Convex Optimization Homework 1

Exercise 1 Which of the following sets are convex ?

1) A rectangle, i.e., a set of the form $\left\{x \in \mathbb{R}^{n} \mid \alpha_{i} \leq x_{i} \leq \beta_{i}, i=1, \ldots, n\right\}$.
2) The hyperbolic set

$$
\left\{x \in \mathbb{R}_{+}^{2} \mid x_{1} x_{2} \geq 1\right\}
$$

3) The set of points closer to a given point than a given set, i.e.,

$$
\left\{x \mid\left\|x-x_{0}\right\|_{2} \leq\|x-y\|_{2} \text { for all } y \in S\right\}
$$

where $S \subseteq \mathbb{R}^{n}$.
4) The set of points closer to one set than another, i.e.,

$$
\{x \mid \operatorname{dist}(x, S) \leq \operatorname{dist}(x, T)\}
$$

where $S, T \subseteq \mathbb{R}^{n}$, and $\operatorname{dist}(x, S)=\inf \left\{\|x-z\|_{2} \mid z \in S\right\}$.
5) The set

$$
\left\{x \mid x+S_{2} \subseteq S_{1}\right\}
$$

where $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ with S_{1} convex.
Exercise 2 For each of the following functions determine whether it is convex or concave or not.
Optional: Determine if they are quasiconvex or quasiconcave.

1) $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ on \mathbb{R}_{++}^{2}.
2) $f\left(x_{1}, x_{2}\right)=1 /\left(x_{1} x_{2}\right)$ on \mathbb{R}_{++}^{2}.
3) $f\left(x_{1}, x_{2}\right)=x_{1} / x_{2}$ on \mathbb{R}_{++}^{2}.
4) $f\left(x_{1}, x_{2}\right)=x_{1}^{\alpha} x_{2}^{1-\alpha}$, where $0 \leq \alpha \leq 1$, on \mathbb{R}_{++}^{2}.

Exercise 3 Show that following functions are convex

1) $f(X)=\operatorname{Tr}\left(X^{-1}\right)$ on $\operatorname{dom} f=\mathbf{S}_{++}^{n}$.
2) $f(X, y)=y^{T} X^{-1} y$ on $\operatorname{dom} f=\mathbf{S}_{++}^{n} \times \mathbb{R}^{n}$ Hint: express it as a supremum
3) $f(X)=\sum_{i=1}^{n} \sigma_{i}(X)$ on $\operatorname{dom} f=\mathbf{S}^{n}$, where $\sigma_{1}(X), \ldots, \sigma_{n}(X)$ are singular values of a matrix $X \in \mathbb{R}^{n \times n}$. Hint: express it as a supremum

Optional exercises

Exercise 4 We define the monotone nonnegative cone as

$$
K_{\mathrm{m}+}=\left\{x \in \mathbb{R}^{n} \mid x_{1} \geq x_{2} \geq \cdots \geq x_{n} \geq 0\right\}
$$

i.e., all nonnegative vectors with components sorted in nonincreasing order.

1. Show that $K_{\mathrm{m}+}$ is a proper cone.
2. Find the dual cone $K_{\mathrm{m}+}^{*}$.

Exercise 5 Derive the conjugates of the following functions.

1) Max function. $f(x)=\max _{i=1, \ldots, n} x_{i}$ on \mathbb{R}^{n}.
2) Sum of largest elements. $f(x)=\sum_{i=1}^{r} x_{[i]}$ on \mathbb{R}^{n}.
3) Piecewise-linear function on \mathbb{R}. $f(x)=\max _{i=1, \ldots, m}\left(a_{i} x+b_{i}\right)$ on \mathbb{R}. You can assume that the a_{i} are sorted in increasing order, i.e., $a_{1} \leq \cdots \leq a_{m}$, and that none of the functions $a_{i} x+b_{i}$ is redundant, i.e., for each k there is at least one x with $f(x)=a_{k} x+b_{k}$.
