Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions

Adrien Taylor, Francis Bach



Conference on Learning Theory (COLT) - June 2019

## What is this work about?

## What is this work about?

Computer-assisted analyses of first-order optimization methods

## What is this work about?

Computer-assisted analyses of first-order optimization methods
(Drori \& Teboulle 2014), (Lessard, Recht \& Packard 2016), (T, Hendrickx \& Glineur 2017), and few others.

## What is this work about?

Computer-assisted analyses of first-order optimization methods
(Drori \& Teboulle 2014), (Lessard, Recht \& Packard 2016), (T, Hendrickx \& Glineur 2017), and few others.

Focus on simple proofs, relying on (quadratic) potential functions
(Nesterov 1983), (Beck \& Teboulle 2009), (Bansal \& Gupta 2017), (Hu \& Lessard 2017), (Wilson, Recht \& Jordan 2016), and many others.

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$ ).

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$ ).

For all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geq 0$, easy to show $\phi_{k+1}^{f} \leq \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2} \text { (potential at iteration } k \text { ), }
$$

see e.g., (Bansal \& Gupta 2017).

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$ ).
For all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geq 0$, easy to show $\phi_{k+1}^{f} \leq \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2} \text { (potential at iteration } k \text { ), }
$$

see e.g., (Bansal \& Gupta 2017).

Why is that nice? Very simple resulting proof:

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$ ).

For all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geq 0$, easy to show $\phi_{k+1}^{f} \leq \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k),
$$

see e.g., (Bansal \& Gupta 2017).

Why is that nice? Very simple resulting proof:

$$
\phi_{N}^{f} \leq \phi_{N-1}^{f} \leq \ldots \leq \phi_{0}^{f}
$$

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$ ).

For all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geq 0$, easy to show $\phi_{k+1}^{f} \leq \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2} \text { (potential at iteration } k \text { ), }
$$

see e.g., (Bansal \& Gupta 2017).

Why is that nice? Very simple resulting proof:

$$
N\left(f\left(x_{N}\right)-f_{\star}\right) \leq \phi_{N}^{f} \leq \phi_{N-1}^{f} \leq \ldots \leq \phi_{0}^{f}
$$

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$ ).
For all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geq 0$, easy to show $\phi_{k+1}^{f} \leq \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k)
$$

see e.g., (Bansal \& Gupta 2017).

Why is that nice? Very simple resulting proof:

$$
N\left(f\left(x_{N}\right)-f_{\star}\right) \leq \phi_{N}^{f} \leq \phi_{N-1}^{f} \leq \ldots \leq \phi_{0}^{f}=\frac{L}{2}\left\|x_{0}-x_{\star}\right\|^{2}
$$

## Potential functions

What guarantees for gradient descent when minimizing a $L$-smooth convex function

$$
f_{\star}=\min _{x \in \mathbb{R}^{d}} f(x) ?
$$

It is known that $f\left(x_{N}\right)-f_{\star}=O\left(\frac{1}{N}\right)$ with small enough step sizes (e.g., $\frac{1}{L}$ ).
For all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $k \geq 0$, easy to show $\phi_{k+1}^{f} \leq \phi_{k}^{f}$ with

$$
\phi_{k}^{f}=k\left(f\left(x_{k}\right)-f_{\star}\right)+\frac{L}{2}\left\|x_{k}-x_{\star}\right\|^{2}(\text { potential at iteration } k)
$$

see e.g., (Bansal \& Gupta 2017).

Why is that nice? Very simple resulting proof:

$$
N\left(f\left(x_{N}\right)-f_{\star}\right) \leq \phi_{N}^{f} \leq \phi_{N-1}^{f} \leq \ldots \leq \phi_{0}^{f}=\frac{L}{2}\left\|x_{0}-x_{\star}\right\|^{2}
$$

hence: $f\left(x_{N}\right)-f_{\star} \leq \frac{L\left\|x_{0}-x_{\star}\right\|^{2}}{2 N}$.

## How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

## How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how $x_{k}$ was generated and prove $\phi_{k+1}^{f} \leq \phi_{k}^{f}$.
() only need to study one iteration
() where does this $\phi_{k}^{f}$ comes from!? (structure and dependence on $k$ )

## How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how $x_{k}$ was generated and prove $\phi_{k+1}^{f} \leq \phi_{k}^{f}$.
() only need to study one iteration
() where does this $\phi_{k}^{f}$ comes from!? (structure and dependence on $k$ )

Starting point: candidate quadratic $\phi_{k}^{f}$ with all the available information at iteration $k$

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

## How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how $x_{k}$ was generated and prove $\phi_{k+1}^{f} \leq \phi_{k}^{f}$.
() only need to study one iteration
() where does this $\phi_{k}^{f}$ comes from!? (structure and dependence on $k$ )

Starting point: candidate quadratic $\phi_{k}^{f}$ with all the available information at iteration $k$

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How to choose $a_{k}, b_{k}, c_{k}, d_{k}$ 's?

## How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how $x_{k}$ was generated and prove $\phi_{k+1}^{f} \leq \phi_{k}^{f}$.
() only need to study one iteration
() where does this $\phi_{k}^{f}$ comes from!? (structure and dependence on $k$ )

Starting point: candidate quadratic $\phi_{k}^{f}$ with all the available information at iteration $k$

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How to choose $a_{k}, b_{k}, c_{k}, d_{k}$ 's?

1. choice should satisfy " $\phi_{k+1}^{f} \leq \phi_{k}^{f}$ ",

## How does it work for the gradient method?

Gradient descent, take II: how to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$ using potentials?

Key idea: forget how $x_{k}$ was generated and prove $\phi_{k+1}^{f} \leq \phi_{k}^{f}$.
() only need to study one iteration
() where does this $\phi_{k}^{f}$ comes from!? (structure and dependence on $k$ )

Starting point: candidate quadratic $\phi_{k}^{f}$ with all the available information at iteration $k$

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

How to choose $a_{k}, b_{k}, c_{k}, d_{k}$ 's?

1. choice should satisfy " $\phi_{k+1}^{f} \leq \phi_{k}^{f \text { " }}$,
2. choice should result in bound on $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.

## How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$ :

$$
\phi_{k+1}^{f} \leq \phi_{k}^{f} ?
$$

## How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$ :

$$
\phi_{k+1}^{f} \leq \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted $\mathcal{V}_{k}$.)

## How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$ :

$$
\phi_{k+1}^{f} \leq \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted $\mathcal{V}_{k}$.)

Answer:

$$
\begin{gathered}
\phi_{k+1}^{f} \leq \phi_{k}^{f} \text { for all L-smooth convex } f, x_{k} \in \mathbb{R}^{d} \text {, and } d \in \mathbb{N} \\
\Leftrightarrow
\end{gathered}
$$

some small-sized linear matrix inequality (LMI) is feasible.

## How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$ :

$$
\phi_{k+1}^{f} \leq \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted $\mathcal{V}_{k}$.)

Answer:

$$
\begin{gathered}
\phi_{k+1}^{f} \leq \phi_{k}^{f} \text { for all L-smooth convex } f, x_{k} \in \mathbb{R}^{d} \text {, and } d \in \mathbb{N} \\
\Leftrightarrow
\end{gathered}
$$

some small-sized linear matrix inequality (LMI) is feasible.
Furthermore: LMI is linear in parameters $\left\{a_{k}, b_{k}, c_{k}, d_{k}\right\}_{k}$.

## How does it work for the gradient method?

Given $\phi_{k+1}^{f}, \phi_{k}^{f}$, how to verify that for all $L$-smooth convex $f, x_{k} \in \mathbb{R}^{d}$, and $d \in \mathbb{N}$ :

$$
\phi_{k+1}^{f} \leq \phi_{k}^{f} ?
$$

(notations: the set of such pairs $\left(\phi_{k}^{f}, \phi_{k+1}^{f}\right)$ is denoted $\mathcal{V}_{k}$.)

Answer:

$$
\begin{gathered}
\phi_{k+1}^{f} \leq \phi_{k}^{f} \text { for all L-smooth convex } f, x_{k} \in \mathbb{R}^{d} \text {, and } d \in \mathbb{N} \\
\Leftrightarrow
\end{gathered}
$$

some small-sized linear matrix inequality (LMI) is feasible.
Furthermore: LMI is linear in parameters $\left\{a_{k}, b_{k}, c_{k}, d_{k}\right\}_{k}$.

In others words: efficient (convex) representation of $\mathcal{V}_{k}$ available!

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable $b_{N}$ using such potentials?

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable $b_{N}$ using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable $b_{N}$ using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable $b_{N}$ using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{1}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of $N$.

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable $b_{N}$ using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{\mathbf{1}}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of $N$.
2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$ 's for some values of $N$.

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable $b_{N}$ using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{1}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of $N$.
2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$ 's for some values of $N$.
3. Try to simplify the $\phi_{k}^{f}$ 's without loosing too much.

## How does it work for the gradient method?

Recap: we want to bound $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$; choose

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

with $\phi_{0}^{f}=L^{2}\left\|x_{0}-x_{\star}\right\|^{2}$ and $\phi_{N}^{f}=b_{N}\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}$.
Motivation: this structure would result in $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}$.
Question: largest provable $b_{N}$ using such potentials?

$$
\max _{\phi_{\mathbf{1}}^{f}, \ldots, \phi_{N-1}^{f}, b_{N}} b_{N} \text { such that }\left(\phi_{0}^{f}, \phi_{1}^{f}\right) \in \mathcal{V}_{0}, \ldots,\left(\phi_{N-1}^{f}, \phi_{N}^{f}\right) \in \mathcal{V}_{N-1}
$$

Let's engineer a worst-case guarantee:

1. Solve the SDP for some values of $N$.
2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$ 's for some values of $N$.
3. Try to simplify the $\phi_{k}^{f}$ 's without loosing too much.
4. Prove target result by analytically playing with $\mathcal{V}_{k}$ (i.e., study single iteration).

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}}
$$

$$
\begin{array}{r}
N= \\
b_{N}=
\end{array}
$$

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
N= & 1 \\
b_{N}= &
\end{aligned}
$$

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
N= & 1 \\
b_{N}= & 4
\end{aligned}
$$

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
N= & 1 \\
b_{N}= & 4
\end{aligned}
$$

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
N= & 1
\end{aligned} \begin{array}{lll}
2 & 3 \\
b_{N} & = & 4
\end{array} 9 \begin{gathered}
16
\end{gathered}
$$

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N= & 1 & 2 & 3 & 4 & \cdots & 100 \\
b_{N}= & 4 & 9 & 16 & 25 & & 10201
\end{array} \\
& b_{N}=\begin{array}{llllll}
4 & 9 & 16 & 25 & \ldots & 10201
\end{array}
\end{aligned}
$$

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N= & 1 & 2 & 3 & 4 & \cdots & 100
\end{array} \\
& b_{N}=\begin{array}{llllll}
4 & 9 & 16 & 25 & \ldots & 10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$ 's for some values of $N$.

Fixed horizon $N=100, L=1$, and

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right) .
$$

Fixed horizon $N=100, L=1$, and

$$
\phi_{k}^{f}=a_{k}\left\|x_{k}-x_{\star}\right\|^{2}+b_{k}\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+2 c_{k}\left\langle f^{\prime}\left(x_{k}\right), x_{k}-x_{\star}\right\rangle+d_{k}\left(f\left(x_{k}\right)-f_{\star}\right)
$$






## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{gathered}
\left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
N= \\
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & \ldots & 100 \\
b_{N}= & 4 & 9 & 16 & 25 & \ldots & 10201
\end{array}
\end{gathered}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$ 's for some values of $N$.

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N & = & 1 & 2 & 3 & 4 & \ldots \\
100 \\
b_{N} & = & 4 & 9 & 16 & 25 & \ldots \\
10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$ 's for some values of $N$.
3. Try to simplify the $\phi_{k}^{f}$ 's without loosing too much.

## How does it work for the gradient method?

1. Solve the SDP for some values of $N$; recall final guarantee of the form:

$$
\begin{aligned}
& \left\|f^{\prime}\left(x_{N}\right)\right\|^{2} \leq \frac{L^{2}\left\|x_{0}-x_{\star}\right\|^{2}}{b_{N}} \\
& \begin{array}{ccccccc}
N & = & 1 & 2 & 3 & 4 & \ldots \\
b_{N} & = & 4 & 9 & 16 & 25 & \ldots \\
10201
\end{array}
\end{aligned}
$$

2. Observe the $a_{k}, b_{k}, c_{k}, d_{k}$ 's for some values of $N$.
3. Try to simplify the $\phi_{k}^{f}$ 's without loosing too much.
4. Prove target result by analytically playing with $\mathcal{V}_{k}$ :

$$
\phi_{k}^{f}\left(x_{k}\right)=(2 k+1) L\left(f\left(x_{k}\right)-f_{\star}\right)+k(k+2)\left\|f^{\prime}\left(x_{k}\right)\right\|^{2}+L^{2}\left\|x_{k}-x_{\star}\right\|^{2}
$$

hence $f\left(x_{N}\right)-f_{\star}=O\left(N^{-1}\right)$ and $\left\|f^{\prime}\left(x_{N}\right)\right\|^{2}=O\left(N^{-2}\right)$.

## Concluding remarks

Overall philosophy:

## Concluding remarks

Overall philosophy:
$\diamond$ numerically obtain best "fixed-horizon" potential-based guarantees,

## Concluding remarks

Overall philosophy:
$\diamond$ numerically obtain best "fixed-horizon" potential-based guarantees,
$\diamond$ helps designing \& benchmarking proofs,

## Concluding remarks

Overall philosophy:
$\diamond$ numerically obtain best "fixed-horizon" potential-based guarantees,
$\diamond$ helps designing \& benchmarking proofs,
$\diamond$ before trying to prove your new crazy first-order method works; give it a try!

## Concluding remarks

Overall philosophy:
$\diamond$ numerically obtain best "fixed-horizon" potential-based guarantees,
$\diamond$ helps designing \& benchmarking proofs,
$\diamond$ before trying to prove your new crazy first-order method works; give it a try!

More examples in the paper (T. and Bach, 2019):

## Concluding remarks

Overall philosophy:
$\diamond$ numerically obtain best "fixed-horizon" potential-based guarantees,
$\diamond$ helps designing \& benchmarking proofs,
$\diamond$ before trying to prove your new crazy first-order method works; give it a try!

More examples in the paper (T. and Bach, 2019):
$\diamond$ accelerated variants (also automated parameter selection),
$\diamond$ proximal variants,
$\diamond$ stochastic variants (e.g., under bounded variance or over-parametrization),
$\diamond$ randomized block-coordinate variants,
... and probably many others (but not in the paper)!

## Thanks!

## Interested? Poster \#174

"Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions"

