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Computer-assisted analyses of first-order optimization methods

(Drori & Teboulle 2014), (Lessard, Recht & Packard 2016), (T, Hendrickx & Glineur 2017),

and few others.

Focus on simple proofs, relying on (quadratic) potential functions

(Nesterov 1983), (Beck & Teboulle 2009), (Bansal & Gupta 2017), (Hu & Lessard 2017),

(Wilson, Recht & Jordan 2016), and many others.
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Potential functions

What guarantees for gradient descent when minimizing a L-smooth convex function

f. = min f(x)?
x€RI

It is known that f(xy) — fx = O(%) with small enough step sizes (e.g., %)
For all L-smooth convex f, x, € R?, and k > 0, easy to show ¢£+1 < ¢£ with
& = k(F(x) — f) + é”xk — x4||? (potential at iteration k),
see e.g., (Bansal & Gupta 2017).
Why is that nice? Very simple resulting proof:
N(F(xn) = ) < oy < dy_1 < ... < 0h = &llxo — xull?,

_ 2
hence: f(xn) — fi < %_
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How does it work for the gradient method?

Gradient descent, take Il: how to bound ||#/(xy)||* using potentials?

Key idea: forget how x, was generated and prove ¢>£+1 < ¢£.

® only need to study one iteration

®  where does this ¢li comes from!? (structure and dependence on k)

Starting point: candidate quadratic qb,c with all the available information at iteration k

O = ap xic — sl + bic ||/ (x)||* + 2ck (F (xic) xic — x) + dlie (F() — ).

How to choose ay, by, ¢, di's?

1. choice should satisfy “qbi“ < ¢£”,

2. choice should result in bound on ||/ (xy)]/?.
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i1 < OL7

notations: the set of such pairs (¢f, #7 is denoted V.
ko Pl

Answer:

qﬁiﬂ < qbi for all L-smooth convex f, x, € RY, and d € N
=

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ay, by, ¢k, di } k-

In others words: efficient (convex) representation of V. available!
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How does it work for the gradient method?

Recap: we want to bound ||/ (xy)|

2. choose

¢£ = ax HXk — X,CH2 + by ||f/(Xk)H2 + 2¢k <f/(Xk),Xk — X*> + di (f(Xk) — f*).

with ¢§ = L2||x0 — x.||* and ¢}, = by [|f"(xn)|1*.

Motivation: this structure would result in ||/ (xp)||? <

L2 xo—x4 I
by

Question: largest provable by using such potentials?

of n;baf)x , by such that (¢, d5) € Vo,..., (dhy_1, ) € Vv_1
1 PN_1PN

Let's engineer a worst-case guarantee:

1.

Solve the SDP for some values of N.

2. Observe the ay, by, ¢k, di's for some values of N.
3.
4. Prove target result by analytically playing with Vi (i.e., study single iteration).

Try to simplify the qbi’s without loosing too much.
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1. Solve the SDP for some values of N; recall final guarantee of the form:

I ()2 < W

N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ¢k, di's for some values of N.
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

L2 B X*“

7 o? < 2 gl
N= 1 2 3 4 ... 100
by= 4 9 16 25 ... 10201

2. Observe the ay, by, ck, di's for some values of N.
3. Try to simplify the qbi’s without loosing too much.
4. Prove target result by analytically playing with Vy:

$h () =(2k + L(F(xe) = ) + k(k + 2)[|F (x0)||* + L2 [1x6 = I,

hence f(xy) — fi = O(N~1) and ||f'(xy)||*> = O(N—2).
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Concluding remarks

Overall philosophy:
o numerically obtain best “fixed-horizon" potential-based guarantees,
o helps designing & benchmarking proofs,

o before trying to prove your new crazy first-order method works; give it a try!

More examples in the paper (T. and Bach, 2019):
© accelerated variants (also automated parameter selection),
o proximal variants,
© stochastic variants (e.g., under bounded variance or over-parametrization),
¢ randomized block-coordinate variants,

. and probably many others (but not in the paper)!



Thanks!

Interested? Poster #174

“Stochastic first-order methods:
non-asymptotic and computer-aided analyses
via potential functions”



