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Abstract

Recent results in compressed sensing show that, undemceotaditions, the sparsest so-
lution to an underdetermined set of linear equations carbtevered by solving a linear pro-
gram. These results either rely on computing sparse eiggs/af the design matrix or on
properties of its nullspace. So far, no tractable algorithknown to test these conditions and
most current results rely on asymptotic properties of ramdaatrices. Given a matrid, we
use semidefinite relaxation techniques to test the nukkspagperty ond and show on some
numerical examples that these relaxation bounds can pesfegb recovery of sparse solutions
with relatively high cardinality.

Keywords: Compressed sensing, nullspace property, semidefinitergoroging, restricted
isometry constant.

1 Introduction

A recent stream of results in signal processing have focosguioducing explicit conditions under
which the sparsest solution to an underdetermined linesiesycan be found by solving a linear
program. Given a matrid € R™*" with n > m and a vectov € R™, writing ||z||o = Card(z)
the number of nonzero coefficientsanthis means that the solution of the following (combinato-
rial) /o minimization problem:

minimize ||x|o

subjectto Ax = v, (1)
in the variabler € R", can be found by solving the (convef)minimization problem:
minimize ||«

subjectto Az = v,
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in the variabler € R™, which is equivalent to a linear program.

Based on results by Vershik and Sporyshev (1992) and Atiager and Schneider (1992),
Donoho and Tanner (2005) show that when the solutipof (1) is sparse witfCard(xy) = &
and the coefficients oft are i.i.d. Gaussian, then the solution of thgroblem in (2) will always
match that of the, problem in (1) provided is below an explicitly computablstrong recovery
thresholdks. They also show that it is below another (largeryeak recoveryhresholdky,, then
these solutions match with an exponentially small proligtof failure.

Universal conditions for strong recovery based on sparsemal eigenvalues were derived in
Candes and Tao (2005) and Candes and Tao (2006) who alsedapittat certain (mostly random)
matrix classes satisfied these conditions with an expaaignsimall probability of failure. Simpler,
weaker conditions which can be traced back to Donoho and B0@1(), Zhang (2005) or Cohen
et al. (2009) for example, are based on properties of thepadie ofA. In particular, if we define

ap = max max T
{A2=0, |lzlli=1} {llyllo=1, llyll1 <k}
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these references show that < 1/2 guarantees strong recovery.

One key issue with the current sparse recovery conditio@aimdées and Tao (2005) or Donoho
and Huo (2001) is that except for explicit recovery thredsavailable for certain types of ran-
dom matrices, testing these conditions on generic matrscpstentiallyharder than solving the
combinatorial/y-norm minimization problem in (1) for example as it impliesher solving a
combinatorial problem to compute,, or computing sparse eigenvalues. Semidefinite relaxation
bounds on sparse eigenvalues were used in d’Aspremont(@08B) or Lee and Bresler (2008)
for example to test the restricted isometry conditions indés and Tao (2005) on arbitrary matri-
ces. In recent independent results, Juditsky and Nemir¢28R8) provide an alternative proof of
some of the results in Donoho and Huo (2001), extend thenetaalsy case and produce a linear
programming (LP) relaxation bound en with explicit performance bounds.

In this paper, we derive a semidefinite relaxation boundgrstudy its tightness and perfor-
mance. By randomization, the semidefinite relaxation atedyces lower bounds on the objective
value as a natural by-product of the solution. Overall, curgls are slightly better than LP ones
numerically but both relaxations share the same asympietformance limits. However, because
it involves solving a semidefinite program, the complexityttee semidefinite relaxation derived
here is significantly higher than that of the LP relaxation.

The paper is organized as follows. In Section 2, we brieflaliesome key results in Donoho
and Huo (2001) and Cohen et al. (2009). We derive a semidefiaiaxation bound ony, in
Section 3, and study its tightness and performance in SedtiGection 5 describes a first-order
algorithm to solve the resulting semidefinite program. Bnave test the numerical performance
of this relaxation in Section 6.

Notation To simplify notation here, for a matriX € R™*", we write its columnsX;, || X||; the
sum of absolute values of its coefficients (not theorm of its spectrum) anfilX ||, the largest
coefficient magnitude. More classicallyX || » and|| X ||, are the Frobenius and spectral norms.



2 Sparse recovery & the null space property

Given acodingmatrix A € R™*" with n > m, asparsesignalz, € R™ and an information vector
v € R™ such that
V= AZE(),

we focus on the problem of perfectly recovering the signafrom the vectorv, assuming the
signalz, is sparse enough. We define the decaligv) as a mapping frolR™ — R", with

Ai(v) & argmin ||z (3)
{zeR™: Az=v}

This particular decoder is equivalent to a linear prograncivican be solved efficiently. Suppose
that the original signak, is sparse, a natural question to ask is then: When does tbxlde
perfectly recover a sparse signgP Recent results by Candes and Tao (2005), Donoho and Tanner
(2005) and Cohen et al. (2009) provide a somewhat tight andwearticular, as in Cohen et al.
(2009), for a given coding matriA € R™*™ andk > 0, we can quantify thé, error of a decoder
A(v) by computing the smallest constarit> 0 such that

|z — A(Az)[|; < Coy(x) 4)
for all z € R", where
op(z) = min |l — =1
{zeR™: Card(z)=k}

is the/; error of the besk-term approximation of the signaland can simply be computed as the
¢, norm of then — k£ smallest coefficients of € R". We now define thaullspace propertys in
Donoho and Huo (2001) or Cohen et al. (2009).

Definition 1 A matrixA € R™*" satisfies the null space propertydnof orderk with constant’;,
if and only if
1201 < Crllzrells (5)

holds for allz € R™ with Az = 0 and index subsefs C [1, n| of cardinalityCard(7") < k, where
T is the complement df in [1, n].

Cohen et al. (2009) for example show the following theorerkitig the optimal decoding quality
on sparse signals and the nullspace property conStant

Theorem 2 Given a coding matrixd € R™*" and a sparsity target > 0. If A has the nullspace
property in (5) of orderk with constant”' /2, then there exists a decodéy, which satisfies (4)
with constantC'. Conversely, if (4) holds with constafitthen A has the nullspace property at the
order 2k with constantC.

Proof. See (Cohen et al., 2009, Corollary 3.3g

This last result means that the existence of an optimal deidisfying (4) is equivalent td
satisfying (5). Unfortunately, this optimal decod¥g(v) is defined as

Ao(v) & argmin oy(2)
{z€R™: Az=v}
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hence requires solving a combinatorial problem which ieptally intractable. However, using
tighter restrictions on the nullspace property constgntwe get the following result about the
linear programming decodé; (v) in (3).

Theorem 3 Given a coding matrixd € R™*" and a sparsity target > 0. If A has the nullspace
property in (5) of ordelk with constant' < 2, then the linear programming decoday (y) in (3)
satisfies the error bounds in (4) with constant/(2 — C) at the orderk.

Proof. See steps (4.3) to (4.10) in the proof of (Cohen et al., 2008pfem 4.3). m

To summarize the results above, if there exist$ & 0 such that the coding matrit satisfies
the nullspace property in (5) at the ordethen there exists a decoder which perfectly recovers
signalsz, with cardinalityk /2. If, in addition, we can show tha&t < 2, then the linear program-
ming based decoder in (3) perfectly recovers sigmalwith cardinalityk. In the next section, we
produce upper bounds on the const@pin (5) using semidefinite relaxation techniques.

3 Semidefinite Relaxation

GivenA € R™*™ andk > 0, we look for a constant’, > 1 in (5) such that
ezl < (Cr = 1)llzzells

for all vectorsz € R"™ with Az = 0 and index subset§' C [1,n| with cardinality .. We can
rewrite this inequality
ezl < cll]ly (6)

with a4, € [0,1). Becausey, = 1 — 1/C}, if we can show thaty, < 1 then we prove thatl
satisfies the nullspace property at orderith constaniCy.. Furthermore, if we prove; < 1/2,
we prove the existence of a linear programming based deeddeh perfectly recovers signalg
with at mostk errors. By homogeneity, the constantcan be computed as

L= max m Ty, (7)

{Az=0, ||z[1=1} {llyllc=1, llyll<k}

where the equalityjz|[; = 1 can, without loss of generality, be replaced|py|; < 1. We now
derive a semidefinite relaxation for problem (7) as follow&er a change of variables

<X ZT)_<xxT xyT)
7 Y yxT ny )

maximize Tr(Z)
subjectto AXAT =0, || X, <1,

we can rewrite (7) as

IVllo < 1, ¥ < k2] < k (8)
X Z X Z
(Z Y)iO,Rank(Z Y>_1’
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inthe variablesX,Y € S,, Z € R"*", where all norms should be understood componentwise. We
then simply drop the rank constraint to form a relaxation7gfas

maximize Tr(Z)
subjectto AXAT =0, || X]|; < 1,

X Z
7Y - 07

which is a semidefinite program in the variablgsy” € S,, Z € R™™". Note that the contraint
|Z]]1 < k is redundant in the rank one problem but not in its relaxati®acause all constraints
are linear here, dropping the rank constraint is equivalerdcomputing a Lagrangian (bidual)
relaxation of the original problem and adding redundanstmnts to the original problem often
tightens these relaxations. The dual of program (9) can kiewr

minimize [|Us o + &2[| V2| + [1Uslls + Kl Ualloo
—

subject to ( —%(I LUT) Uy + Uy =0,
which is a semidefinite program in the variablés U,, Us, W € S, andU, € R"*". For any
feasible point of this program, the objecti{f& ||, + 4*[|Uz[|0 + [|Us]l1 + k|Us]|o is an upper
bound on the optimal value of (9), hence ap. We can further simplify this program using
elimination results for LMIs. In fact, (Boyd et al., 19942.6.2) shows that this last problem is
equivalent to

minimize |[Uy]|o + k2||U2||oo1+ 1Us]]1 + K[| Usl|o

. U —wATA L1+ Uy)
tt 2
subject to ( —%(I+U§f) Uy + Us

where the variablev is now scalar. In fact, using the same argument, letfthg R"*” be an
orthogonal basis of the nullspace 4f i.e. such thatdP = 0 with PT” P = I, we can rewrite the
previous problem as follows

-0, (9

minimize ||U1 oo + k2 ||Uzl0o + |Us]l1 + || Uslloo
PP —1PT(I+Uy)
LA+ UNP Uy +Us

(11)

subject to = 0,

which is a (smaller) semidefinite program in the varialileslU,, Us € S, andU,; € R™". The
dual of this last problem is then

maximize Tr(QIP)
subjectto |PQ:PT|y <1, ||[PQY|, < k

Qs3] STL Qa1 < & (12)
Q1 Q3
Q Qs )"



which is a semidefinite program in the matrix variabigse S,, ), € RP*", )3 € S,, whose
objective value is equal to that of problem (9).

Note that adding any number of redundant constraints in tiggnal problem (8) will further
improve tightness of the semidefinite relaxation, at thé cbsicreased complexity. In particular,
we can use the fact that when

[zl =1, [[ylle =1, llylly < &,

and if we sety” = yy” andZ = y2”, we must have

Z‘E” S ktﬁ D/ZJ| S tj? 1Tt S k7 tS 17 fori?j = 17"'7”7
i=1

and .
Z|ZZ]|§]€7’], |Zij|§rj7 ]_T’I"Sk', fori,jzl,...,n,
i=1

for r,t € R™. This means that we can refine the constri#if; < k in (9) to solve instead

maximize Tr(Z)
subjectto AXAT =0, || X, <1,
Do Vil S kty, [Vl <y, 176 <k, t <1,
E?:l |Z2]| S ]{f’l"j, |ZZ]| S T, ]_TT S 1, for 'L,] = 1, e,y

X 77
< Z Y ) =0,
which is a semidefinite program in the variablésy” € S,, Z7 € R"*" andr, t € R". Adding these

columnwise constraints ori andZ significantly tightens the relaxation. Arigasiblesolution to
the dual of (13) with objective value less thaf2 will then be a certificate that, < 1/2.

(13)

4 Tightness & Limits of Performance

The relaxation above naturally produces a covariance xeiits output and we use randomization
techniques as in Goemans and Williamson (1995) to produceapsolutions for problem (7).
Then, following results by A. Nemirovski (private commuaiion), we bound the performance of
the relaxation in (9).

4.1 Randomization

Here, we show that lower bounds op can be generated as a natural by-product of the relaxation.
We use solutions to the semidefinite program in (9) and gémé&asible points to (7) by random-
ization. These can then be used to certify that> 1/2 and prove that a matrix does not satisfy
the nullspace property. Suppose that the matrix

T
r:(JZ(f,) (14)
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solves problem (9), because~ 0, we can generate Gaussian varialjleg) ~ A(0,T"). Below,
we show that after proper scalingy, y) will satisfy the constraints of problem (7) with high
probability, and use this result to quantify the quality bése randomized solutions. We begin
by recalling classical results on the momentd|ef; and||z||.. whenz ~ N(0, X)) and bound
deviations above their means using concentration ineiggbn Lipschitz functions of Gaussian
variables.

Lemmal LetX € S,, z ~ N(0,X)ando > 0, we have

IEgIR 1
Y ((\/2/7+ VZ1ogd) S0, (Xa)'? - 1) =3 o)

Proof. Let P be the square root of andwu; ~ N(0,1) be independent Gaussian variables, we

have
Izl =1 Pyuy

i=1 | j=1

hence, because each tefn;_, P;u;| is a Lipschitz continuous function of the variablesvith

constant(>_" | P2)'/? = (X;;)'/?, ||z||, is Lipschitz with constanf. = S | (X;;)'/?. Using
the concentration inequality by Ibragimov et al. (1976)e(sd¢so Massart (2007) for a general
discussion) we get for any > 0

E +1 t?
p (H:;Hl > [ngﬂ ) < oxp (_ﬁ)

with E[||z[:] = /2/7 S0, (X:)'/?. Pickingt = v/2logdL and 8 = E[||z|,] + ¢ yields the
desired result. m

We now recall another classic result on the concentratidjypf,, also based on the fact that
|ly|| IS @ Lipschitz continuous function of independent Gaussé&iables.

Lemma?2 LetY € S,,y ~ N (0,Y) andé > 0 then

9]l o0 _1
P >1) <3 16
<(\/2 log2n + +/2Togd) max;—; _,(Yi)/2 — 5 (16)

.....

Proof. (Massart, 2007, Theorem 3.12) shows thal ., is a Lipschitz function of independent
Gaussian random variables with constantx;—; _,(Y;;)'/?, hence a reasoning similar to that in
lemma 1 yields the desired resulia

Using union bounds, the lemmas above show that if we pjek< 1 and(x,y) ~ N(0,T),
the scaled sample points

(g()?, §)" h(Y, g, k:,é))

7



will be feasible in (7) with probability at leadt— 3/4 if we set

n

9(X,8) = (v2/m + /210g8) Y (Xii)"/? (17)

i=1

and

n - \1/2
h(Y,n,k,0) = max {(\/2 log 2n + 1/2log d) max (Yi)'2, (v2/m+ \/210§5) 2im1 (Vi)
(18)
The randomization technique is then guaranteed to prodfeasible point of (7) with objective

value
q{1-3/5}

9(X,6)h(Y,n, k,9)
wheregg;_3/4) is thel—3/§ quantile ofz”y when(z, y) ~ N (0,T). We now compute a (relatively
coarse) lower bound on the value of that quantile.

Lemma 3 Lete, 6 > 3and(z,y) ~ N(0,T'), withI" defined as in (14), then

(; Y 53 )75

where
o = ||Z||3 + Tr(XY).

Proof. Let S € R***" pe such thal' = S7S and(z,y) ~ A'(0,T'), we have
E |(y"2)°] = S1o B [(STw) (ST w) (ST w) (ST w)]

wherew is a standard normal vector of dimensian Wick’s formula implies

Xii Zi Xij Zi

7. Y. Z. Y.

T T T T _ 1 i1 9 iJ

E [(STw)(SE w)(STw) (ST, jw)] = Haf Xy, Zy Xy 7
Zij Y Zj Yij

- Zz'iij + 222] —|— Xl-jY;j7
whereHaf (X ) is the Hafnian of the matriX (see Barvinok (2007) for example), which means
E [(y"2)?] = (Tr(2))* + || Z]|3 + Tr(XY).

BecauseE[yTz] = E[Tr(xy”)] = Tr(E[zy’]) = Tr(Z), we then conclude using Cantelli's
inequality, which gives
. 1
§ ;< — <
P <i:1 vy < Tr(Z) ta) <iip

8




having set = v/3/v6 —3. m

We can now combine these results to produce a lower boundeoobjective value achieved
by randomization.

Theorem 4 GivenA € R™*", ¢ > 0 andk > 0, writing SD P, the optimal value of (9), we have

SDPk—E

<. < SDP 2
X, V(Y. 9) = O = SDR (20)

where )
=3 A2+ DY)
9(X,0) = (\/2/m +/210g0) > (X))
i=1
and

V2/T 4+ /2T0gd) S, (Vi) 2
h(Y,n,k,a):max{(\/zlog2n+\/zlog(s),gllax (v, W Oié)zlﬂ(“) }

Proof. If T" solves (9) and the vectofs, y) are sampled according ta@, y) ~ N (0,T'), then
E[(Az)(Ax)T] = E[AzaT AT) = AX AT =0,

means that we always haver = 0. Whené > 3, Lemmas 1 and 2 show that

(g()?, §)" h(Y, g, /{;,5))

will be feasible in (7) with probability at least— 3/9, hence we can get a feasible point for (7)
by sampling enough variablé¢s, y). Lemma 3 shows that if we sétas above, the randomization
procedure is guaranteed to reach an objective valueat least equal to

Tr(Z) — ¢
g(X,0)h(Y,n, ko)

which is the desired resultm

Note that becausk - 0, we haveZ}; < X;;Y};, hence| Z||% < Tr(X) Tr(Y) < k*. We also
haveTr(XY) < | X|:]|Y]l: < k? hence

6k
6 <3+ —
€



and the only a priori unknown terms controlling tightness 7, (X;;)'/2, .7 (Y::)'/? and
______ »(Yi)'/2. Unfortunately, while the third term is bounded by one, thet fivo can become
quite large, with trivial bounds giving

n

Z(Xu‘)l/z <+/n and zn:(yu‘)l/z </n,

1=1

which means that, in the worst case, our lower bound will bdwpfa factorl/n. However, we

will observe in Section 6 that, whén= 1, these terms are sometimes much lower than what the
worst-case bounds seem to indicate. The expression foighméss coefficieny in (14) also
highlights the importance of the constraji ||, < k. Indeed, the positive semidefinitess2ok 2
principal submatrices means t%fg < X,;;Yj;, hence

121l < <Z(Xz--)”2> <Z(Y”)l/2>’

so controlling| Z||; potentially tightens the relaxation. This is confirmed immarical experiments:
the relaxation including the (initially) redundant nornnstraint onZ is significantly tighter on
most examples. Finally, note that better lower boundsyprtan be obtained (numerically) by
sampling||z||1/||=||1 in (6) directly, or as suggested by one of the referees, 3glvi

maximize ¢’z
subjectto Az =0, [|z|; <1,

in z € R™ for various random vectorse {—1, 0, 1}" with at mostk nonzero coefficients. In both
cases unfortunately, the moments cannot be computed gysic studying performance is much
harder.

4.2 Performance

Following results by A. Nemirovski (private communicat)pwe can derive precise bounds on the
performance of the relaxation in (9).

Lemma 4 Suppos€X, Y, Z) solve the semidefinite program in (9), then
Tr(Z) = o
and the relaxation is tight fok = 1.
Proof. First, notice that when the matricéX, Y, Z) solve (9),AX = 0 with
(75 )=
means that the rows df also belong to the nullspace df. If A satisfies the nullspace property

in (6), we must havéZ;;| < a; > 7, |Z;| fori = 1,...,n, henceTr(Z) < ay|Z||; < ay. By
construction, we always har(Z) > «; henceIr(Z) = a; whenZ solves (9) witht = 1. m
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As in Juditsky and Nemirovski (2008), this also means thatifatrix A satisfies the restricted
isometry property at cardinality (m) (as Gaussian matrices do for example), then the relaxation
in (9) will certify o, < 1/2 for k = O(y/m). Unfortunately, the results that follow show that this
is the best we can hope for here.

Without loss of generality, we can assume that 2m (if n > 2m, the problem is harder). Let
@ be an orthoprojector on(@—m)-dimensional subspace of the nullspacelpiith Rank(Q) =
n —m = m. By construction||Q[; < n||Q|lz = ny/m, 0 < @ =< I and of coursed@ = 0.

We can use this matrix to construct a feasible solution tdlera (13) wherk = /n. We set
X =Q/(nym),Y =Q/v/n, Z =Q/n, t; =1/y/nandr; = 1/nforj =1,....,n. We then
have

1Yi[l: = H%l <|Qilla <1<kt;, i=1,...,n,
and||Y;||oo < ||Yill2 < 1//n with 17t < k. We also get
1z = 1@l M iy
n n

With L1 )
n-'m- n-
—
( n-1 n—1/2 ) = 0,

the matrices we have defined above forrfeasible pointof problem (13). Becaus&x(Z) =
Tr(Q)/n = 1/2, this feasible point proves that the optimal value of (13arger thanl /2 when
n = 2m andk = /n. This means that the relaxation in (13) can prove that a ma#tisfies the
nullspace property for cardinalities at maést O(/n) and this performance bound is tight since
we have shown that it achieves this ratexdf/n) for good matrices.

This counter example also produces bounds on the perfomtdanother relaxation for testing
sparse recovery. In fact, if we s&t = @ /m with @) defined as above, we hall&(X) = 1 with
X > 0and

xih = 1l <o

m

and X is an optimal solution of the problem

minimize Tr(XAAT)
subjectto || X||; < 2v2m
Tr(X)=1, X =0,

which is a semidefinite relaxation used in d’Aspremont ef24l07) and d’Aspremont et al. (2008)
to bound the restricted isometry constaptA). Becauselr(X AAT) = 0 by construction, we
know that this last relaxation will fail to show,(A) < 1 wheneverk = O(y/m). Somewhat
strikingly, this means that the three different tractablgd for sparse recovery conditions, derived
in d’Aspremont et al. (2008), Juditsky and Nemirovski (2p@8d this paper, arall limited to
showing recovery at the (suboptimal) réte- O(\/m).

11



5 Algorithms

Small instances of the semidefinite program in (11) and beedafficiently using solvers such as
SEDUMI (Sturm, 1999) or SDPT3 (Toh et al., 1999). For largestances, it is more advantageous
to solve (11) using first order techniques, given a fixed taigea. We setP € R™™” to be an
orthogonal basis of the nullspace of the mattixn (6), i.e. such thadP = 0 with P"P = 1.
We also leta be a target critical value far (such asl /2 for example), and solve the following
problem

PTU P —sPT(I+Uy)
—s@+ulHpP Us 4+ Us (22)
subject to [|Ui][ec + K| Uz|o0 + |Usll + F[|Us]loc < @

maximize Anin

in the variabled/,,U,,U; € S, andU, € R™*". If the objective value of this last problem is
greater than zero, then the optimal value of problem (11)esessarily smaller than, hence
a < ain (7).

Because this problem is a minimum eigenvalue maximizatroblpm over a simple compact
(a norm ball in fact), large-scale instances can be solviedesftly using projected gradient algo-
rithms or smooth semidefinite optimization techniques (Biew, 2007; d’Aspremont et al., 2007).
As we show below, the complexity of projecting on this balljiste low.

Lemma 5 The complexity of projectingc, 3o, 20, wo) € R*" on

llos + Elylloc + 12111 + kllw]le < @
is bounded by)(n log nlog,(1/¢€)), wheree is the target precision in projecting.
Proof. By duality, solving

minimize ||z — xo|]* + [ly — voll* + ||z — 20[]* + ||w — wo||?
subject to [|z([ec + k2 ||ylloc + [|2[h + kl[w][ec < o

in the variables:, y, z € R™ is equivalent to solving

max min (2, 2,w) = (20,40, 20 wo)|I” + Allalloc + Myl + A1zl + Mfwlloc = Aa
in the variable\ > 0. For a fixed\, we can get the derivative w.r.i by solving four separate
penalized least-squares problems. Each of these problambe solved explicitly in at most
O(nlogn) (by shrinking the current point) so the complexity of solyithe outer maximization
problem up to a precision> 0 by binary search i®)(nlognlog,(1/¢)) m

We can then implement the smooth minimization algorithnaitied in (Nesterov, 20055.3)
to a smooth approximation of problem (21) as in Nesterov {200 d’Aspremont et al. (2007) for
example. Lefu > 0 be a regularization parameter. The function

fu(X) = log (Tr exp (%)) (22)

12



satifies
)\maX(X) S fu( ) < )\max( ) +,ulogn

for any X € S,. Furthermoref,(X) is a smooth approximation of the function,..(X), and
V f.(X) is Lipschitz continuous with constalig n/4.. Lete > 0 be a given target precision, this
means that if we set = ¢/(2logn) then

—PTU, P 1PT(1+U,)

f(U)E_f“<%(I+U4T)P —(U2+U3)) where U= (Gt B (9

will be an¢/2 approximation of the objective function in (21). WheneVéf||» < 1, we must
have
2

< |PTULP|5 + Uz + Us|ls + | P ULIJS < 4,

2

H ( U]':TTIg/l2 —gJTﬁ@s) )

hence, following (Nesterov, 200%4), the gradient off (U) is Lipschitz continuous with respect
to the Frobenius norm, with Lipschitz constant given by

I 810g(n+p)7

€

We then define the compact, convex Qeas
Q = {(U,Us,Us,Us) € S - |Uh]loo + K[| Uslloo + |Usl1 + K[| U]l < @},

and define a prox functio?(U) overQ asd(U) = ||U||% /2, which is strongly convex with constant
o = 1 w.r.t. the Frobenius norm. Starting froth, = 0, the algorithm in Nesterov (2005) for
solving

maximize f(U)

subjectto U € Q,

wheref(U) is defined in (23), proceeds as follows.
Repeat:
1. Computef(U,) andV f(U;)
2. FindYj = argminycq (V (U, ) Y) +3LIU: = Y%
3. FindW; = argmimweq { X0 + Y5 5 (F(U;) + (VA (U;), W = Uy)) }
4. SetU;1 = 25 W; + 1Y)

j+3

Until gap<e.

Step one above computes the (smooth) function value aniegtad he second step computes
thegradient mappingwhich matches the gradient step for unconstrained prab(eee (Nesterov,
2003, p.86)). Step three and four updateestimate sequencee (Nesterov, 2003, p.72) ¢f
whose minimum can be computed explicitly and gives an irsinggdy tight upper bound on the
minimum of f. We now present these steps in detail for our problem.
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Step1l The most expensive step in the algorithmis the first, the cdatjpn of f and its gradient.
This amounts to computing the matrix exponential in (22) aboat of O(n?) (see Moler and
Van Loan (2003) for details).

Step 2 This step involves solving a problem of the form

1
argmin (Vf(U),Y) + - L||U = Y[},
YeQ 2

whereU is given. The above problem can be reduced to an Euclidegaqgtian on@

argmin ||Y — V|| F, (24)
YleQ

wherelV = U+ L~V f,(U) is given. According to Lemma 5, this can be solv&gh log n log,(1/¢))
opearations.

Step 3 The third step involves solving an Euclidean projectionbeom similar to (24), withl”
defined here by:

0+ 1
V=2 =5 VU).
=0

Stopping criterion  We stop the algorithm when the duality gap is smaller thartdhget preci-
sione. The dual of the binary optimization problem (21) can be tent

minimize & max{||PG1, P7||;, 19221 |Gy | o, P42y — Tr (PG

subjectto Tr(G) =1, G = 0, (25)

in the block matrix variablez € S,., with blocksG;;, 7,7 = 1,2. Since the gradienV f(U)
produces a dual feasible point by construction, we can usetmpute a dual objective value and
bound the duality gap at the current polnt

Complexity According to Nesterov (2007), the total worst-case comple® solve (21) with
absolute accuracy less tharis then given by

o()

€

Each iteration of the algorithm requires computing a matsiponential at a cost aP(n?*) and
the algorithm require$)(n+/logn/e) iterations to reach a target precisioncof> 0. Note that
while this smooth optimization method can be used to prodeasonable complexity bounds for
checking if the optimal value of (21) is positive, i.eaif < a, in practice the algorithmis relatively
slow and we mostly use interior point solvers on smaller [gnmis to conduct experiments in the
next section.
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6 Numerical Results

In this section, we illustrate the numerical performancéhef semidefinite relaxation detailed in
section 3.

6.1 lllustration

We test the semidefinite relaxation in (11) on a sample ofdaadom Gaussian matricglse RP*"
with A;; ~ N(0,1//p), n = 30 andp = 22. For each of these matrices, we solve problem (11)
for k = 2,...,5 to produce upper bounds ei, hence orCy, in (5), with o, = 1 — 1/C%. From
Donoho and Huo (2001), we know thatif < 1 then we can bound the decoding error in (4), and
if o, < 1/2 then the original signal can be recovered exactly by solgitigear program. We also
plot the randomized values fgf = with k£ = 1 together with the semidefinite relaxation bound.

3000} '
1 8 E
3_ 25001 :
% 0.8f = .
s | Y o & 2 il :: sop
n 06f = :
g ., 8 1500+ .
‘ ‘ ) :
3 o4 g 1000+ :
0 = E
0. ¢, recovery Z ol ;
0 ‘ ‘ : 0 : ‘
1 2 3 4 5 0 0.05 0.1 0.15 0.2
Cardinality a1

Figure 1: Bounds onay. Left: Upper bounds ow; obtained by solving (11) for various
values ofk. Median bound over ten samples (solid line), dotted lingmattwise minimum
and maximum. Right: Lower bound onn; obtained by randomization (red dotted line)
compared with semidefinite relaxation bound (SDP dashel.lin

Next, in Figure 2, we use a Gaussian matfixe RP*" with A;; ~ N(0,1/,/p), n = 36
andp = 27 and, for eachk, we sample fifty information vectors = Ax, wherex is uniformly
distributed and has cardinalify. On the left, we plot the probability of recovering the onagi
sparse signat, using the linear programming decoder in (3). On the rightple¢ the meart,
recovery error|z — xo||; using the linear programming decoder in (3) and comparett thie
bound induced by Theorem 3.
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Figure 2: Sparse RecoveryLeft: Empirical probability of recovering the original sparse
signal using the LP decoder in (3). The dashed line is at tlemgtrecovery threshold.
Right: Empirical meart; recovery errof|x —z||; using the LP decoder (circles) compared
with the bound induced by Theorem 3 (squares).

6.2 Performance on compressed sensing matrices

In tables 1, 2 and 3, we compare the performance of the linegramming relaxation bound
on«y, derived in Juditsky and Nemirovski (2008) with that of thensgefinite programming bound
detailed in Section 3. We test these bounds for various rmakbape ratiop = m/n, target
cardinalitiesk on matrices with Fourier, Bernoulli or Gaussian coefficsemsing SDPT3 by Toh
et al. (1999) to solve problem (11). We show median boundspedead over ten sample matrices
for each type, hence test a total of 600 different matrices. cdmpare these relaxation bounds
with the upper bounds produced by sequential convex opditioiz as in Juditsky and Nemirovski
(2008,54.1). In the Gaussian case, we also compare these relaxatiomds with the asymptotic
thresholds on strong and weak (high probability) recovésgussed in Donoho and Tanner (2008).
The semidefinite bounds am, always match with the LP bounds in Juditsky and Nemirovski
(2008) whenk = 1 (both are tight), and are often smaller than LP bounds wiarieis greater
than 1 on Gaussian or Bernoulli matrices. The semidefinipeeupound ony, was smaller than
the LP one in 563 out of the 600 matrices sampled here, witklifference ranging from 4e-2 to
-9e-4. Of course, this semidefinite relaxation is signifisamore expensive than the LP based
one and that these experiments thus had to be performed psmatl matrices.

6.3 Tightness

Section 4 shows that the tightness of the semidefinite retaxa explicitly controlled by the
following quantity
= g(X,0)h(Y,n,k,0o),
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Relaxation| p o a9 Qs o7} a5 | Upper bound
LP| 0.5]0.21| 0.38| 0.57| 0.82| 0.98 2
SDP| 05| 0.21| 0.38| 0.57| 0.82| 0.98

SDPlow.| 0.5| 0.05| 0.10| 0.16| 0.24| 0.32
LP| 0.6]0.16| 0.31| 0.46| 0.61| 0.82
SDP| 0.6 | 0.16| 0.31| 0.46| 0.61| 0.82

SDPlow.| 0.6 | 0.04| 0.09| 0.15| 0.20| 0.31
LP| 0.7]0.12| 0.25] 0.39| 0.50| 0.62
SDP| 0.7 | 0.12| 0.25| 0.39| 0.50| 0.62

SDPlow.| 0.7| 0.04| 0.09| 0.14| 0.18]| 0.22
LP| 0.8]0.10| 0.20| 0.30| 0.38| 0.48
SDP| 0.8| 0.10| 0.20| 0.30| 0.38| 0.48

SDP low.| 0.8 | 0.04| 0.07| 0.13] 0.17| 0.23

O OO~ DDMWWWNDN

Table 1: Given ten sampl&ourier matrices of leading dimensian = 40, we list median
upper bounds on the values of, for various cardinalities: and matrix shape ratios,
computed using the linear programming (LP) relaxation wiit3ity and Nemirovski (2008)
and the semidefinite relaxation (SDP) detailed in this pay¥eralso list the upper bound on
strong recovery computed using sequential convex optiinizand the lower bound am
obtained by randomization using the SDP solution (SDP lovajues ofay, below 1/2, for
which strong recovery is certified, are highlighted in bold.

whereg andh are defined in (17) and (18) respectively. In Figure 3, wetblethistogram of values

of 1 for all 600 sample matrices computed above, and plot the s@stagram on a subset of these
results where the target cardinalityvas set to 1. We observe that while the relaxation performed
quite well on most of these examples, the randomization da@mperformance often gets very
large whenevek > 1. This can probably be explained by the fact that we only abtive mean in
Lemma 3, not the quantile. We also notice thas highly concentrated whelh= 1 on Gaussian
and Bernoulli matrices (where the results in Tables 2 ande3ight), while the performance is
markedly worse for Fourier matrices.

Finally, Tables 2 and 3 show that lower boundsmgrobtained by randomization for Gaussian
are always tight (the solution of the SDP was very close t& care), while performance on higher
values ofk and Fourier matrices is much worse. On 6 of these experinitewgver, the SDP
randomization lower bound was higher than 1/2, which proted o; > 1/2, hence that the
matrix did not satisfy the nullspace property at order 5.

6.4 Numerical complexity

We implemented the algorithm of Section (5) in MATLAB andtegsit on random matrices.
While the code handles matrices with= 500, it is still considerably slower than similar first-
order algorithms applied to sparse PCA problems for exaifggle d’Aspremont et al. (2007)). A
possible explanation for this gap in performance is pertfagitthe DSPCA semidefinite relaxation
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Relaxation| p o a9 Qs o7} a5 | Strongk | Weakk
LP | 0.5]0.27| 0.49| 0.67| 0.83| 0.97 2 11
SDP| 0.5| 0.27| 0.49| 0.65| 0.81 | 0.94 2 11

SDPlow. | 0.5| 0.27] 0.31| 0.33| 0.32| 0.35 2 11
LP|0.6]0.22|0.41| 0.57| 0.72| 0.84 2 12
SDP| 0.6| 0.22| 0.41| 0.56| 0.70 | 0.82 2 12

SDPlow.| 0.6 | 0.22]| 0.29| 0.31| 0.32| 0.36 2 12
LP | 0.7] 0.20| 0.34| 0.47| 0.60| 0.71 3 14
SDP| 0.7]| 0.20| 0.34| 0.46| 0.59| 0.70 3 14

SDPlow. | 0.7] 0.20| 0.27| 0.31] 0.35| 0.38 3 14
LP | 0.8]0.15| 0.26| 0.37| 0.48| 0.58 3 16
SDP| 0.8| 0.15| 0.26| 0.37| 0.48 | 0.58 3 16

SDPlow. | 0.8 | 0.15| 0.23| 0.28| 0.33| 0.38 3 16

Table 2: Given ten sampl&aussiammatrices of leading dimension= 40, we list median
upper bounds on the values af, for various cardinalities: and matrix shape ratios,
computed using the linear programming (LP) relaxation wtitdlsy and Nemirovski (2008)
and the semidefinite relaxation (SDP) detailed in this pap¥e also list the asymptotic
upper bound on both strong and weak recovery computed in lkmoaad Tanner (2008)
and the lower bound on;, obtained by randomization using the SDP solution (SDP low.)
Values ofay, below 1/2, for which strong recovery is certified, are highted in bold.

Relaxation| p o s o3 g a5 | Upper bound
LP| 0.5] 0.25| 0.45| 0.64| 0.82| 0.97 2

SDP| 0.5/ 0.25| 0.45| 0.63| 0.80| 0.94

SDPlow.| 0.5| 0.25| 0.28| 0.29| 0.29| 0.34

LP| 0.6]0.21| 0.38| 0.55| 0.69| 0.83

SDP| 0.6 | 0.21| 0.38| 0.54| 0.68| 0.81

SDPlow.| 0.6 | 0.21| 0.26| 0.29| 0.33| 0.34

LP| 0.7]0.17| 0.32| 0.46| 0.58| 0.70

SDP| 0.7 | 0.17| 0.32| 0.46 | 0.58 | 0.69

SDP low.| 0.7| 0.17| 0.24| 0.29| 0.33| 0.37

LP| 0.8]0.14| 0.26| 0.38| 0.47 | 0.57

SDP| 0.8| 0.14| 0.26 | 0.37 | 0.47 | 0.57

SDPlow.| 0.8 | 0.14| 0.21| 0.27| 0.33| 0.38

OO DBDMOWWWNDN

Table 3: Given ten sampl&ernoullimatrices of leading dimension= 40, we list median
upper bounds on the values @f, for various cardinalities: and matrix shape ratiog,
computed using the linear programming (LP) relaxation wiit3ly and Nemirovski (2008)
and the semidefinite relaxation (SDP) detailed in this payeralso list the upper bound on
strong recovery computed using sequential convex optiinizand the lower bound oy
obtained by randomization using the SDP solution (SDP lovajues ofa,, below 1/2, for
which strong recovery is certified, are highlighted in bold.
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Figure 3: Tightness.Left: Histogram ofu = g(X, §)h(Y, n, k,0) defined in (17) and (18),
computed for all sample solution matrices in the experimeafiove wherk > 1. Right:
Idem using only examples where the target cardinalify 4s 1, for Gaussian and Bernoulli
matrices (light grey) or Fourier matrices (dark grey).

n 50 100 200 500
CPU time| 00h 01 m|{ 00h10m| 01 h38m| 37h22m

Table 4: CPU time to show; < 1/2, using the algorithm of Section 5 on Gaussian
matrices with shape ratip = .7 for various values of..

is always tight (in practice at least) hence iterates nesasdtution tend to be very close to rank one.
This is not the case here as the matrix in (9) is very rareli care and the number of significant
eigenvalues has a direct impact on actual convergence spedlustrate this point, Figure 4
shows a Scree plot of the optimal solution to (9) for a smalu€sgan matrix (obtained by IP
methods with a target precision td—?%), while Table 4 shows, as a benchmark, total CPU time for
proving thate; < 1/2 on Gaussian matrices, for various values.ofVe set the accurache — 2
and stop the code whenever positive objective values amheda Unfortunately, performance
for larger values ofc is typically much worse (which is why we used IP methods to muwst
experiments in this section) and in many cases, convergsr@ad to track as the dual objective
values computed using the gradient in (25) produces avelgtcoarse gap bounds as illustrated
in Figure 4 for a small Gaussian matrix.

19



3 10
===
.
A
2.5F ' 1072 |
L]
2t '
-4
. 107+
1
15} '
1 —
s | el 10° }
T L L T
10° ¢
05}
-10
0 10 B
-0.5 L L I . 1072 ) ‘ ‘
0 1000 2000 3000 4000 5000 0 5 10 15 20
Iterations Eigenvalues

Figure 4. Complexity. Left: Primal and dual bounds on the optimal solution (computed
using interior point methods) using the algorithm of Sat&oon a small Gaussian matrix.
Right: Scree plot of the optimal solution to (9) for a small Gaussiaatrix (obtained by
interior point methods with a target precisionlof®).

7 Conclusion & Directions for Further Research

We have detailed a semidefinite relaxation for the problentesfing if a matrix satisfies the
nullspace property defined in Donoho and Huo (2001) or Coheal. €2009). This relaxation
is tight for £ = 1 and matches (numerically) the linear programming relaxain Juditsky and
Nemirovski (2008). It is often slightly tighter (again nuroally) for larger values ofk. We can
also remark that the matrix only appears in the relaxation (10) in “kernel” forméat A, where
the constraints are linear in the kernel matdXA. This means that this relaxation might allow
sparse experiment design problems to be solved, while mning convexity.

Of course, these small scale experiments do not really sgletddn the actual performance of
both relaxations on larger, more realistic problems. Iripalar, applications in imaging and sig-
nal processing would require solving problems where baihdk are several orders of magnitude
larger than the values considered in this paper or in Juddaki Nemirovski (2008) and the ques-
tion of finding tractable relaxations or algorithms that bandle such problem sizes remains open.
Finally, the three different tractable tests for spars@very conditions, derived in d’Aspremont
et al. (2008), Juditsky and Nemirovski (2008) and this papezall limited to showing recovery
at the (suboptimal) rate = O(,/m). Finding tractable test for sparse recovery at cardieasliti
closer to the optimal rat@(m) also remains an open problem.
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