, take II: how to bound ‖f ′(xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 ≤ φ
f
k .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2

+ 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 ≤ φ
f
k ”,

2. choice should result in bound on ‖f ′(xN)‖2.
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How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 ≤ φ
f
k?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 ≤ φ
f
k for all L-smooth convex f , xk ∈ Rd , and d ∈ N

⇔
some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!
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How does it work for the gradient method?

Recap: we want to bound ‖f ′(xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2

+ 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖f ′(xN)‖2.

Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).
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Motivation: this structure would result in ‖f ′(xN)‖2 ≤ L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

∥∥f ′(xN)∥∥2 ≤ L2 ‖x0−x?‖2
bN

N =

1 2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2

+ L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖f ′(xk )‖2 = O(k−2).
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Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk
∥∥f ′(xk )∥∥2

+ 2ck 〈f ′(xk ), xk − x?〉+ dk (f (xk )− f?).
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How does it work for the gradient method?
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3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)
∥∥f ′(xk )∥∥2

+ L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖f ′(xN)‖2 = O(N−2).
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Concluding remarks

Overall philosophy:

� numerically obtain best “fixed-horizon” potential-based guarantees,

� helps designing & benchmarking proofs,

� before trying to prove your new crazy first-order method works; give it a try!

More examples in the paper (T. and Bach, 2019):

� accelerated variants (also automated parameter selection),

� proximal variants,

� stochastic variants (e.g., under bounded variance or over-parametrization),

� randomized block-coordinate variants,

... and probably many others (but not in the paper)!
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Thanks!

Interested? Poster #174

“Stochastic first-order methods:
non-asymptotic and computer-aided analyses

via potential functions”


