Convex Optimization M2

Lecture 4

Unconstrained minimization

Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

$$
\operatorname{minimize} \quad f(x)
$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^{\star}=\inf _{x} f(x)$ is attained (and finite)

unconstrained minimization methods

- produce sequence of points $x^{(k)} \in \operatorname{dom} f, k=0,1, \ldots$ with

$$
f\left(x^{(k)}\right) \rightarrow p^{\star}
$$

- can be interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(x^{\star}\right)=0
$$

Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \operatorname{dom} f$
- sublevel set $S=\left\{x \mid f(x) \leq f\left(x^{(0)}\right)\right\}$ is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- equivalent to condition that epi f is closed
- true if $\operatorname{dom} f=\mathbb{R}^{n}$
- true if $f(x) \rightarrow \infty$ as $x \rightarrow \mathbf{b d} \operatorname{dom} f$
examples of differentiable functions with closed sublevel sets:

$$
f(x)=\log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)\right), \quad f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

Strong convexity and implications

f is strongly convex on S if there exists an $m>0$ such that

$$
\nabla^{2} f(x) \succeq m I \quad \text { for all } x \in S
$$

implications

- for $x, y \in S$,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|x-y\|_{2}^{2}
$$

hence, S is bounded

- $p^{\star}>-\infty$, and for $x \in S$,

$$
f(x)-p^{\star} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
$$

useful as stopping criterion (if you know m)

Descent methods

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)} \quad \text { with } f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- other notations: $x^{+}=x+t \Delta x, x:=x+t \Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f\left(x^{+}\right)<f(x)$ implies $\nabla f(x)^{T} \Delta x<0$ (i.e., Δx is a descent direction)

General descent method.
given a starting point $x \in \operatorname{dom} f$. repeat

1. Determine a descent direction Δx.
2. Line search. Choose a step size $t>0$.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Line search types

exact line search: $t=\operatorname{argmin}_{t>0} f(x+t \Delta x)$
backtracking line search (with parameters $\alpha \in(0,1 / 2), \beta \in(0,1)$)

- starting at $t=1$, repeat $t:=\beta t$ until

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x
$$

- graphical interpretation: backtrack until $t \leq t_{0}$

Gradient descent method

general descent method with $\Delta x=-\nabla f(x)$
given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right)
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow; rarely used in practice
quadratic problem in \mathbb{R}^{2}

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

nonquadratic example

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

backtracking line search

exact line search
a problem in \mathbb{R}^{100}

$$
f(x)=c^{T} x-\sum_{i=1}^{500} \log \left(b_{i}-a_{i}^{T} x\right)
$$

'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$
\Delta x_{\mathrm{nsd}}=\operatorname{argmin}\left\{\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

interpretation: for small $v, f(x+v) \approx f(x)+\nabla f(x)^{T} v$; direction Δx_{nsd} is unit-norm step with most negative directional derivative (unnormalized) steepest descent direction

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

satisfies $\nabla f(x)^{T} \Delta_{\text {sd }}=-\|\nabla f(x)\|_{*}^{2}$
steepest descent method

- general descent method with $\Delta x=\Delta x_{\text {sd }}$
- convergence properties similar to gradient descent
- Euclidean norm: $\Delta x_{\text {sd }}=-\nabla f(x)$
- quadratic norm $\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}\left(P \in \mathbf{S}_{++}^{n}\right): \Delta x_{\mathrm{sd}}=-P^{-1} \nabla f(x)$
- ℓ_{1}-norm: $\Delta x_{\text {sd }}=-\left(\partial f(x) / \partial x_{i}\right) e_{i}$, where $\left|\partial f(x) / \partial x_{i}\right|=\|\nabla f(x)\|_{\infty}$
unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_{1}-norm:

choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_{P}$: gradient descent after change of variables $\bar{x}=P^{1 / 2} x$
shows choice of P has strong effect on speed of convergence

Newton step

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

interpretations

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v
$$

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
\nabla f(x+v) \approx \nabla \widehat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v=0
$$

- Δx_{nt} is steepest descent direction at x in local Hessian norm

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

dashed lines are contour lines of f; ellipse is $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$
\lambda(x)=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

a measure of the proximity of x to x^{\star}

properties

- gives an estimate of $f(x)-p^{\star}$, using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{y} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- equal to the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

- directional derivative in the Newton direction: $\nabla f(x)^{T} \Delta x_{\mathrm{nt}}=-\lambda(x)^{2}$
- affine invariant (unlike $\|\nabla f(x)\|_{2}$)

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement.

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x) .
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.
affine invariant, i.e., independent of linear changes of coordinates:
Newton iterates for $\tilde{f}(y)=f(T y)$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are

$$
y^{(k)}=T^{-1} x^{(k)}
$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^{2} f$ is Lipschitz continuous on S, with constant $L>0$:

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}
$$

(L measures how well f can be approximated by a quadratic function) outline: there exist constants $\eta \in\left(0, m^{2} / L\right), \gamma>0$ such that

- if $\|\nabla f(x)\|_{2} \geq \eta$, then $f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma$
- if $\|\nabla f(x)\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

damped Newton phase $\left(\|\nabla f(x)\|_{2} \geq \eta\right)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^{\star}>-\infty$, this phase ends after at most $\left(f\left(x^{(0)}\right)-p^{\star}\right) / \gamma$ iterations
quadratically convergent phase $\left(\|\nabla f(x)\|_{2}<\eta\right)$
- all iterations use step size $t=1$
- \| $\nabla f(x) \|_{2}$ converges to zero quadratically: if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{l}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{k}\right)\right\|_{2}\right)^{2^{l-k}} \leq\left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k
$$

conclusion: number of iterations until $f(x)-p^{\star} \leq \epsilon$ is bounded above by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)
$$

- γ, ϵ_{0} are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_{0}) are usually unknown
- provides qualitative insight in convergence properties (i.e., explains two algorithm phases)

Examples

example in \mathbb{R}^{2} (page 11)

- backtracking parameters $\alpha=0.1, \beta=0.7$
- converges in only 5 steps
- quadratic local convergence
example in \mathbb{R}^{100} (page 12)

- backtracking parameters $\alpha=0.01, \beta=0.5$
- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbb{R}^{10000} (with sparse a_{i})

$$
f(x)=-\sum_{i=1}^{10000} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{100000} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- backtracking parameters $\alpha=0.01, \beta=0.5$.
- performance similar as for small examples

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, \ldots)
- bound is not affinely invariant, although Newton's method is
convergence analysis via self-concordance (Nesterov and Nemirovski)
- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)

■ developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

definition

- $f: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if $\left|f^{\prime \prime \prime}(x)\right| \leq 2 f^{\prime \prime}(x)^{3 / 2}$ for all $x \in \operatorname{dom} f$
- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is self-concordant if $g(t)=f(x+t v)$ is self-concordant for all $x \in \operatorname{dom} f, v \in \mathbb{R}^{n}$

examples on \mathbb{R}

- linear and quadratic functions
- negative logarithm $f(x)=-\log x$
- negative entropy plus negative logarithm: $f(x)=x \log x-\log x$
affine invariance: if $f: \mathbb{R} \rightarrow \mathbb{R}$ is s.c., then $\tilde{f}(y)=f(a y+b)$ is s.c.:

$$
\tilde{f}^{\prime \prime \prime}(y)=a^{3} f^{\prime \prime \prime}(a y+b), \quad \tilde{f}^{\prime \prime}(y)=a^{2} f^{\prime \prime}(a y+b)
$$

Self-concordant calculus

properties

- preserved under positive scaling $\alpha \geq 1$, and sum
- preserved under composition with affine function
- if g is convex with $\operatorname{dom} g=\mathbb{R}_{++}$and $\left|g^{\prime \prime \prime}(x)\right| \leq 3 g^{\prime \prime}(x) / x$ then

$$
f(x)=\log (-g(x))-\log x
$$

is self-concordant
examples: properties can be used to show that the following are s.c.

- $f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)$ on $\left\{x \mid a_{i}^{T} x<b_{i}, i=1, \ldots, m\right\}$
- $f(X)=-\log \operatorname{det} X$ on \mathbf{S}_{++}^{n}

■ $f(x)=-\log \left(y^{2}-x^{T} x\right)$ on $\left\{(x, y) \mid\|x\|_{2}<y\right\}$

Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in(0,1 / 4], \gamma>0$ such that

- if $\lambda(x)>\eta$, then

$$
f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma
$$

- if $\lambda(x) \leq \eta$, then

$$
2 \lambda\left(x^{(k+1)}\right) \leq\left(2 \lambda\left(x^{(k)}\right)\right)^{2}
$$

(η and γ only depend on backtracking parameters α, β)
complexity bound: number of Newton iterations bounded by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}(1 / \epsilon)
$$

for $\alpha=0.1, \beta=0.8, \epsilon=10^{-10}$, bound evaluates to $375\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$
numerical example: 150 randomly generated instances of

$$
\text { minimize } f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

○: $m=100, n=50$
$\square: m=1000, n=500$
$\diamond: m=1000, n=50$

- number of iterations much smaller than $375\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$
- bound of the form $c\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$ with smaller c (empirically) valid

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H \Delta x=g
$$

where $H=\nabla^{2} f(x), g=-\nabla f(x)$
via Cholesky factorization

$$
H=L L^{T}, \quad \Delta x_{\mathrm{nt}}=L^{-T} L^{-1} g, \quad \lambda(x)=\left\|L^{-1} g\right\|_{2}
$$

- cost $(1 / 3) n^{3}$ flops for unstructured system
- cost $\ll(1 / 3) n^{3}$ if H sparse, banded

example of dense Newton system with structure

$$
f(x)=\sum_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\psi_{0}(A x+b), \quad H=D+A^{T} H_{0} A
$$

- assume $A \in \mathbb{R}^{p \times n}$, dense, with $p \ll n$
- D diagonal with diagonal elements $\psi_{i}^{\prime \prime}\left(x_{i}\right) ; H_{0}=\nabla^{2} \psi_{0}(A x+b)$
method 1: form H, solve via dense Cholesky factorization: (cost $\left.(1 / 3) n^{3}\right)$
method 2: factor $H_{0}=L_{0} L_{0}^{T}$; write Newton system as

$$
D \Delta x+A^{T} L_{0} w=-g, \quad L_{0}^{T} A \Delta x-w=0
$$

eliminate Δx from first equation; compute w and Δx from

$$
\left(I+L_{0}^{T} A D^{-1} A^{T} L_{0}\right) w=-L_{0}^{T} A D^{-1} g, \quad D \Delta x=-g-A^{T} L_{0} w
$$

cost: $2 p^{2} n$ (dominated by computation of $L_{0}^{T} A D^{-1} A L_{0}$)

Equality Constraints

Equality Constraints

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- f convex, twice continuously differentiable
- $A \in \mathbb{R}^{p \times n}$ with $\operatorname{Rank} A=p$
- we assume p^{\star} is finite and attained optimality conditions: x^{\star} is optimal iff there exists a ν^{\star} such that

$$
\nabla f\left(x^{\star}\right)+A^{T} \nu^{\star}=0, \quad A x^{\star}=b
$$

equality constrained quadratic minimization (with $P \in \mathbf{S}_{+}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & A x=b
\end{array}
$$

optimality condition:

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
\nu^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$
A x=0, \quad x \neq 0 \quad \Longrightarrow \quad x^{T} P x>0
$$

- equivalent condition for nonsingularity: $P+A^{T} A \succ 0$

Eliminating equality constraints

represent solution of $\{x \mid A x=b\}$ as

$$
\{x \mid A x=b\}=\left\{F z+\hat{x} \mid z \in \mathbb{R}^{n-p}\right\}
$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbb{R}^{n \times(n-p)}$ is nullspace of $A(\boldsymbol{\operatorname { R a n k }} F=n-p$ and $A F=0)$

reduced or eliminated problem

$$
\operatorname{minimize} \quad f(F z+\hat{x})
$$

- an unconstrained problem with variable $z \in \mathbb{R}^{n-p}$
- from solution z^{\star}, obtain x^{\star} and ν^{\star} as

$$
x^{\star}=F z^{\star}+\hat{x}, \quad \nu^{\star}=-\left(A A^{T}\right)^{-1} A \nabla f\left(x^{\star}\right)
$$

example: optimal allocation with resource constraint

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right) \\
\text { subject to } & x_{1}+x_{2}+\cdots+x_{n}=b
\end{array}
$$

eliminate $x_{n}=b-x_{1}-\cdots-x_{n-1}$, i.e., choose

$$
\hat{x}=b e_{n}, \quad F=\left[\begin{array}{c}
I \\
-\mathbf{1}^{T}
\end{array}\right] \in \mathbb{R}^{n \times(n-1)}
$$

reduced problem:

$$
\operatorname{minimize} f_{1}\left(x_{1}\right)+\cdots+f_{n-1}\left(x_{n-1}\right)+f_{n}\left(b-x_{1}-\cdots-x_{n-1}\right)
$$

(variables x_{1}, \ldots, x_{n-1})

Newton step

Newton step of f at feasible x is given by (1st block) of solution of

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x) \\
0
\end{array}\right]
$$

interpretations

- Δx_{nt} solves second order approximation (with variable v)

$$
\begin{array}{ll}
\operatorname{minimize} & \widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+(1 / 2) v^{T} \nabla^{2} f(x) v \\
\text { subject to } & A(x+v)=b
\end{array}
$$

- equations follow from linearizing optimality conditions

$$
\nabla f\left(x+\Delta x_{\mathrm{nt}}\right)+A^{T} w=0, \quad A\left(x+\Delta x_{\mathrm{nt}}\right)=b
$$

Newton decrement

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{T} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}=\left(-\nabla f(x)^{T} \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

properties

- gives an estimate of $f(x)-p^{\star}$ using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{A y=b} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- directional derivative in Newton direction:

$$
\left.\frac{d}{d t} f\left(x+t \Delta x_{\mathrm{nt}}\right)\right|_{t=0}=-\lambda(x)^{2}
$$

- in general, $\lambda(x) \neq\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with $A x=b$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement $\Delta x_{\mathrm{nt}}, \lambda(x)$.
2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

- a feasible descent method: $x^{(k)}$ feasible and $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$
- affine invariant

Newton's method and elimination

Newton's method for reduced problem

$$
\operatorname{minimize} \quad \tilde{f}(z)=f(F z+\hat{x})
$$

- variables $z \in \mathbb{R}^{n-p}$
- \hat{x} satisfies $A \hat{x}=b ; \boldsymbol{R a n k} F=n-p$ and $A F=0$
- Newton's method for \tilde{f}, started at $z^{(0)}$, generates iterates $z^{(k)}$

Newton's method with equality constraints
when started at $x^{(0)}=F z^{(0)}+\hat{x}$, iterates are

$$
x^{(k+1)}=F z^{(k)}+\hat{x}
$$

hence, don't need separate convergence analysis

Newton step at infeasible points

2nd interpretation of page 39 extends to infeasible x (i.e., $A x \neq b$)
linearizing optimality conditions at infeasible x (with $x \in \operatorname{dom} f$) gives

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \tag{1}\\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x) \\
A x-b
\end{array}\right]
$$

primal-dual interpretation

- write optimality condition as $r(y)=0$, where

$$
y=(x, \nu), \quad r(y)=\left(\nabla f(x)+A^{T} \nu, A x-b\right)
$$

- linearizing $r(y)=0$ gives $r(y+\Delta y) \approx r(y)+\operatorname{Dr}(y) \Delta y=0$:

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
\Delta \nu_{\mathrm{nt}}
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x)+A^{T} \nu \\
A x-b
\end{array}\right]
$$

same as (1) with $w=\nu+\Delta \nu_{\mathrm{nt}}$

Infeasible start Newton method

given starting point $x \in \operatorname{dom} f, \nu$, tolerance $\epsilon>0, \alpha \in(0,1 / 2), \beta \in(0,1)$. repeat

1. Compute primal and dual Newton steps $\Delta x_{\mathrm{nt}}, \Delta \nu_{\mathrm{nt}}$.
2. Backtracking line search on $\|r\|_{2}$.

$$
t:=1
$$

$$
\text { while }\left\|r\left(x+t \Delta x_{\mathrm{nt}}, \nu+t \Delta \nu_{\mathrm{nt}}\right)\right\|_{2}>(1-\alpha t)\|r(x, \nu)\|_{2}, \quad t:=\beta t
$$

3. Update. $x:=x+t \Delta x_{\mathrm{nt}}, \nu:=\nu+t \Delta \nu_{\mathrm{nt}}$.
until $A x=b$ and $\|r(x, \nu)\|_{2} \leq \epsilon$.

- not a descent method: $f\left(x^{(k+1)}\right)>f\left(x^{(k)}\right)$ is possible
- directional derivative of $\|r(y)\|_{2}^{2}$ in direction $\Delta y=\left(\Delta x_{\mathrm{nt}}, \Delta \nu_{\mathrm{nt}}\right)$ is

$$
\left.\frac{d}{d t}\|r(y+\Delta y)\|_{2}\right|_{t=0}=-\|r(y)\|_{2}
$$

Solving KKT systems

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{l}
g \\
h
\end{array}\right]
$$

solution methods

- LDL $^{\top}$ factorization
- elimination (if H nonsingular)

$$
A H^{-1} A^{T} w=h-A H^{-1} g, \quad H v=-\left(g+A^{T} w\right)
$$

- elimination with singular H : write as

$$
\left[\begin{array}{cc}
H+A^{T} Q A & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
v \\
w
\end{array}\right]=-\left[\begin{array}{c}
g+A^{T} Q h \\
h
\end{array}\right]
$$

with $Q \succeq 0$ for which $H+A^{T} Q A \succ 0$, and apply elimination

Equality constrained analytic centering

primal problem: minimize $-\sum_{i=1}^{n} \log x_{i}$ subject to $A x=b$
dual problem: maximize $-b^{T} \nu+\sum_{i=1}^{n} \log \left(A^{T} \nu\right)_{i}+n$
three methods for an example with $A \in \mathbb{R}^{100 \times 500}$, different starting points

1. Newton method with equality constraints (requires $x^{(0)} \succ 0, A x^{(0)}=b$)

2. Newton method applied to dual problem (requires $A^{T} \nu^{(0)} \succ 0$)

3. infeasible start Newton method (requires $x^{(0)} \succ 0$)

complexity per iteration of three methods is identical

1. use block elimination to solve KKT system

$$
\left[\begin{array}{cc}
\operatorname{diag}(x)^{-2} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
w
\end{array}\right]=\left[\begin{array}{c}
\operatorname{diag}(x)^{-1} \mathbf{1} \\
0
\end{array}\right]
$$

reduces to solving $A \operatorname{diag}(x)^{2} A^{T} w=b$
2. solve Newton system $A \operatorname{diag}\left(A^{T} \nu\right)^{-2} A^{T} \Delta \nu=-b+A \operatorname{diag}\left(A^{T} \nu\right)^{-1} \mathbf{1}$
3. use block elimination to solve KKT system

$$
\left[\begin{array}{cc}
\operatorname{diag}(x)^{-2} & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \nu
\end{array}\right]=\left[\begin{array}{c}
\operatorname{diag}(x)^{-1} \mathbf{1} \\
A x-b
\end{array}\right]
$$

reduces to solving $A \operatorname{diag}(x)^{2} A^{T} w=2 A x-b$
conclusion: in each case, solve $A D A^{T} w=h$ with D positive diagonal

Network flow optimization

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} \phi_{i}\left(x_{i}\right) \\
\text { subject to } & A x=b
\end{array}
$$

- directed graph with n arcs, $p+1$ nodes
- x_{i} : flow through arc $i ; \phi_{i}$: cost flow function for arc i (with $\left.\phi_{i}^{\prime \prime}(x)>0\right)$
- node-incidence matrix $\tilde{A} \in \mathbb{R}^{(p+1) \times n}$ defined as

$$
\tilde{A}_{i j}=\left\{\begin{aligned}
1 & \text { arc } j \text { leaves node } i \\
-1 & \text { arc } j \text { enters node } i \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- reduced node-incidence matrix $A \in \mathbb{R}^{p \times n}$ is \tilde{A} with last row removed
- $b \in \mathbb{R}^{p}$ is (reduced) source vector
- Rank $A=p$ if graph is connected

KKT system

$$
\left[\begin{array}{cc}
H & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
v \\
w
\end{array}\right]=-\left[\begin{array}{l}
g \\
h
\end{array}\right]
$$

■ $H=\operatorname{diag}\left(\phi_{1}^{\prime \prime}\left(x_{1}\right), \ldots, \phi_{n}^{\prime \prime}\left(x_{n}\right)\right)$, positive diagonal

- solve via elimination:

$$
A H^{-1} A^{T} w=h-A H^{-1} g, \quad H v=-\left(g+A^{T} w\right)
$$

sparsity pattern of coefficient matrix is given by graph connectivity

$$
\begin{aligned}
\left(A H^{-1} A^{T}\right)_{i j} \neq 0 & \Longleftrightarrow\left(A A^{T}\right)_{i j} \neq 0 \\
& \Longleftrightarrow \text { nodes } i \text { and } j \text { are connected by an arc }
\end{aligned}
$$

Analytic center of linear matrix inequality

$$
\begin{array}{ll}
\operatorname{minimize} & -\log \operatorname{det} X \\
\text { subject to } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

variable $X \in \mathbf{S}^{n}$
optimality conditions

$$
X^{\star} \succ 0, \quad-\left(X^{\star}\right)^{-1}+\sum_{j=1}^{p} \nu_{j}^{\star} A_{i}=0, \quad \operatorname{Tr}\left(A_{i} X^{\star}\right)=b_{i}, \quad i=1, \ldots, p
$$

Newton equation at feasible X :

$$
X^{-1} \Delta X X^{-1}+\sum_{j=1}^{p} w_{j} A_{i}=X^{-1}, \quad \operatorname{Tr}\left(A_{i} \Delta X\right)=0, \quad i=1, \ldots, p
$$

- follows from linear approximation $(X+\Delta X)^{-1} \approx X^{-1}-X^{-1} \Delta X X^{-1}$
- $n(n+1) / 2+p$ variables $\Delta X, w$

solution by block elimination

- eliminate ΔX from first equation: $\Delta X=X-\sum_{j=1}^{p} w_{j} X A_{j} X$
- substitute ΔX in second equation

$$
\begin{equation*}
\sum_{j=1}^{p} \operatorname{Tr}\left(A_{i} X A_{j} X\right) w_{j}=b_{i}, \quad i=1, \ldots, p \tag{2}
\end{equation*}
$$

a dense positive definite set of linear equations with variable $w \in \mathbb{R}^{p}$
flop count (dominant terms) using Cholesky factorization $X=L L^{T}$:

- form p products $L^{T} A_{j} L:(3 / 2) p n^{3}$
- form $p(p+1) / 2$ inner products $\operatorname{Tr}\left(\left(L^{T} A_{i} L\right)\left(L^{T} A_{j} L\right)\right):(1 / 2) p^{2} n^{2}$
- solve (2) via Cholesky factorization: $(1 / 3) p^{3}$

