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Today

� Convex optimization: introduction

� Course organization and other gory details...

� Convex sets, basic definitions.
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Convex Optimization
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Convex Optimization

� How do we identify easy and hard problems?

� Convexity: why is it so important?

� Modeling: how do we recognize easy problems in real applications?

� Algorithms: how do we solve these problems in practice?
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Least squares (LS)

minimize ‖Ax− b‖22
A ∈ Rm×n, b ∈ Rm are parameters; x ∈ Rn is variable

� Complete theory (existence & uniqueness, sensitivity analysis . . . )

� Several algorithms compute (global) solution reliably

� We can solve dense problems with n = 1000 vbles, m = 10000 terms

� By exploiting structure (e.g., sparsity) can solve far larger problems

. . . LS is a (widely used) technology
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Linear program (LP)

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

c, ai ∈ Rn are parameters; x ∈ Rn is variable

� Nearly complete theory
(existence & uniqueness, sensitivity analysis . . . )

� Several algorithms compute (global) solution reliably

� Can solve dense problems with n = 1000 vbles, m = 10000 constraints

� By exploiting structure (e.g., sparsity) can solve far larger problems

. . . LP is a (widely used) technology
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Quadratic program (QP)

minimize ‖Fx− g‖22
subject to aTi x ≤ bi, i = 1, . . . ,m

� Combination of LS & LP

� Same story . . . QP is a technology

� Reliability: Programmed on chips to solve real-time problems

� Classic application: portfolio optimization
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The bad news

� LS, LP, and QP are exceptions

� Most optimization problems, even some very simple looking ones, are
intractable

� The objective of this class is to show you how to recognize the nice ones. . .

� Many, many applications across all fields. . .
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Polynomial minimization

minimize p(x)

p is polynomial of degree d; x ∈ Rn is variable

� Except for special cases (e.g., d = 2) this is a very difficult problem

� Even sparse problems with size n = 20, d = 10 are essentially intractable

� All algorithms known to solve this problem require effort exponential in n
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What makes a problem easy or hard?

Classical view:

� linear is easy

� nonlinear is hard(er)
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What makes a problem easy or hard?

Emerging (and correct) view:

. . . the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

— R. Rockafellar, SIAM Review 1993
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Convex optimization

minimize f0(x)
subject to f1(x) ≤ 0, . . . , fm(x) ≤ 0

x ∈ Rn is optimization variable; fi : Rn → R are convex:

fi(λx+ (1− λ)y) ≤ λfi(x) + (1− λ)fi(y)

for all x, y, 0 ≤ λ ≤ 1

� includes LS, LP, QP, and many others

� like LS, LP, and QP, convex problems are fundamentally tractable
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Example: Stochastic LP

Consider the following stochastic LP:

minimize cTx
subject to Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

coefficient vectors ai IID, N (ai,Σi); η is required reliability

� for fixed x, aTi x is N (aTi x, x
TΣix)

� so for η = 50%, stochastic LP reduces to LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m

and so is easily solved

� what about other values of η, e.g., η = 10%? η = 90%?

A. d’Aspremont. Convex Optimization M2. 13/49



Hint

{x | Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m}

η = 10% η = 50% η = 90%
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Convexity again

stochastic LP with reliability η = 90% is convex, and very easily solved

stochastic LP with reliability η = 10% is not convex, and extremely difficult

moral: very difficult and very easy problems can look quite similar

(to the untrained eye)
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Convex Optimization

A brief history. . .

� The field is about 50 years old.

� Starts with the work of Von Neumann, Kuhn and Tucker, etc

� Explodes in the 60’s with the advent of “relatively” cheap and efficient
computers. . .

� Key to all this: fast linear algebra

� Some of the theory developed before computers even existed. . .
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Convex optimization: history

� Convexity =⇒ low complexity:

”... In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.” T. Rockafellar.

� True: Nemirovskii and Yudin [1979].

� Very true: Karmarkar [1984].

� Seriously true: convex programming, Nesterov and Nemirovskii [1994].
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Standard convex complexity analysis

� All convex minimization problems with: a first order oracle (returning f(x) and
a subgradient) can be solved in polynomial time in size and number of
precision digits.

� Proved using the ellipsoid method by Nemirovskii and Yudin [1979].

� Very slow convergence in practice.
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Linear Programming

� Simplex algorithm by Dantzig (1949): exponential worst-case complexity, very
efficient in most cases.

� Khachiyan [1979] then used the ellipsoid method to show the polynomial
complexity of LP.

� Karmarkar [1984] describes the first efficient polynomial time algorithm for LP,
using interior point methods.
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From LP to structured convex programs

� Nesterov and Nemirovskii [1994] show that the interior point methods used for
LPs can be applied to a larger class of structured convex problems.

� The self-concordance analysis that they introduce extends the polynomial
time complexity proof for LPs.

� Most operations that preserve convexity also preserve self-concordance.

� The complexity of a certain number of elementary problems can be directly
extended to a much wider class.
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Symmetric cone programs

� An important particular case: linear programming on symmetric cones

minimize cTx
subject to Ax− b ∈ K

� These include the LP, second-order (Lorentz) and semidefinite cone:

LP: {x ∈ Rn : x ≥ 0}
Second order: {(x, y) ∈ Rn × R : ‖x‖ ≤ y}
Semidefinite: {X ∈ Sn : X � 0}

� Again, the class of problems that can be represented using these cones is
extremely vast.
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Course Organization
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Course Plan

� Convex analysis & modeling

� Duality

� Algorithms: interior point methods, first order methods.

� Applications
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Grading

Course website with lecture notes, homework, etc.

http://di.ens.fr/~aspremon/OptConvexeM2.html

� A few homeworks, will be posted online.

Email your homeworks to dm.daspremont@gmail.com

you will get an automatic reply to your message if it has been received.

� A final exam.
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Short blurb

� Contact info on http://di.ens.fr/~aspremon

� Email: aspremon@ens.fr

� Dual PhDs: Ecole Polytechnique & Stanford University

� Interests: Optimization, machine learning, statistics & finance.
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References

� All lecture notes will be posted online

� Textbook: Convex Optimization by Lieven Vandenberghe and Stephen Boyd,
available online at:

http://www.stanford.edu/~boyd/cvxbook/

� See also Ben-Tal and Nemirovski [2001], “Lectures On Modern Convex
Optimization: Analysis, Algorithms, And Engineering Applications”, SIAM.

http://www2.isye.gatech.edu/~nemirovs/

� Nesterov [2003], “Introductory Lectures on Convex Optimization”, Springer.

� Nesterov and Nemirovskii [1994], “Interior Point Polynomial Algorithms in
Convex Programming”, SIAM.
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Convex Sets
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Convex Sets

� affine and convex sets

� some important examples

� operations that preserve convexity

� generalized inequalities

� separating and supporting hyperplanes

� dual cones and generalized inequalities
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Affine set

line through x1, x2: all points

x = θx1 + (1− θ)x2 (θ ∈ R)

x1

x2

θ = 1.2
θ = 1

θ = 0.6

θ = 0
θ = −0.2

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Ax = b}
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Convex set

line segment between x1 and x2: all points

x = θx1 + (1− θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + · · ·+ θk = 1, θi ≥ 0

convex hull CoS: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = θ1x1 + θ2x2

with θ1 ≥ 0, θ2 ≥ 0

0

x1

x2

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

a

aTx ≥ b

aTx ≤ b

x0

� a is the normal vector

� hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x− xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form

{x | (x− xc)TP−1(x− xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

other representation: {xc +Au | ‖u‖2 ≤ 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

� ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

� ‖tx‖ = |t| ‖x‖ for t ∈ R

� ‖x+ y‖ ≤ ‖x‖+ ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x− xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone

x1
x2

t

−1

0

1

−1

0

1
0

0.5

1

norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)

a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

� Sn is set of symmetric n× n matrices

� Sn
+ = {X ∈ Sn | X � 0}: positive semidefinite n× n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

Sn
+ is a convex cone

� Sn
++ = {X ∈ Sn | X � 0}: positive definite n× n matrices

example:

[
x y
y z

]
∈ S2

+

xy

z

0

0.5

1

−1

0

1
0

0.5

1
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Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1− θ)x2 ∈ C

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces,
norm balls, . . . ) by operations that preserve convexity

� intersection

� affine functions

� perspective function

� linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

example:
S = {x ∈ Rm | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t+ x2 cos 2t+ · · ·+ xm cosmt

for m = 2:

0 π/3 2π/3 π

−1

0

1

t

p
(t
)

x1

x
2 S

−2 −1 0 1 2
−2

−1

0

1

2
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Affine function

suppose f : Rn → Rm is affine (f(x) = Ax+ b with A ∈ Rm×n, b ∈ Rm)

� the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f(S) = {f(x) | x ∈ S} convex

� the inverse image f−1(C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f−1(C) = {x ∈ Rn | f(x) ∈ C} convex

examples

� scaling, translation, projection

� solution set of linear matrix inequality {x | x1A1 + · · ·+ xmAm � B}
(with Ai, B ∈ Sp)

� hyperbolic cone {x | xTPx ≤ (cTx)2, cTx ≥ 0} (with P ∈ Sn
+)
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Perspective and linear-fractional function

perspective function P : Rn+1 → Rn:

P (x, t) = x/t, domP = {(x, t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : Rn → Rm:

f(x) =
Ax+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

images and inverse images of convex sets under linear-fractional functions are
convex
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example of a linear-fractional function

f(x) =
1

x1 + x2 + 1
x

x1

x
2 C

−1 0 1
−1

0

1

x1

x
2

f(C)

−1 0 1
−1

0

1
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Generalized inequalities

a convex cone K ⊆ Rn is a proper cone if

� K is closed (contains its boundary)

� K is solid (has nonempty interior)

� K is pointed (contains no line)

examples

� nonnegative orthant K = Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

� positive semidefinite cone K = Sn
+

� nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t+ x3t
2 + · · ·+ xnt

n−1 ≥ 0 for t ∈ [0, 1]}
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generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

examples

� componentwise inequality (K = Rn
+)

x �Rn
+
y ⇐⇒ xi ≤ yi, i = 1, . . . , n

� matrix inequality (K = Sn
+)

X �Sn
+
Y ⇐⇒ Y −X positive semidefinite

these two types are so common that we drop the subscript in �K

properties: many properties of �K are similar to ≤ on R, e.g.,

x �K y, u �K v =⇒ x+ u �K y + v
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Minimum and minimal elements

�K is not in general a linear ordering : we can have x 6�K y and y 6�K x

x ∈ S is the minimum element of S with respect to �K if

y ∈ S =⇒ x �K y

x ∈ S is a minimal element of S with respect to �K if

y ∈ S, y �K x =⇒ y = x

example (K = R2
+)

x1 is the minimum element of S1

x2 is a minimal element of S2 x1

x2S1

S2
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Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists a 6= 0, b such that

aTx ≤ b for x ∈ C, aTx ≥ b for x ∈ D

D

C

a

aTx ≥ b aTx ≤ b

the hyperplane {x | aTx = b} separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a
singleton)
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Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x0:

{x | aTx = aTx0}

where a 6= 0 and aTx ≤ aTx0 for all x ∈ C

C

a

x0

supporting hyperplane theorem: if C is convex, then there exists a supporting
hyperplane at every boundary point of C
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Dual cones and generalized inequalities

dual cone of a cone K:

K∗ = {y | yTx ≥ 0 for all x ∈ K}

examples

� K = Rn
+: K∗ = Rn

+

� K = Sn
+: K∗ = Sn

+

� K = {(x, t) | ‖x‖2 ≤ t}: K∗ = {(x, t) | ‖x‖2 ≤ t}

� K = {(x, t) | ‖x‖1 ≤ t}: K∗ = {(x, t) | ‖x‖∞ ≤ t}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

y �K∗ 0 ⇐⇒ yTx ≥ 0 for all x �K 0
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. �K

x is minimum element of S iff for all
λ �K∗ 0, x is the unique minimizer of
λTz over S

x

S

minimal element w.r.t. �K

� if x minimizes λTz over S for some λ �K∗ 0, then x is minimal

S
x1

x2

λ1

λ2

� if x is a minimal element of a convex set S, then there exists a nonzero
λ �K∗ 0 such that x minimizes λTz over S
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