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Abstract

Accelerated algorithms for minimizing smooth strongly convex functions usually
require knowledge of the strong convexity parameter µ. In the case of an unknown
µ, current adaptive techniques are based on restart schemes. When the optimal
value f∗ is known, these strategies recover the accelerated linear convergence
bound without additional grid search. In this paper we propose a new approach
that has the same bound without any restart, using an online estimation of strong
convexity parameter. We show the robustness of the Fast Gradient Method when
using a sequence of upper bounds on µ. We also present a good candidate for this
estimate sequence and detail consistent empirical results.

1 Introduction

We focus on solving a generic optimization problem written

min f(x) , h(x) + ψ(x) (1)

in the variable x ∈ Rn, where h is a L-smooth, µ-strongly convex function and ψ(x) a convex
penalty term. In the deterministic setting, classical convergence bounds show

f(xk)− f(x0) ≤ L
2

(
1− µ

L

)k ‖x∗ − x0‖2 (2)

after k iterations of gradient descent with fixed step size, while accelerated proximal gradient descent
methods yield iterates satisfying

f(xk)− f(x0) ≤ L
2

(
1−

√
µ
L

)k ‖x∗ − x0‖2 (3)

after k iterations, showing a significantly weaker dependence on the problem’s condition number
κ = L/µ (see [Nesterov, 2005] for a complete discussion). Similar rates have been obtained in
the stochastic setting under the assumption that h is a finite sum. Early work in [Roux et al., 2012,
Shalev-Shwartz and Zhang, 2013, Johnson and Zhang, 2013, Xiao and Zhang, 2014, Defazio et al.,
2014] produced algorithms with a slow rate roughly matching (2) in its dependence on the condition
number. Improved algorithms [Lin et al., 2014, Allen-Zhu et al., 2016, Shalev-Shwartz and Zhang,
2014, Lan and Zhou, 2018] obtain an accelerated rate similar to that in (3), with [Lan and Zhou,
2018] in particular showing that these bounds are unimprovable. All these results rely on a strong
convexity assumption, with [Arjevani, 2017] showing that explicit knowledge of the strong convexity
constant is required to get the fast rate using simple step size strategies. This remains a key limitation
since the strong convexity constant is either unknown or poorly approximated in practice.

The situation is more favorable in the deterministic setting, with [Nesterov, 2013, Lin and Xiao, 2014a,
Fercoq and Qu, 2016, Roulet and d’Aspremont, 2017, Renegar and Grimmer, 2018] showing that the
fast rate can be achieved up to a factor log(κ), using a restart strategy (the first three references have
an extra 1/µ factor in the bound). The results in [Roulet and d’Aspremont, 2017] also show that the
log(κ) factor can be removed when the value of f∗ is known, so that restarted accelerated methods
are fully adaptive to strong convexity constant (and other types of growth conditions for that matter).
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This assumption is often reduced to assuming f∗ = 0 (see e.g. [Asi and Duchi, 2019] for a more
complete discussion), and was used early on to devise better step size strategies for gradient methods,
known as Polyak steps [Polyak, 1969, Nedic, 2002].

Our objective here is to remove the need for restart. From a practical point of view, while the
theoretical bound in [Roulet and d’Aspremont, 2017] is optimal, empirical performance can vary
significantly with residual parameter settings. From a theoretical perspective, the need to use a restart
scheme highlights the fact that current algorithms and/or convergence analysis fail to capture some
key aspects of the problem’s regularity properties. Restart schemes are a hack which achieve nearly
optimal convergence rates, we seek to find better methods that alleviate the need for these schemes.

We make the following contributions.

• We bound the precision required in estimating the strong convexity parameter µ to get
the fast convergence rate in (3). In particular, we show that sublinear convergence in the
estimate of µ is enough to guarantee fast linear convergence of the iterates.

• Assuming f∗ is known, we detail an efficient strategy to produce local estimates of the
strong convexity parameter µ. This estimate has the added benefit of being local, hence
better adapts to the geometry of the problem, further speeding up convergence compared to
methods given a fixed initial bound on µ.

• We test our strategy on a variety of learning problems and show that our method often
significantly outperforms restart schemes in practice.

Notation

In what follows, h will denote a L-smooth and µ-strongly convex function, ψ a lower-continuous
proper convex function. f(x) := h(x) + ψ(x) is then a µ-strongly convex function and x∗ will
denote the unique minimizer of f on Rn. Let f∗ = f(x∗) be the optimal value of f . ψ will be
supposed simple enough so that for α > 0 the gradient mapping Tα

Tα(y) = argmin
x∈Rn

h(y) +∇h(y)T (x− y) +
α

2
‖x− y‖2 + ψ(x) (4)

can be computed explicitly. Finally the reduced gradient is defined as

gα(y) = α(y − Tα(y)). (5)

2 Nesterov Acceleration of Smooth and Strongly Convex Functions

In the following we seek to solve the optimization problem

min f(x) := h(x) + ψ(x) (6)

in the variable x ∈ Rn.

2.1 APG with Known Strong Convexity Parameter

A classical method for smooth and strongly convex minimization, when the strong convexity parame-
ter is known, is the Accelerated Proximal Gradient (APG) described in Algorithm 1. It can be derived
from the generic formulation of the Optimal Gradient Method in [Nesterov, 2018, §2.2.12-13], using
a good choice of estimate sequences and coefficients in order to get only two iterate sequences,
(xi)i∈N and (yi)i∈N, with simple updates. Algorithm 2 describes Algorithm 1 using an estimate
sequence formulation that will prove useful when introducing an estimated strong convexity in the
algorithm. A proof of this statement can be found in Appendix A.2.
We start with the following lemma from [Lin and Xiao, 2014b], which is an extension of [Nesterov,
2018, Th 2.2.13], and will be used in the analysis.

Lemma 2.1 The following inequality holds for x, y ∈ Rn.

f(x) ≥ f(TL(y)) + gL(y)T (x− y) +
1

2L
‖gL(y)‖2 +

µ

2
‖x− y‖2 (7)
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Algorithm 1 Accelerated Proximal Gradient
Input: x0 ∈ Rn, L, µ

y−1 = y0 = x0, β =
1−
√

µ
L

1+
√

µ
L

.

for k ≥ 0 do
xk+1 = yk + β(yk − yk−1)
yk+1 = TL(xk+1)

end for
Output: yk+1.

Algorithm 2 APG estimate sequences formulation
Input: x0 ∈ Rn, L, µ
A0 = 1, a0 = 1, y0 = x0, m0(x) = a0f

∗. κ = µ
L .

for k ≥ 0 do
vk = argmin

x∈Rn
mk(x) + a0µ

2 ‖x− x0‖2

ak+1 =

√
κ

1−
√
κ
Ak

Ak+1 = Ak + ak+1, τk = ak+1

Ak+1

xk+1 = τk
1+τk

vk + 1
1+τk

yk
yk+1 = TL(xk+1)
lL(x, xk+1) = f(TL(xk+1)) + gL(xk+1)T (x− xk+1) + 1

2L‖gL(xk+1)‖2
mk+1(x) = mk(x) + ak+1

(
lL(x, xk+1) + µ

2 ‖x− xk+1‖2
)

end for
Output: yk+1.

Proof. proof in the Appendix B.1

Corollary 2.2
f(x)− f∗ ≥ µ

2
‖x− x∗‖2, ∀x ∈ Rn (8)

Lemma 2.1 guarantees that the components of mk(x) of Algorithm 2 are lower bounds on f(x). In
particular, we have mk(x∗) ≤ Akf∗. These estimate sequences have also the huge advantage to be
strongly convex quadratic functions. Proposition 2.3 now recalls the convergence bound of APG.

Proposition 2.3 After k iterations the output yk of algorithm 2 satisfies

f(yk)− f∗ ≤
(f(x0)− f∗) + µ

2 ‖x0 − x∗‖2

Ak
(9)

and

Ak =

(
1−

√
µ

L

)−k
, ∀k ≥ 0 (10)

Proof. A complete proof using estimate sequence is given in Appendix B.2.

This result shows a linear convergence rate in
(
1−

√
µ
L

)k
. A linesearch on the smoothness parameter

L can be added to the algorithm without losing the convergence bound Lin and Xiao [2014b]. In
Algorithms 1 and 2 the strong convexity parameter is given as an input, and is typically hard to
estimate. When a misspecified µ̂ 6= µ is given, two cases are to be distinguished. In the case where
we have a lower bound on µ, the proof of Proposition 2.3 still applies because µ is only used in lower

bounds. Linear convergence is preserved and the rate of convergence becomes (1−
√

µ̂
L )k. When µ̂

is only an upper bound on µ, the previous results only guarantee that the iterates of APG will not blow
up (cf. see for instance [Lin and Xiao, 2014b, Lemma 10]). In what follows we present robustness
result on APG, when using an upper bounding sequence that converges to µ at a sublinear rate.
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2.2 APG with Estimates of Strong Convexity Parameter

The main result of this section is that for all k ≥ 0, a sequence (µi)i∈N such that

0 ≤ µi − µ ≤
C

(i+ 1)2

for i ∈ [|1, k|] so µi converges at a sublinear rate towards µ, allows us to compute yk ∈ Rn such that

f(yk)− f∗ ≤ C0

(
1−

√
µ

L

)k
,

i.e. f(yk) converges at a linear rate towards f∗.

Let (µi)i∈N be a positive real sequence such that µi ≥ µ,∀i ≥ 0. Suppose that the µi are available
in an online setting, meaning that the i-th term can be used at the i-th iteration of the algorithm. In
the formulation of Algorithm 2, two properties have to be satisfied at each iteration to obtain the
convergence bound of Proposition 2.3.

(P k1 ) : mk(x∗) ≤ Akf∗
(P k2 ) : Akf(yk) ≤ f(x0)− f∗ + min

x∈Rn
mk(x) + a0µ

2 ‖x− x0‖2

}
k ≥ 0 (11)

The mk are modified in order to incorporate the strong convexity estimator.{
m0(x) = a0f

∗

mk+1(x) = mk(x) + ak+1

(
lL(x, xk+1) + µk+1

2 ‖x− xk+1‖2
)
, k ≥ 0

(12)

Adding these estimate sequences in the APG scheme yields Algorithm 3. With this choice of

Algorithm 3 AdaptAPG
Input: x0 ∈ Rn, L, (µi)i∈Rn
A0 = 1, a0 = 1, y0 = x0, m0(x) = a0f

∗.
for k ≥ 0 do
κk = µk+1

L

vk = argmin
x∈Rn

mk(x) + a0µ0

2 ‖x− x0‖2

ak+1 =

√
κk

1−√κk
Ak

Ak+1 = Ak + ak+1, τk = ak+1

Ak+1

xk+1 = τk
1+τk

vk + 1
1+τk

yk
yk+1 = TL(xk+1)
lL(x, xk+1) = f(TL(xk+1)) + gL(xk+1)T (x− xk+1) + 1

2L‖gL(xk+1)‖2
mk+1(x) = mk(x) + ak+1

(
lL(x, xk+1) + µk+1

2 ‖x− xk+1‖2
)

end for
Output: yk+1.

recurrence for ak, the proximal update for yk+1 is preserved. However in this case xk+1 can no
longer be expressed as a combination of yk and yk−1. In addition, the algorithm keeps the same form
of updates as before, ensuring the property (P k2 ) to be preserved at each iteration. However, (P k1 )
relied on the strong convexity lower bounds induced by µ, and these bounds do not hold anymore
with µi, introducing additional error terms. Proposition 2.4 below thus gives a preliminary bound on
the primal gap depending on the distance between the µi and µ.

Proposition 2.4 Given a non increasing sequence of estimate (µi)i∈N such that µi ≥ µ,∀i > 0, the
output of Algorithm 3 after k iterations satisfies

f(yk)− f∗ ≤
f(x0)− f∗ + a0µ

2 ‖x0 − x∗‖2

Ak
+

k∑
i=0

ai
2Ak

(µi − µ)‖xi − x∗‖2 (13)
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and

Ak =

k∏
i=1

(
1−

√
µi
L

)−1

(14)

Proof. The proof of this result is essentially the same as of Proposition 2.3 and is completely detailed
in Appendix B.3.

Our goal now is to control the right hand side given sufficient conditions on the gaps µi − µ. In the
strongly convex case, the behaviour of the distance to the optimum of the second iterate sequence (xi)
can be controlled. The following lemma uses the form of the update in xk+1 as a convex combination
of vk and yk to bound ‖xk − x0‖2.

Lemma 2.5 Given (µi)i∈N an non increasing upperbounding sequence of µ. (xi)i∈N is a sequence
defined as in Algorithm 3 on f using (µi)i∈N.

‖xk+1 − x∗‖2 ≤
2(f(x0)− f∗) + a0µ

2 ‖x0 − x∗‖2

Akµ
+

k∑
i=0

ai
Ak

µi − µ
µ
‖xi − x∗‖2 , ∀k ≥ 0 (15)

Proof. See Appendix B.4

The recurrence equation that defines the ak allows for a simple bound on the ratio ak+1

Ak
.

Lemma 2.6 For (ai) and (Ai) defined as in Algorithm 3

ak+1

Ak
=

√
µk+1

L

1−
√

µk+1

L

≤ C1 =

√
µ0

L

1−
√

µ0

L

(16)

Proof. (µi) non increasing.

In the next Lemma, we show that when µi converges to µ at a summable rate, then ‖xk − x∗‖2
converges to 0 with the same speed as f(yk)− f∗.

Lemma 2.7 Given a non increasing sequence (µi)i∈N satisfying

0 ≤ µk − µ ≤
C

(k + 1)2
, ∀k ≥ 1 (17)

with C ≤ µ
3C1

with C1 defined as in Lemma 2.6. Then for (ai) and (xi) defined as in Algorithm 3

ak(µk − µ)‖xk − x∗‖2 ≤
C0

(k + 1)2
, ∀k ≥ 0 (18)

with C0 = max(a0(µ0 − µ)‖x0 − x∗‖2, 2(f(x0)− f∗) + a0µ‖x0 − x∗‖2)

Proof. The proof of this statement can be found in Appendix B.5.

Now we can prove our main result on robustness of the fast gradient method using upper estimates of
the strong convexity parameter.

Proposition 2.8 Given a non increasing sequence (µi) satisfying

0 ≤ µk − µ ≤
C

(k + 1)2
, ∀k ≥ 1 (19)

with C ≤ µ(1−
√

µ0
L )

3
√

µ0
L

, the output of Algorithm 3 satisfies

f(yk)− f∗ ≤ 5C0

2Ak
,∀k ≥ 0 (20)

where C0 = max((µ0 − µ)‖x0 − x∗‖2, 2(f(x0)− f∗) + µ‖x0 − x∗‖2) and

Ak ≥
(

1−
√
µ

L

)−k
, ∀k ≥ 1 (21)
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Proof.

Combine Proposition 2.4 and Lemma 2.7. The bound on Ak is true because µi ≤ µ.

This results can be extended in the case where the µi converge at a summable rate to µ. Note also
that the constant C0 is bounded by C0 = max((L2 − µ)‖x0 − x∗‖2, 2(f(x0)− f∗) + µ‖x0 − x∗‖2)

since the µ0 will never be taken larger than L
2 in our case of interest.

3 Estimation of Strong Convexity Parameter

In this section we propose an estimate of the strong convexity parameter, that can be computed online
with the iterations of the algorithm. We do not prove the convergence of our estimate in the general
case but we present hints that support its performance. The optimum function value f∗ is required to
compute these estimates, as for Polyak steps. We set µ0 to a rough upper bound on µ, for instance L

2
is suitable for problems that need to be solved with accelerated methods. Then µk+1 for k ≥ 0 is
defined as follows

µ̂k+1 = ‖gL(yk)‖2
2(f(yk)−f∗)

µk+1 = min
i=0..k+1

µ̂i

}
∀k ≥ 0 (22)

In the following we keep our study in the case ψ(x) = 0 and µ̂ becomes

µ̂k+1 =
‖∇h(yk)‖2

2(h(yk)− h∗)
,∀k ≥ 0 (23)

Lemma A.1 in the Appendix ensures that the µk are lower bounded by the strong convexity µ. The
following lemma shows that µk is effectively converging to µ when the yk are iterates of a gradient
descent on h, a strongly convex quadratic.

Lemma 3.1 Let h∗ ∈ R, x∗ ∈ Rn, A ∈ S++
n (R), and suppose h(x) = h∗+ 1

2 (x− x∗)TA(x− x∗).
Let yk be the iterates of a gradient descent procedure starting at y0 with constant step 1

L where L is
the largest eigenvalue of A. We get

‖∇h(yk)‖2

2(h(yk)− h∗)
− µ ≤ ‖y0 − x∗‖2

ω2
1

(λ2 − µ)
λ2

µ

(
1− λ2

L

1− µ
L

)2k

(24)

where µ is the smallest eigenvalue of A, λ2 the second smallest and ω1 the component of y0 − x∗ on
the eigenspace associated with µ.

Proof. Decompose the iterates on the eigenvectors of A.

The same kind of convergence with an accelerated rate can be obtain when the yk are the iterates of
an APG with a constant momentum β ≤ 1−

√
κ

1+
√
κ

on a strongly convex quadratic. The key in these two
examples is that the component of yk associated with the smallest eigenvalue of the hessian of f has
the slowest convergence rate. This is the conjugate effect of a gradient step that decreases first the
components associated with the highest eigenvalues and of a small extrapolation step that preserves
the order of convergence between the different components.

4 Numerical Experiments

In this section we present numerical experiments on Algorithm 3. We also show results of Algorithm 4,
a very simple modification of APG for which we did not prove robustness but that appears to work
very well in practice.

Both Algorithms 3 and 4 compute and use the strong convexity estimates defined in (22) during their
execution. In order to get the values of f∗ in the experiments we run APG for a sufficient amount
of time to reach machine precision. We compare our two algorithms (APG adapt) and (APG adapt

6



Algorithm 4 APG adapt v2
Input: x0 ∈ Rn, L, f∗
y−1 = y0 = x0.
for k ≥ 0 do
µ̂k = ‖gL(yk)‖2

2(f(yk)−f∗)

µk = min
i=0..k

µ̂i

βk =
1−
√

µk
L

1+
√

µk
L

xk+1 = yk + βk(yk − yk−1)
yk+1 = TL(xk+1)

end for
Output: yk+1.

v2) with Proximal Gradient Descent (PGD), Accelerated Proximal Gradient for smooth functions
(APG), Accelerated Proximal Gradient with known strong convexity parameter (APG Optiamal µ)
(for square loss and regularized logistic loss) and restarted Accelerated Proxmial Gradient using f∗
in a stopping criterion with decay parameter γ (APG Restart γ = ·) tuned to give the best result. The
restart scheme is described in Appendix C. Even though the theoretical complexity bound is optimal,
the γ tuning step for the restart strategy still has a significant impact on empirical performance, as
shown in Figure 3 in the Appendix. In terms of computational cost, our algorithms require one more
call to the gradient oracle per iteration than the restarted algorithm but there is no parameter to tune,
indeed µ0 is always chosen as L

2 and has no impact in practice.

0 2500 5000 7500 10000 12500 15000 17500 20000
iteration k

10−10

10−8

10−6

10−4

10−2

100

102

f(y
k)
−
f*

PGD
APG
APG Restart γ=4.5
APG adapt
APG adapt v2

Figure 1: Experiments on matrix completion. f(X) =
∑
i,j∈Ω ‖Xij − Yij‖2 + λ‖X‖∗ where Y is a

random observation matrix in R30×30 of rank 5, Ω is a subset of [|1, 30|]2 of size 200, λ = 0.01 and
‖ · ‖∗ is the nuclear norm.

Figure 1 shows the convergence of the primal gap when solving the matrix completion problem on
synthetic data using the nuclear norm penalization formulation. Our adaptive algorithms exhibit
linear convergence meaning that they successfully estimate the local strong convexity of the problem.
Figure 2 regroups the results of experiments on two real world datasets of different sizes using 4
different classical losses. In all cases, our algorithms perform well and display the fast converging
rate. Figure 4 in Appendix C shows additional experiments and Figure 5 the convergence of our
online estimate of the strong convexity parameter during the execution of the algorithm.
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Figure 2: Primal gap versus number of iterations. Each column corresponds to a dataset, Musk (left)
and Madelon (right). Each row corresponds to a particular loss, from top to bottom: least square loss,
regularized logistic loss, LASSO and dual of regularized SVM. Parameters used in the loss associated
with each curve are given in Table 1 in the Appendix.
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Appendix

A Usefull Lemmas

Lemma A.1 Since h is L-smooth and µ-strongly convex, the following bounds hold

h(x) ≤ h(y) +∇h(y)T (x− y) +
L

2
‖x− y‖2

h(x) ≥ h(y) +∇h(y)T (x− y) +
µ

2
‖x− y‖2

∀x, y ∈ Rn.

Proof. [Nesterov, 2018, Th 2.1.5, Th 2.1.10]

Lemma A.2 The sequence (xi)i∈N follows the same updates in Algorithm 1 and 2.

Proof. Note that τk = τ =
√
κ. Let φk(x) = mk(x) + a0µ

2 ‖x − x0‖2 , φ is a quadratic function.
Since vk+1 is the argmin of

φk+1(x) = φ∗k +
Akµ

2
‖x− vk‖2 +

ak+1µ

2
‖x− xk+1‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x− xk+1) +

1

2L
‖gL(xk+1)‖2

)
vk+1 = (1− τ)vk + τxk+1 −

τ

µ
gL(xk+1)

= (1− τ)vk + τxk+1 −
τ

µ
L(xk+1 − yk+1)

= (1− τ)vk + (τ +
1

τ
)xk+1 +

1

τ
yk+1

= (1− τ)vk + (τ +
1

τ
)(

τ

1 + τ
vk +

1

1 + τ
yk) +

1

τ
yk + 1

=
τ − 1

τ
yk +

1

τ
yk+1

reinjecting in the expression of xk+2,

xk+2 =
τ

1 + τ
vk+1 +

1

1 + τ
yk+1

=
τ

1 + τ
(
τ − 1

τ
yk +

1

τ
yk+1) +

1

1 + τ
yk+1

= yk+1 + (
2

1 + τ
− 1)− 1− τ

1 + τ
yk

= yk+1 +
1− τ
1 + τ

(yk+1 − yk)

which is the update of Algorithm 1.

B Proofs of Lemmas and Propositions

B.1 Proof of Lemma 2.1

The optimality condition of TL(y) can be written ∇h(y) − gL(y) + ξL(y) = 0 with ξL(y) ∈
∂ψ(TL(y)). By strong convexity of f we have

f(x)− µ

2
‖x− y‖2 ≥ h(y) +∇h(y)T (x− y) + ψ(x)
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= h(y) +∇h(y)T (x− TL(y)) +∇h(y)T (TL(y)− y) + ψ(x)

≥ h(TL(y))− L

2
‖y − TL(y)‖2 +∇h(y)T (x− TL(y)) + ψ(x)

= h(TL(y))− 1

2L
‖gL(y)‖2 + gL(y)T (x− TL(y))

− ξL(y)T (x− TL(y)) + ψ(x)

≥ h(TL(y))− 1

2L
‖gL(y)‖2 + gL(y)T (x− TL(y)) + ψ(TL(y))

= f(TL(y))− 1

2L
‖gL(y)‖2 + gL(y)T (x− y) + gL(y)T (y − TL(y))

= f(TL(y)) +
1

2L
‖gL(y)‖2 + gL(y)T (x− y)

B.2 Proof of Proposition 2.3

Recall that with this update of ak we have τk =
√
κ,∀k ≥ 0.

We have m0(x) = a0f
∗ and Lemma 2.1 implies mk(x) ≤ a0f

∗ + (Ak − a0)f∗. This leads to the
useful bound

min
x∈Rn

mk(x) +
a0µ

2
‖x− x0‖2 ≤ Akf∗ +

a0µ

2
‖x∗ − x0‖2 (25)

Then we show by induction that Akf(yk) ≤ (f(x0)− f∗) + min
x∈Rn

mk(x) + a0µ
2 ‖x− x0‖2.

At rank k = 0, a0 = 1, m0(x) = f∗ and y0 = x0 thus A0f(y0) = f(x0)− f∗ + f∗.
Then suppose the property is true at rank k. Denote φk+1(x) mk+1(x) + a0µ

2 ‖x− x0‖2

φk+1(x) = mk(x) +
a0µ

2
‖x− x0‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x− xk+1) +

1

2L
‖gL(xk+1)‖2

)
+ ak+1

µ

2
‖x− xk+1‖2

using the quadratic form of the estimate sequence
and the induction hypothesis

≥ Akf(yk)− (f(x0)− f∗) +
Akµ

2
‖x− vk‖2 +

ak+1µ

2
‖x− xk+1‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x− xk+1) +

1

2L
‖gL(xk+1)‖2

)
let zk+1 = (1− τk)vk + τkxk+1, by convexity of ‖x− .‖2

≥ Akf(yk)− (f(x0)− f∗) +
Ak+1µ

2
‖x− zk+1‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x− xk+1) +

1

2L
‖gL(xk+1)‖2

)
one define x̂k+1 = argmin

x∈Rn

Ak+1µ

2
‖x− zk+1‖2 + ak+1gL(xk+1)Tx

≥ Akf(yk)− (f(x0)− f∗) +
Ak+1µ

2
‖x̂k+1 − zk+1‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
= Akf(yk)− (f(x0)− f∗) +

Ak+1µ

2
‖τk
µ
gL(xk+1)‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
since τk =

√
κ
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= Akf(yk)− (f(x0)− f∗) +
Ak+1

2L
‖gL(xk+1)‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
using Lemma 2.1 with µ = 0

≥ Ak
(
f(TL(xk+1)) + gL(xk+1)T (yk − xk+1) +

1

2L
‖gLxk+1‖2)

)
− (f(x0)− f∗) +

Ak+1

2L
‖gL(xk+1)‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
= Ak+1f(TL(xk+1))− (f(x0)− f∗)

+
Ak+1

L
‖gL(xk+1)‖2 +Ak+1gL(xk+1)T ((1− τk)yk + τkx̂k+1 − xk+1)

recall that x̂k+1 = zk+1 −
τk
µ
gL(xk+1) and that

τ2
k

µ
=

1

L

= Ak+1f(TL(xk+1))− (f(x0)− f∗)
+Ak+1gL(xk+1)T ((1− τk)yk + τkzk+1 − xk+1)

We conclude by combining the formulae defining zk+1 and xk+1.

(1− τk)yk + τkzk+1 − xk+1 = (1− τk)yk + τk(1− τk)vk + (τ2
k − 1)xk+1

= (1− τk)yk + τk(1− τk)vk

+ (τ2
k − 1)

(
τk

1 + τk
vk +

1

1 + τk
yk

)
= 0

finally since yk+1 = TL(xk+1) we get (f(x0)− f∗) + min
x∈Rn

φk+1(x) ≥ Ak+1f(yk+1). In addition,

Ak+1 = 1
1−
√
κ
Ak and a0 = 1 leads to Ak = (1−

√
κ)
−k.

B.3 Proof of Proposition 2.4

We follow the proof of Proposition 2.3. However here we have a different bound on mk(x).

mk(x) ≤ a0f
∗ + (Ak − a0)f(x) +

k∑
i=1

ai
2

(µi − µ)‖xi − x‖2,∀k ≥ 0. Which leads to

min
x∈Rn

mk(x) +
a0µ0

2
‖x− x0‖2 ≤ Akf∗ +

k∑
i=1

ai
2

(µi − µ)‖xi − x∗‖2 +
a0µ0

2
‖x0 − x∗‖2

= Akf
∗ +

k∑
i=0

ai
2

(µi − µ)‖xi − x∗‖2 +
a0µ

2
‖x0 − x∗‖2 (26)

Now we show by induction that Akf(yk) ≤ f(x0)− f∗ + min
x∈Rn

mk(x) +
a0µ0

2
‖x− x0‖2 . At

rank k = 0, A0 = a0 = 1, y0 = x0 and m0(x) = a0f
∗, so the property is true. Suppose it is true at

rank k. LEt φk+1(x) = mk+1(x) + a0µ0

2 ‖x− x0‖2.

φk+1(x) ≤ mk(x) +
a0µ0

2
‖x− x0‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x− xk+1) +

1

2L
‖gL(xk+1)‖2

)
+ ak+1

µk+1

2
‖x− xk+1‖2

12



using the quadratic form of the estimate sequence and the induction hypothesis

≥ Akf(yk)− (f(x0)− f∗) +

∑k
i=0 aiµi

2
‖x− vk‖2 +

ak+1µk+1

2
‖x− xk+1‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x− xk+1) +

1

2L
‖gL(xk+1)‖2

)
let zk+1 = (1− τk)vk + τkxk+1, by convexity of ‖x− .‖2

and since the (µi) are non increasing

≥ Akf(yk)− (f(x0)− f∗) +
Ak+1µk+1

2
‖x− zk+1‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x− xk+1) +

1

2L
‖gL(xk+1)‖2

)
one define x̂k+1 = argmin

x∈Rn

Ak+1µk+1

2
‖x− zk+1‖2 + ak+1gL(xk+1)Tx

≥ Akf(yk)− (f(x0)− f∗) +
Ak+1µk+1

2
‖x̂k+1 − zk+1‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
= Akf(yk)− (f(x0)− f∗) +

Ak+1µk+1

2
‖ τk
µk+1

gL(xk+1)‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
here τk =

√
κk

= Akf(yk)− (f(x0)− f∗) +
Ak+1

2L
‖gL(xk+1)‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
using Lemma 2.1 with µ = 0

≥ Ak
(
f(TL(xk+1)) + gL(xk+1)T (yk − xk+1) +

1

2L
‖gLxk+1‖2)

)
− (f(x0)− f∗) +

Ak+1

2L
‖gL(xk+1)‖2

+ ak+1

(
f(TL(xk+1)) + gL(xk+1)T (x̂k+1 − xk+1) +

1

2L
‖gL(xk+1)‖2

)
= Ak+1f(TL(xk+1))− (f(x0)− f∗)

+
Ak+1

L
‖gL(xk+1)‖2 +Ak+1gL(xk+1)T ((1− τk)yk + τkx̂k+1 − xk+1)

recall that x̂k+1 = zk+1 −
τk
µk+1

gL(xk+1) and that
τ2
k

µk+1
=

1

L

= Ak+1f(TL(xk+1))− (f(x0)− f∗)
+Ak+1gL(xk+1)T ((1− τk)yk + τkzk+1 − xk+1)

We conclude by combining the formulae defining zk+1 and xk+1.

(1− τk)yk + τkzk+1 − xk+1 = (1− τk)yk + τk(1− τk)vk + (τ2
k − 1)xk+1

= (1− τk)yk + τk(1− τk)vk

+ (τ2
k − 1)

(
τk

1 + τk
vk +

1

1 + τk
yk

)
= 0
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finally since yk+1 = TL(xk+1) we get (f(x0)− f∗) + min
x∈Rn

φk+1(x) ≥ Ak+1f(yk+1), re-injecting

in (26) gives the right bound. In addition, Ak+1 = 1

1−
√
µk+1
L

Ak and a0 = 1 leads to Ak =∏k
i=1

(
1−

√
µi
L

)−1
.

B.4 Proof of Lemma 2.5

From the definition of xk+1 in Algorithm 3, xk+1 = αkvk + (1− αk)yk with αk = τk
1+τk

∈ [0, 1].
By convexity of ‖ · −x∗‖2

‖xk+1 − x∗‖2 ≤ αk‖vk − x∗‖2 + (1− αk)‖yk − x∗‖2 (27)

We denote φk(x) = mk(x) + a0µ0

2 ‖x− x0‖2, we have that vk = argmin
x∈Rn

φk(x). Note that φk(x) is(∑k
i=0 aiµi

)
-strongly convex, which gives∑k

i=0 aiµi
2

‖vk − x∗‖2 ≤ φk(x∗)− φ∗

≤ φk(x∗)−Akf(yk) + (f(x0)− f∗)

≤ Akf∗ −Akf(yk) +

k∑
i=0

ai
µi − µ

2
‖xi − x∗‖2 + (f(x0)− f∗)

+
a0µ

2
‖x0 − x∗‖2

since the µi are upperbounds on µ and f∗ − f(yk) ≤ 0

Akµ

2
‖vk − x∗‖2 ≤

k∑
i=0

ai
µi − µ

2
‖xi − x∗‖2 + (f(x0)− f∗) +

a0µ

2
‖x0 − x∗‖2

‖vk − x∗‖2 ≤
k∑
i=0

ai
Ak

µi − µ
µ
‖xi − x∗‖2 +

2(f(x0)− f∗) + a0µ‖x0 − x∗‖2

µAk

We can bound ‖yk − x∗‖2 the same way using Corollary 2.2

‖yk − x∗‖2 ≤
2

µ
(f(yk)− f∗)

‖yk − x∗‖2 ≤
k∑
i=0

ai
Ak

µi − µ
µ
‖xi − x∗‖2 +

2(f(x0)− f∗) + a0µ‖x0 − x∗‖2

Akµ

combining these inequality in (27) gives the result.

B.5 Proof of Lemma 2.7

We prove our result by induction. For k = 0 this is true since C0 ≥ a0(µ0 − µ)‖x0 − x∗‖2. Now
suppose the property is true until a rank k ≥ 0.
By Lemma 2.5,

‖xk+1 − x∗‖2 ≤
C0

Akµ
+

k∑
i=0

ai
Ak

µi − µ
µ
‖xi − x∗‖2

using the induction hypothesis

≤ C0

Akµ
+

k∑
i=1

C0

(i+ 1)2Akµ

note that
∞∑
i=1

1

i2
≤ 2
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≤ 3C0

Akµ

Thus

ak+1(µk+1 − µ)‖xk+1 − x∗‖2 ≤
3C0

µ

ak+1

Ak
(µk+1 − µ)

≤ 3C0

µ
C1(µk+1 − µ)

using Lemma 2.6

≤ 3C0

µ
C1

C

(k + 2)2
since k + 1 ≥ 1

we have by hypothesis C ≤ µ

3C1

≤ C0

(k + 2)2

which concludes the proof.

C Numerical Experiments

Algorithm 5 APG Smooth Beck and Teboulle [2009]
Input: x0 ∈ Rn, L,
y−1 = y0 = x0, t0 = 1
for k ≥ 0 do
µk = min

i=0..k
µ̂i

tk+1 =
1+
√

1+t2k
2

βk = tk−1
tk+1

xk+1 = yk + βk(yk − yk−1)
yk+1 = TL(xk+1)

end for
Output: yk+1.

Algorithm 6 APG Restart with Known f∗ Roulet and d’Aspremont [2017]
Input: x0 ∈ Rn, L, f∗, γ > 0
y−1 = y0 = x0, t0 = 1, ε = f(y0)− f∗
for k ≥ 0 do
µk = min

i=0..k
µ̂i

tk+1 =
1+
√

1+t2k
2

βk = tk−1
tk+1

xk+1 = yk + βk(yk − yk−1)
yk+1 = TL(xk+1)
if f(yk+1)− f∗ ≤ ε then
tk+1 ← 1, xk+1 ← yk+1, yk ← yk+1, ε← e−γε

end if
end for
Output: yk+1.
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Figure 3: Solving LASSO on Sonar dataset with regularization parameter equal to 1. We observe a
large variability with the choice of γ in the restarted algorithm.
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Figure 4: Experiments on the Sonar dataset with squared loss (Top Left), regularized logistic loss with
regularization parameter equal to 0.004 (Top Right), LASSO with regularization parameter equal to 1
(Bottom Left) and dual of regularized SVM with regularization parameter equal to 1 (Bottom Right).

In the quadratic case we dispose of a natural strong convexity parameter which is the smallest
eigenvalue of the Hessian. However when the loss has a more complex structure we do not know
a priori which quantity our estimates of strong convexity should be compared to. When looking at
the proof of the convergence rate of Algorithm 3, the exact error term due to the fact that µk upper
bounds µ is

µk
2
‖x∗ − xk‖2 −

(
f∗ − f(TL(xk))− gL(xk)T (x∗ − xk)− 1

2L
‖gL(xk)‖2

)
(28)
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Figure 5: Left: Gap between the estimated µk and the true µ during a run of Algorithm 3 on Sonar
with a square loss. Right: Gap between the estimated µk and the local strong convexity parameter
µloc(xk) on Sonar with a dual SVM loss. Our estimates appear to satisfy the sublinear convergence
rate needed in our robustness result.

where xk is an iterate in Algorithm 3. We then define

µloc(x) = 2
f∗ − f(TL(x))− gL(xk)T (x∗ − x)− 1

2L‖gL(x)‖2

‖x− x∗‖2
(29)

C.1 Parameters of the losses in Figure 2

Dataset regularization Logit regularization Lasso regularization SVM
Musk λ‖ · ‖2, λ = 100 λ‖ · ‖1, λ = 100 1

C ‖ · ‖
2, C = 1

Madelon λ‖ · ‖2, λ = 1000 λ‖ · ‖1, λ = 800 1
C ‖ · ‖

2, C = 1
Table 1: Table of the parameters used in Figure 2.
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