Convex Optimization M2

Lecture 2

Convex Optimization Problems

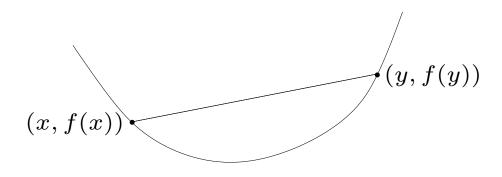
- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- Iog-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

 $f:\mathbb{R}^n\to\mathbb{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{\mathbf{dom}} f$, $0 \le \theta \le 1$



- f is concave if -f is convex
- f is strictly convex if $\mathbf{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{\mathbf{dom}} f$, $x \neq y$, $0 < \theta < 1$

Examples on ${\mathbb R}$

convex:

- affine: ax + b on \mathbb{R} , for any $a, b \in \mathbb{R}$
- exponential: e^{ax} , for any $a \in \mathbb{R}$
- powers: x^{α} on \mathbb{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- \blacksquare powers of absolute value: $|x|^p$ on $\mathbb R,$ for $p\geq 1$
- negative entropy: $x \log x$ on \mathbb{R}_{++}

concave:

- affine: ax + b on \mathbb{R} , for any $a, b \in \mathbb{R}$
- powers: x^{α} on \mathbb{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbb{R}_{++}

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

affine function

$$f(X) = \mathbf{Tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \to \mathbb{R}$,

$$g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$$

is convex (in t) for any $x \in \operatorname{\mathbf{dom}} f$, $v \in \mathbb{R}^n$

can check convexity of f by checking convexity of functions of one variable

example. $f: \mathbf{S}^n \to \mathbb{R}$ with $f(X) = \log \det X$, $\operatorname{dom} X = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

A. d'Aspremont. Convex Optimization M2.

Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions

- $\mathbf{dom} f$ is convex
- for $x,y\in \operatorname{\mathbf{dom}} f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

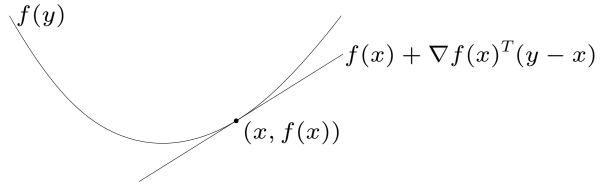
f is **differentiable** if $\mathbf{dom} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \operatorname{dom} f$



first-order approximation of f is global underestimator

Second-order conditions

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• *f* is convex if and only if

$$\nabla^2 f(x) \succeq 0$$
 for all $x \in \operatorname{\mathbf{dom}} f$

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{\mathbf{dom}} f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

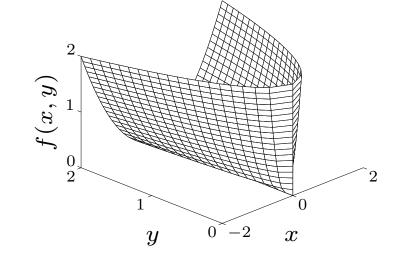
$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0



log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \ge 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2) (\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \ge 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2) (\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}_{++}^n is concave (similar proof as for log-sum-exp)

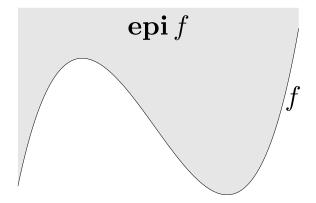
Epigraph and sublevel set

 α -sublevel set of $f : \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \operatorname{dom} f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f : \mathbb{R}^n \to \mathbb{R}$:

$$\mathbf{epi}\,f = \{(x,t) \in \mathbb{R}^{n+1} \mid x \in \mathbf{dom}\,f, \ f(x) \le t\}$$



f is convex if and only if epi f is a convex set

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E}\,z) \le \mathbf{E}\,f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{Prob}(z=x) = \theta, \qquad \operatorname{Prob}(z=y) = 1 - \theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

• piecewise-linear function: $f(x) = \max_{i=1,...,m}(a_i^T x + b_i)$ is convex

• sum of r largest components of $x \in \mathbb{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]}$ is *i*th largest component of x) proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} \|x - y\|$$

• maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y$$

A. d'Aspremont. Convex Optimization M2.

Composition with scalar functions

composition of $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$:

f(x) = h(g(x))

f is convex if $\begin{array}{c} g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g : \mathbb{R}^n \to \mathbb{R}^k$ and $h : \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex}, h \text{ convex}, \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave}, h \text{ convex}, \tilde{h} \text{ nonincreasing in each argument} \end{array}$

proof (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

•
$$f(x,y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T) x$ g is convex, hence Schur complement $A - BC^{-1}B^T \succeq 0$

• distance to a set: $\operatorname{dist}(x, S) = \inf_{y \in S} ||x - y||$ is convex if S is convex

Perspective

the **perspective** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the function $g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

 $g(x,t) = tf(x/t), \quad \text{dom} g = \{(x,t) \mid x/t \in \text{dom} f, t > 0\}$

g is convex if f is convex

examples

•
$$f(x) = x^T x$$
 is convex; hence $g(x,t) = x^T x/t$ is convex for $t > 0$

- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x,t) = t\log t t\log x$ is convex on \mathbb{R}^2_{++}
- if *f* is convex, then

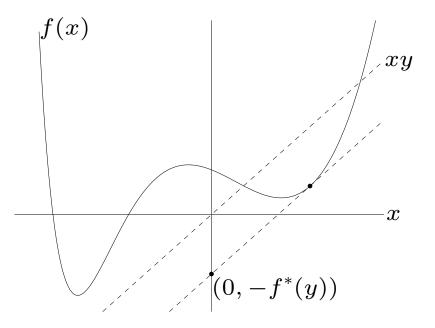
$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d)\right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \operatorname{\mathbf{dom}} f\}$

The conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \operatorname{dom} f} (y^T x - f(x))$$



- f^* is convex (even if f is not)
- Used in regularization, duality results, . . .

examples

• negative logarithm $f(x) = -\log x$

$$\begin{array}{lll} f^*(y) &=& \sup_{x>0} (xy + \log x) \\ &=& \left\{ \begin{array}{ll} -1 - \log(-y) & y < 0 \\ \infty & & \text{otherwise} \end{array} \right. \end{array}$$

• strictly convex quadratic $f(x) = (1/2)x^TQx$ with $Q \in \mathbf{S}_{++}^n$

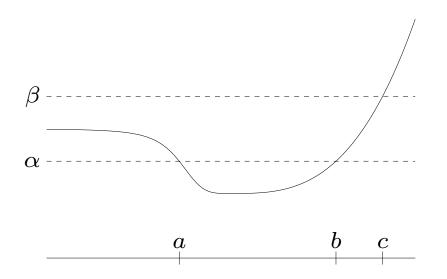
$$f^{*}(y) = \sup_{x} (y^{T}x - (1/2)x^{T}Qx)$$
$$= \frac{1}{2}y^{T}Q^{-1}y$$

Quasiconvex functions

 $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\mathbf{dom} f$ is convex and the sublevel sets

 $S_{\alpha} = \{ x \in \operatorname{\mathbf{dom}} f \mid f(x) \le \alpha \}$

are convex for all $\boldsymbol{\alpha}$



- f is quasiconcave if -f is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on $\mathbb R$
- $\operatorname{ceil}(x) = \inf\{z \in \mathbf{Z} \mid z \ge x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbb{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d}, \qquad \text{dom} f = \{x \mid c^T x + d > 0\}$$

is quasilinear

distance ratio

$$f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \qquad \text{dom}\, f = \{x \mid \|x - a\|_2 \le \|x - b\|_2\}$$

is quasiconvex

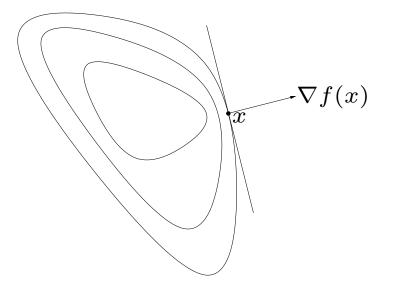
Properties

modified Jensen inequality: for quasiconvex f

$$0 \le \theta \le 1 \quad \Longrightarrow \quad f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

first-order condition: differentiable f with cvx domain is quasiconvex iff

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$



sums of quasiconvex functions are not necessarily quasiconvex

Log-concave and log-convex functions

a positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \ge f(x)^{\theta} f(y)^{1 - \theta}$$
 for $0 \le \theta \le 1$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

 $\hfill\blacksquare$ cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$

A. d'Aspremont. Convex Optimization M2.

Properties of log-concave functions

• twice differentiable *f* with convex domain is log-concave if and only if

 $f(x)\nabla^2 f(x) \preceq \nabla f(x)\nabla f(x)^T$

for all $x \in \operatorname{\mathbf{dom}} f$

- product of log-concave functions is log-concave
- sum of log-concave functions is not always log-concave
- integration: if $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)

consequences of integration property

• convolution f * g of log-concave functions f, g is log-concave

$$(f * g)(x) = \int f(x - y)g(y)dy$$

• if $C \subseteq \mathbb{R}^n$ convex and y is a random variable with log-concave pdf then

$$f(x) = \mathbf{Prob}(x + y \in C)$$

is log-concave

proof: write f(x) as integral of product of log-concave functions

$$f(x) = \int g(x+y)p(y) \, dy, \qquad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C, \end{cases}$$

p is pdf of y

A. d'Aspremont. Convex Optimization M2.

example: yield function

$$Y(x) = \mathbf{Prob}(x + w \in S)$$

- $x \in \mathbb{R}^n$: nominal parameter values for product
- $w \in \mathbb{R}^n$: random variations of parameters in manufactured product
- S: set of acceptable values

if S is convex and \boldsymbol{w} has a log-concave pdf, then

- Y is log-concave
- yield regions $\{x \mid Y(x) \ge \alpha\}$ are convex
- Not necessarily tractable though...

Convexity with respect to generalized inequalities

 $f:\mathbb{R}^n\to\mathbb{R}^m$ is K-convex if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{\mathbf{dom}} f, \ 0 \leq \theta \leq 1$

example $f : \mathbf{S}^m \to \mathbf{S}^m$, $f(X) = X^2$ is \mathbf{S}^m_+ -convex

proof: for fixed $z \in \mathbb{R}^m$, $z^T X^2 z = \|Xz\|_2^2$ is convex in X, *i.e.*,

$$z^T (\theta X + (1-\theta)Y)^2 z \le \theta z^T X^2 z + (1-\theta) z^T Y^2 z$$

for $X, Y \in \mathbf{S}^m$, $0 \le \theta \le 1$

therefore $(\theta X + (1 - \theta)Y)^2 \leq \theta X^2 + (1 - \theta)Y^2$

A. d'Aspremont. Convex Optimization M2.

Convex Optimization Problems

Outline

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization
- geometric programming
- generalized inequality constraints
- semidefinite programming
- vector optimization

Optimization problem in standard form

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective or cost function
- $f_i : \mathbb{R}^n \to \mathbb{R}$, $i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions

optimal value:

$$p^{\star} = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

p^{*} = ∞ if problem is infeasible (no x satisfies the constraints)
 p^{*} = -∞ if problem is unbounded below

Optimal and locally optimal points

x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints

a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points

x is **locally optimal** if there is an R > 0 such that x is optimal for

$$\begin{array}{ll} \text{minimize (over } z) & f_0(z) \\ \text{subject to} & & f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p \\ & \|z-x\|_2 \leq R \end{array}$$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, dom $f_0 = \mathbb{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, **dom** $f_0 = \mathbb{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $\operatorname{dom} f_0 = \mathbb{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal

•
$$f_0(x) = x^3 - 3x$$
, $p^* = -\infty$, local optimum at $x = 1$

A. d'Aspremont. Convex Optimization M2.

Implicit constraints

the standard form optimization problem has an **implicit constraint**

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- \blacksquare we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

can be considered a special case of the general problem with $f_0(x) = 0$:

$$\begin{array}{ll} \text{minimize} & 0\\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m\\ & h_i(x)=0, \quad i=1,\ldots,p \end{array}$$

p^{*} = 0 if constraints are feasible; any feasible x is optimal
 p^{*} = ∞ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & a_i^T x = b_i, \quad i = 1, \dots, p \end{array}$$

- f_0 , f_1 , . . . , f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

important property: feasible set of a convex optimization problem is convex

example

$$\begin{array}{ll} \mbox{minimize} & f_0(x) = x_1^2 + x_2^2 \\ \mbox{subject to} & f_1(x) = x_1/(1+x_2^2) \leq 0 \\ & h_1(x) = (x_1+x_2)^2 = 0 \end{array}$$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

$$\begin{array}{ll} \text{minimize} & x_1^2 + x_2^2 \\ \text{subject to} & x_1 \leq 0 \\ & x_1 + x_2 = 0 \end{array}$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal **proof**: suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$ x locally optimal means there is an R > 0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2||y - x||_2)$

- $||y x||_2 > R, \text{ so } 0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
 ||z x||₂ = R/2 and

$$f_0(z) \le \theta f_0(x) + (1 - \theta) f_0(y) < f_0(x)$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

 \boldsymbol{x} is optimal if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y



if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

unconstrained problem: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize
$$f_0(x)$$
 subject to $Ax = b$

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

minimization over nonnegative orthant

minimize
$$f_0(x)$$
 subject to $x \succeq 0$

x is optimal if and only if

$$x \in \operatorname{dom} f_0, \qquad x \succeq 0, \qquad \left\{ \begin{array}{ll} \nabla f_0(x)_i \ge 0 & x_i = 0\\ \nabla f_0(x)_i = 0 & x_i > 0 \end{array} \right.$$

A. d'Aspremont. Convex Optimization M2.

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

is equivalent to

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0, \quad i = 1, \dots, m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0$$
 for some z

A. d'Aspremont. Convex Optimization M2.

introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, y_i) & f_0(y_0) \\ \text{subject to} & f_i(y_i) \leq 0, \quad i = 1, \dots, m \\ & y_i = A_i x + b_i, \quad i = 0, 1, \dots, m \end{array}$$

introducing slack variables for linear inequalities

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m \end{array}$$

is equivalent to

$$\begin{array}{ll} \text{minimize (over } x, \, s) & f_0(x) \\ \text{subject to} & a_i^T x + s_i = b_i, \quad i = 1, \dots, m \\ & s_i \geq 0, \quad i = 1, \dots m \end{array}$$

epigraph form: standard form convex problem is equivalent to

minimize (over
$$x, t$$
) t
subject to $f_0(x) - t \le 0$
 $f_i(x) \le 0, \quad i = 1, \dots, m$
 $Ax = b$

minimizing over some variables

minimize
$$f_0(x_1,x_2)$$

subject to $f_i(x_1) \leq 0, \quad i=1,\ldots,m$

is equivalent to

minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

Quasiconvex optimization

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=b \end{array}$$

with $f_0: \mathbb{R}^n \to \mathbb{R}$ quasiconvex, f_1, \ldots, f_m convex

can have locally optimal points that are not (globally) optimal

 $(x, f_0(x))$

quasiconvex optimization via convex feasibility problems

$$f_0(x) \le t, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (1)

• for fixed t, a convex feasibility problem in x

• if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

Bisection method for quasiconvex optimization

```
given l \leq p^*, u \geq p^*, tolerance \epsilon > 0.

repeat

1. t := (l+u)/2.

2. Solve the convex feasibility problem (1).

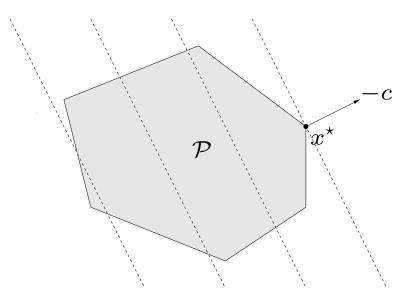
3. if (1) is feasible, u := t; else l := t.

until u - l \leq \epsilon.
```

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations (where u, l are initial values)

$$\begin{array}{ll} \text{minimize} & c^T x + d \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

minimize
$$c^T x$$

subject to $Ax \succeq b$, $x \succeq 0$

piecewise-linear minimization

minimize
$$\max_{i=1,\dots,m}(a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$

subject to $a_i^T x + b_i \le t$, $i = 1, ..., m$

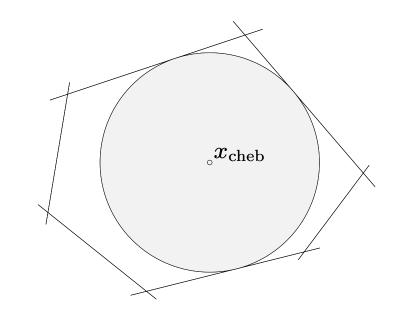
Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{x_c + u \mid \|u\|_2 \le r\}$$



• $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c+u) \mid ||u||_2 \le r\} = a_i^T x_c + r ||a_i||_2 \le b_i$$

• hence, x_c , r can be determined by solving the LP

maximize
$$r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i, \quad i = 1, \dots, m$

(Generalized) linear-fractional program

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f}, \qquad \text{dom}\, f_0(x) = \{x \mid e^T x + f > 0\}$$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

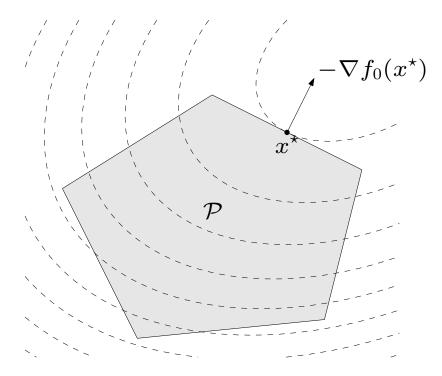
$$\begin{array}{ll} \mbox{minimize} & c^Ty + dz \\ \mbox{subject to} & Gy \preceq hz \\ & Ay = bz \\ & e^Ty + fz = 1 \\ & z \geq 0 \end{array}$$

Quadratic program (QP)

$$\begin{array}{ll} \mbox{minimize} & (1/2)x^TPx + q^Tx + r\\ \mbox{subject to} & Gx \preceq h\\ & Ax = b \end{array}$$

• $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic

minimize a convex quadratic function over a polyhedron



least-squares

minimize $||Ax - b||_2^2$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

$$\begin{array}{ll} \mbox{minimize} & \bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} \, c^T x + \gamma \, \mathbf{var}(c^T x) \\ \mbox{subject to} & G x \preceq h, \quad A x = b \end{array}$$

- \hfill c is random vector with mean \bar{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$
 $Ax = b$

- $P_i \in \mathbf{S}^n_+$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$
 $Fx = g$

 $(A_i \in \mathbb{R}^{n_i \times n}, F \in \mathbb{R}^{p \times n})$

inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbb{R}^{n_i+1}$

for n_i = 0, reduces to an LP; if c_i = 0, reduces to a QCQP
more general than QCQP and LP

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$, $i = 1, \dots, m$,

there can be uncertainty in c, a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

• deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, \ldots, m$,

stochastic model: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\operatorname{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m$

deterministic approach via SOCP

• choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \} \qquad (\bar{a}_i \in \mathbb{R}^n, \quad P_i \in \mathbb{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i robust LP

> minimize $c^T x$ subject to $a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

is equivalent to the SOCP

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & \bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i=1,\ldots,m \end{array}$

(follows from $\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$)

stochastic approach via SOCP

assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i $(a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i))$ $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\operatorname{Prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

where
$$\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$$
 is CDF of $\mathcal{N}(0,1)$
robust LP

minimize
$$c^T x$$

subject to $\mathbf{Prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m,$

with $\eta \geq 1/2$, is equivalent to the SOCP

minimize
$$c^T x$$

subject to $ar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i=1,\ldots,m$

monomial function

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

with c > 0; exponent α_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

geometric program (GP)

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & h_i(x)=1, \quad i=1,\ldots,p \end{array}$$

with f_i posynomial, h_i monomial

Geometric program in convex form

change variables to $y_i = \log x_i$, and take logarithm of cost, constraints

• monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k}\right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^T y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^T y + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$
 $Gy + d = 0$

Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue $\lambda_{pf}(A)$

- exists for (elementwise) positive $A \in \mathbb{R}^{n \times n}$
- a real, positive eigenvalue of A, equal to spectral radius $\max_i |\lambda_i(A)|$
- determines asymptotic growth (decay) rate of A^k : $A^k \sim \lambda_{\rm pf}^k$ as $k \to \infty$
- alternative characterization: $\lambda_{pf}(A) = \inf\{\lambda \mid Av \leq \lambda v \text{ for some } v \succ 0\}$

minimizing spectral radius of matrix of posynomials

- minimize $\lambda_{pf}(A(x))$, where the elements $A(x)_{ij}$ are posynomials of x
- equivalent geometric program:

minimize
$$\lambda$$

subject to $\sum_{j=1}^{n} A(x)_{ij} v_j / (\lambda v_i) \leq 1, \quad i = 1, \dots, n$

variables λ , v, x

Generalized inequality constraints

convex problem with generalized inequality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0$, $i = 1, \dots, m$
 $Ax = b$

• $f_0 : \mathbb{R}^n \to \mathbb{R}$ convex; $f_i : \mathbb{R}^n \to \mathbb{R}^{k_i} K_i$ -convex w.r.t. proper cone K_i

 same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \preceq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbb{R}^m_+)$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \leq 0$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \preceq 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ SDP: minimize $c^T x$ subject to $Ax \leq b$ subject to $diag(Ax - b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$

$$\begin{array}{lll} \mathsf{SDP:} & \mathsf{minimize} & f^T x \\ & \mathsf{subject to} & \left[\begin{array}{cc} (c_i^T x + d_i) I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{array} \right] \succeq 0, \quad i = 1, \dots, m \end{array}$$

Eigenvalue minimization

minimize $\lambda_{\max}(A(x))$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & A(x) \preceq tI \end{array}$

• variables $x \in \mathbb{R}^n$, $t \in \mathbb{R}$

follows from

$$\lambda_{\max}(A) \le t \quad \Longleftrightarrow \quad A \preceq tI$$

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ (with given $A_i \in \mathbf{S}^{p \times q}$)
equivalent SDP
minimize t
subject to $\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$

• variables
$$x \in \mathbb{R}^n$$
, $t \in \mathbb{R}$

constraint follows from

$$\|A\|_{2} \leq t \iff A^{T}A \leq t^{2}I, \quad t \geq 0$$
$$\iff \begin{bmatrix} tI & A\\ A^{T} & tI \end{bmatrix} \succeq 0$$

A. d'Aspremont. Convex Optimization M2.