Convex Optimization Homework 1

Exercise 1 Which of the following sets are convex ?

- 1) A rectangle, *i.e.*, a set of the form $\{x \in \mathbb{R}^n \mid \alpha_i \leq x_i \leq \beta_i, i = 1, ..., n\}$.
- 2) The hyperbolic set

- $\{x \in \mathbb{R}^2_+ \mid x_1 x_2 \ge 1\}$
- 3) The set of points closer to a given point than a given set, *i.e.*,

$$\{x \mid ||x - x_0||_2 \le ||x - y||_2 \text{ for all } y \in S\}$$

where $S \subseteq \mathbb{R}^n$.

4) The set of points closer to one set than another, *i.e.*,

$$[x \mid \mathbf{dist}(x, S) \le \mathbf{dist}(x, T)\},\$$

where $S, T \subseteq \mathbb{R}^n$, and $\operatorname{dist}(x, S) = \inf\{ \|x - z\|_2 \mid z \in S \}.$

5) The set

$$\{x \mid x + S_2 \subseteq S_1\},\$$

where $S_1, S_2 \subseteq \mathbb{R}^n$ with S_1 convex.

Exercise 2 For each of the following functions determine whether it is convex or concave or not. *Optional: Determine if they are quasiconvex or quasiconcave.*

- 1) $f(x_1, x_2) = x_1 x_2$ on \mathbb{R}^2_{++} .
- 2) $f(x_1, x_2) = 1/(x_1 x_2)$ on \mathbb{R}^2_{++} .
- 3) $f(x_1, x_2) = x_1/x_2$ on \mathbb{R}^2_{++} .
- 4) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on \mathbb{R}^2_{++} .

Exercise 3 Show that following functions are convex

- 1) $f(X) = \mathbf{Tr}(X^{-1})$ on **dom** $f = \mathbf{S}_{++}^{n}$.
- 2) $f(X,y) = y^T X^{-1} y$ on **dom** $f = \mathbf{S}_{++}^n \times \mathbb{R}^n$ Hint: express it as a supremum
- 3) $f(X) = \sum_{i=1}^{n} \sigma_i(X)$ on **dom** $f = \mathbf{S}^n$, where $\sigma_1(X), \ldots, \sigma_n(X)$ are singular values of a matrix $X \in \mathbb{R}^{n \times n}$. *Hint: express it as a supremum*

Optional exercises

Exercise 4 We define the monotone nonnegative cone as

 $K_{\mathbf{m}+} = \{ x \in \mathbb{R}^n \mid x_1 \ge x_2 \ge \dots \ge x_n \ge 0 \}.$

i.e., all nonnegative vectors with components sorted in nonincreasing order.

- 1. Show that K_{m+} is a proper cone.
- 2. Find the dual cone K_{m+}^* .

Exercise 5 Derive the conjugates of the following functions.

- 1) Max function. $f(x) = \max_{i=1,...,n} x_i$ on \mathbb{R}^n .
- 2) Sum of largest elements. $f(x) = \sum_{i=1}^{r} x_{[i]}$ on \mathbb{R}^n .
- 3) Piecewise-linear function on \mathbb{R} . $f(x) = \max_{i=1,...,m}(a_ix+b_i)$ on \mathbb{R} . You can assume that the a_i are sorted in increasing order, *i.e.*, $a_1 \leq \cdots \leq a_m$, and that none of the functions a_ix+b_i is redundant, *i.e.*, for each k there is at least one x with $f(x) = a_kx + b_k$.