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Outline

� basic properties and examples

� operations that preserve convexity

� the conjugate function

� quasiconvex functions

� log-concave and log-convex functions

� convexity with respect to generalized inequalities
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Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

� f is concave if −f is convex

� f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x 6= y, 0 < θ < 1
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Examples on R

convex:

� affine: ax+ b on R, for any a, b ∈ R

� exponential: eax, for any a ∈ R

� powers: xα on R++, for α ≥ 1 or α ≤ 0

� powers of absolute value: |x|p on R, for p ≥ 1

� negative entropy: x log x on R++

concave:

� affine: ax+ b on R, for any a, b ∈ R

� powers: xα on R++, for 0 ≤ α ≤ 1

� logarithm: log x on R++
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Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

examples on Rn

� affine function f(x) = aTx+ b

� norms: ‖x‖p = (
∑n
i=1 |xi|p)1/p for p ≥ 1; ‖x‖∞ = maxk |xk|

examples on Rm×n (m× n matrices)

� affine function

f(X) = Tr(ATX) + b =

m∑
i=1

n∑
j=1

AijXij + b

� spectral (maximum singular value) norm

f(X) = ‖X‖2 = σmax(X) = (λmax(XTX))1/2
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Restriction of a convex function to a line

f : Rn → R is convex if and only if the function g : R→ R,

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

is convex (in t) for any x ∈ dom f , v ∈ Rn

can check convexity of f by checking convexity of functions of one variable

example. f : Sn → R with f(X) = log detX, domX = Sn++

g(t) = log det(X + tV ) = log detX + log det(I + tX−1/2V X−1/2)

= log detX +

n∑
i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X � 0, V ); hence f is concave
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Extended-value extension

extended-value extension f̃ of f is

f̃(x) = f(x), x ∈ dom f, f̃(x) =∞, x 6∈ dom f

often simplifies notation; for example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

(as an inequality in R ∪ {∞}), means the same as the two conditions

� dom f is convex

� for x, y ∈ dom f ,

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)
exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

� f is convex if and only if

∇2f(x) � 0 for all x ∈ dom f

� if ∇2f(x) � 0 for all x ∈ dom f , then f is strictly convex
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Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P � 0

least-squares objective: f(x) = ‖Ax− b‖22

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA

convex (for any A)

quadratic-over-linear: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[
y
−x

] [
y
−x

]T
� 0

convex for y > 0 xy

f
(x

,
y
)
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0

2

0
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2
0
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2
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log-sum-exp: f(x) = log
∑n
k=1 expxk is convex

∇2f(x) =
1

1Tz
diag(z)− 1

(1Tz)2
zzT (zk = expxk)

to show ∇2f(x) � 0, we must verify that vT∇2f(x)v ≥ 0 for all v:

vT∇2f(x)v =
(
∑
k zkv

2
k)(
∑
k zk)− (

∑
k vkzk)

2

(
∑
k zk)

2
≥ 0

since (
∑
k vkzk)

2 ≤ (
∑
k zkv

2
k)(
∑
k zk) (from Cauchy-Schwarz inequality)

geometric mean: f(x) = (
∏n
k=1 xk)

1/n on Rn++ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

epi f

f

f is convex if and only if epi f is a convex set
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Jensen’s inequality

basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

extension: if f is convex, then

f(E z) ≤ E f(z)

for any random variable z

basic inequality is special case with discrete distribution

Prob(z = x) = θ, Prob(z = y) = 1− θ
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2f(x) � 0

3. show that f is obtained from simple convex functions by operations that
preserve convexity

� nonnegative weighted sum
� composition with affine function
� pointwise maximum and supremum
� composition
� minimization
� perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

� log barrier for linear inequalities

f(x) = −
m∑
i=1

log(bi − aTi x), dom f = {x | aTi x < bi, i = 1, . . . ,m}

� (any) norm of affine function: f(x) = ‖Ax+ b‖
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Pointwise maximum

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

examples

� piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex

� sum of r largest components of x ∈ Rn:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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Pointwise supremum

if f(x, y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex

examples

� support function of a set C: SC(x) = supy∈C y
Tx is convex

� distance to farthest point in a set C:

f(x) = sup
y∈C
‖x− y‖

� maximum eigenvalue of symmetric matrix: for X ∈ Sn,

λmax(X) = sup
‖y‖2=1

yTXy
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Composition with scalar functions

composition of g : Rn → R and h : R→ R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing

g concave, h convex, h̃ nonincreasing

� proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

� note: monotonicity must hold for extended-value extension h̃

examples

� exp g(x) is convex if g is convex

� 1/g(x) is convex if g is concave and positive
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Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument

gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x)

examples

�
∑m
i=1 log gi(x) is concave if gi are concave and positive

� log
∑m
i=1 exp gi(x) is convex if gi are convex
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Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

examples

� f(x, y) = xTAx+ 2xTBy + yTCy with[
A B
BT C

]
� 0, C � 0

minimizing over y gives g(x) = infy f(x, y) = xT (A−BC−1BT )x

g is convex, hence Schur complement A−BC−1BT � 0

� distance to a set: dist(x, S) = infy∈S ‖x− y‖ is convex if S is convex
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Perspective

the perspective of a function f : Rn → R is the function g : Rn × R→ R,

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

g is convex if f is convex

examples

� f(x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0

� negative logarithm f(x) = − log x is convex; hence relative entropy
g(x, t) = t log t− t log x is convex on R2

++

� if f is convex, then

g(x) = (cTx+ d)f
(
(Ax+ b)/(cTx+ d)

)
is convex on {x | cTx+ d > 0, (Ax+ b)/(cTx+ d) ∈ dom f}

A. d’Aspremont. Convex Optimization M2. 22/67



The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

� f∗ is convex (even if f is not)

� Used in regularization, duality results, . . .
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examples

� negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{
−1− log(−y) y < 0
∞ otherwise

� strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn++

f∗(y) = sup
x

(yTx− (1/2)xTQx)

=
1

2
yTQ−1y
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Quasiconvex functions

f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

α

β

a b c

� f is quasiconcave if −f is quasiconvex

� f is quasilinear if it is quasiconvex and quasiconcave
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Examples

�

√
|x| is quasiconvex on R

� ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

� log x is quasilinear on R++

� f(x1, x2) = x1x2 is quasiconcave on R2
++

� linear-fractional function

f(x) =
aTx+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

is quasilinear

� distance ratio

f(x) =
‖x− a‖2
‖x− b‖2

, dom f = {x | ‖x− a‖2 ≤ ‖x− b‖2}

is quasiconvex
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Properties

modified Jensen inequality: for quasiconvex f

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ max{f(x), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0

x
∇f(x)

sums of quasiconvex functions are not necessarily quasiconvex
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Log-concave and log-convex functions

a positive function f is log-concave if log f is concave:

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ for 0 ≤ θ ≤ 1

f is log-convex if log f is convex

� powers: xa on R++ is log-convex for a ≤ 0, log-concave for a ≥ 0

� many common probability densities are log-concave, e.g., normal:

f(x) =
1√

(2π)n det Σ
e−

1
2(x−x̄)TΣ−1(x−x̄)

� cumulative Gaussian distribution function Φ is log-concave

Φ(x) =
1√
2π

∫ x

−∞
e−u

2/2 du
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Properties of log-concave functions

� twice differentiable f with convex domain is log-concave if and only if

f(x)∇2f(x) � ∇f(x)∇f(x)T

for all x ∈ dom f

� product of log-concave functions is log-concave

� sum of log-concave functions is not always log-concave

� integration: if f : Rn × Rm → R is log-concave, then

g(x) =

∫
f(x, y) dy

is log-concave (not easy to show)
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consequences of integration property

� convolution f ∗ g of log-concave functions f , g is log-concave

(f ∗ g)(x) =

∫
f(x− y)g(y)dy

� if C ⊆ Rn convex and y is a random variable with log-concave pdf then

f(x) = Prob(x+ y ∈ C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

f(x) =

∫
g(x+ y)p(y) dy, g(u) =

{
1 u ∈ C
0 u 6∈ C,

p is pdf of y
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example: yield function

Y (x) = Prob(x+ w ∈ S)

� x ∈ Rn: nominal parameter values for product

� w ∈ Rn: random variations of parameters in manufactured product

� S: set of acceptable values

if S is convex and w has a log-concave pdf, then

� Y is log-concave

� yield regions {x | Y (x) ≥ α} are convex

� Not necessarily tractable though. . .
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Convexity with respect to generalized inequalities

f : Rn → Rm is K-convex if dom f is convex and

f(θx+ (1− θ)y) �K θf(x) + (1− θ)f(y)

for x, y ∈ dom f , 0 ≤ θ ≤ 1

example f : Sm → Sm, f(X) = X2 is Sm+ -convex

proof: for fixed z ∈ Rm, zTX2z = ‖Xz‖22 is convex in X, i.e.,

zT (θX + (1− θ)Y )2z ≤ θzTX2z + (1− θ)zTY 2z

for X,Y ∈ Sm, 0 ≤ θ ≤ 1

therefore (θX + (1− θ)Y )2 � θX2 + (1− θ)Y 2
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Convex Optimization Problems
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Outline

� optimization problem in standard form

� convex optimization problems

� quasiconvex optimization

� linear optimization

� quadratic optimization

� geometric programming

� generalized inequality constraints

� semidefinite programming

� vector optimization
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Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

� x ∈ Rn is the optimization variable

� f0 : Rn → R is the objective or cost function

� fi : Rn → R, i = 1, . . . ,m, are the inequality constraint functions

� hi : Rn → R are the equality constraint functions

optimal value:

p? = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

� p? =∞ if problem is infeasible (no x satisfies the constraints)

� p? = −∞ if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p?; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

‖z − x‖2 ≤ R

examples (with n = 1, m = p = 0)

� f0(x) = 1/x, dom f0 = R++: p? = 0, no optimal point

� f0(x) = − log x, dom f0 = R++: p? = −∞

� f0(x) = x log x, dom f0 = R++: p? = −1/e, x = 1/e is optimal

� f0(x) = x3 − 3x, p? = −∞, local optimum at x = 1
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Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =

m⋂
i=0

dom fi ∩
p⋂
i=1

domhi,

� we call D the domain of the problem

� the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

� a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:

minimize f0(x) = −
∑k
i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi
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Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

� p? = 0 if constraints are feasible; any feasible x is optimal

� p? =∞ if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

� f0, f1, . . . , fm are convex; equality constraints are affine

� problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as
minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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example

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)2 = 0

� f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

� not a convex problem (according to our definition): f1 is not convex, h1 is not
affine

� equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal and y is optimal with f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ‖z − x‖2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2‖y − x‖2)

� ‖y − x‖2 > R, so 0 < θ < 1/2

� z is a convex combination of two feasible points, hence also feasible

� ‖z − x‖2 = R/2 and

f0(z) ≤ θf0(x) + (1− θ)f0(y) < f0(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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� unconstrained problem: x is optimal if and only if

x ∈ dom f0, ∇f0(x) = 0

� equality constrained problem

minimize f0(x) subject to Ax = b

x is optimal if and only if there exists a ν such that

x ∈ dom f0, Ax = b, ∇f0(x) +ATν = 0

� minimization over nonnegative orthant

minimize f0(x) subject to x � 0

x is optimal if and only if

x ∈ dom f0, x � 0,

{
∇f0(x)i ≥ 0 xi = 0
∇f0(x)i = 0 xi > 0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained
from the solution of the other, and vice-versa

some common transformations that preserve convexity:

� eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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� introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

� introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
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� epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

� minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)
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Quasiconvex optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : Rn → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

(x, f0(x))
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quasiconvex optimization via convex feasibility problems

f0(x) ≤ t, fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

� for fixed t, a convex feasibility problem in x

� if feasible, we can conclude that t ≥ p?; if infeasible, t ≤ p?

Bisection method for quasiconvex optimization

given l ≤ p?, u ≥ p?, tolerance ε > 0.

repeat
1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u− l ≤ ε.

requires exactly dlog2((u− l)/ε)e iterations (where u, l are initial values)
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Linear program (LP)

minimize cTx+ d
subject to Gx � h

Ax = b

� convex problem with affine objective and constraint functions

� feasible set is a polyhedron

P
x⋆

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

� one unit of food j costs cj, contains amount aij of nutrient i

� healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax � b, x � 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m
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Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aTi x ≤ bi, i = 1, . . . ,m}

is center of largest inscribed ball

B = {xc + u | ‖u‖2 ≤ r}

xchebxcheb

� aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ‖u‖2 ≤ r} = aTi xc + r‖ai‖2 ≤ bi

� hence, xc, r can be determined by solving the LP

maximize r
subject to aTi xc + r‖ai‖2 ≤ bi, i = 1, . . . ,m
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(Generalized) linear-fractional program

minimize f0(x)
subject to Gx � h

Ax = b

linear-fractional program

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) = {x | eTx+ f > 0}

� a quasiconvex optimization problem; can be solved by bisection

� also equivalent to the LP (variables y, z)

minimize cTy + dz
subject to Gy � hz

Ay = bz
eTy + fz = 1
z ≥ 0
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Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx � h

Ax = b

� P ∈ Sn+, so objective is convex quadratic

� minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)
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Examples

least-squares
minimize ‖Ax− b‖22

� analytical solution x? = A†b (A† is pseudo-inverse)

� can add linear constraints, e.g., l � x � u

linear program with random cost

minimize c̄Tx+ γxTΣx = E cTx+ γ var(cTx)
subject to Gx � h, Ax = b

� c is random vector with mean c̄ and covariance Σ

� hence, cTx is random variable with mean c̄Tx and variance xTΣx

� γ > 0 is risk aversion parameter; controls the trade-off between expected cost
and variance (risk)
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Quadratically constrained quadratic program (QCQP)

minimize (1/2)xTP0x+ qT0 x+ r0

subject to (1/2)xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m
Ax = b

� Pi ∈ Sn+; objective and constraints are convex quadratic

� if P1, . . . , Pm ∈ Sn++, feasible region is intersection of m ellipsoids and an
affine set
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Second-order cone programming

minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

� inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

� for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

� more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

� deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

� stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m
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deterministic approach via SOCP

� choose an ellipsoid as Ei:

Ei = {āi + Piu | ‖u‖2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

� robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ‖PTi x‖2 ≤ bi, i = 1, . . . ,m

(follows from sup‖u‖2≤1(āi + Piu)Tx = āTi x+ ‖PTi x‖2)
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stochastic approach via SOCP

� assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

� aTi x is Gaussian r.v. with mean āTi x, variance xTΣix; hence

Prob(aTi x ≤ bi) = Φ

(
bi − āTi x
‖Σ1/2

i x‖2

)

where Φ(x) = (1/
√

2π)
∫ x
−∞ e

−t2/2 dt is CDF of N (0, 1)

� robust LP

minimize cTx
subject to Prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+ Φ−1(η)‖Σ1/2
i x‖2 ≤ bi, i = 1, . . . ,m
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Geometric programming

monomial function

f(x) = cxa1
1 x

a2
2 · · ·xann , dom f = Rn++

with c > 0; exponent αi can be any real number

posynomial function: sum of monomials

f(x) =

K∑
k=1

ckx
a1k
1 x

a2k
2 · · ·xankn , dom f = Rn++

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial
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Geometric program in convex form

change variables to yi = log xi, and take logarithm of cost, constraints

� monomial f(x) = cxa1
1 · · ·xann transforms to

log f(ey1, . . . , eyn) = aTy + b (b = log c)

� posynomial f(x) =
∑K
k=1 ckx

a1k
1 x

a2k
2 · · ·xankn transforms to

log f(ey1, . . . , eyn) = log

(
K∑
k=1

ea
T
k y+bk

)
(bk = log ck)

� geometric program transforms to convex problem

minimize log
(∑K

k=1 exp(aT0ky + b0k)
)

subject to log
(∑K

k=1 exp(aTiky + bik)
)
≤ 0, i = 1, . . . ,m

Gy + d = 0

A. d’Aspremont. Convex Optimization M2. 61/67



Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue λpf(A)

� exists for (elementwise) positive A ∈ Rn×n

� a real, positive eigenvalue of A, equal to spectral radius maxi |λi(A)|

� determines asymptotic growth (decay) rate of Ak: Ak ∼ λkpf as k →∞

� alternative characterization: λpf(A) = inf{λ | Av � λv for some v � 0}

minimizing spectral radius of matrix of posynomials

� minimize λpf(A(x)), where the elements A(x)ij are posynomials of x

� equivalent geometric program:

minimize λ
subject to

∑n
j=1A(x)ijvj/(λvi) ≤ 1, i = 1, . . . , n

variables λ, v, x
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) �Ki 0, i = 1, . . . ,m

Ax = b

� f0 : Rn → R convex; fi : Rn → Rki Ki-convex w.r.t. proper cone Ki

� same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g �K 0

Ax = b

extends linear programming (K = Rm+ ) to nonpolyhedral cones
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

with Fi, G ∈ Sk

� inequality constraint is called linear matrix inequality (LMI)

� includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ � 0, x1F̃1 + · · ·+ xnF̃n + G̃ � 0

is equivalent to single LMI

x1

[
F̂1 0

0 F̃1

]
+ x2

[
F̂2 0

0 F̃2

]
+ · · ·+ xn

[
F̂n 0

0 F̃n

]
+

[
Ĝ 0

0 G̃

]
� 0
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LP and SOCP as SDP

LP and equivalent SDP

LP: minimize cTx
subject to Ax � b

SDP: minimize cTx
subject to diag(Ax− b) � 0

(note different interpretation of generalized inequality �)

SOCP and equivalent SDP

SOCP: minimize fTx
subject to ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m

SDP: minimize fTx

subject to

[
(cTi x+ di)I Aix+ bi
(Aix+ bi)

T cTi x+ di

]
� 0, i = 1, . . . ,m
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Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) � tI

� variables x ∈ Rn, t ∈ R

� follows from
λmax(A) ≤ t ⇐⇒ A � tI
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Matrix norm minimization

minimize ‖A(x)‖2 =
(
λmax(A(x)TA(x))

)1/2
where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sp×q)

equivalent SDP
minimize t

subject to

[
tI A(x)

A(x)T tI

]
� 0

� variables x ∈ Rn, t ∈ R

� constraint follows from

‖A‖2 ≤ t ⇐⇒ ATA � t2I, t ≥ 0

⇐⇒
[
tI A
AT tI

]
� 0
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