Convex Optimization M2

Lecture 6

Large Scale Optimization

Outline

- First-order methods: introduction
- Exploiting structure
- First order algorithms
 - $\circ~$ Subgradient methods
 - \circ Gradient methods
 - Accelerated gradient methods
- Other algorithms
 - $\circ~$ Coordinate descent methods
 - $\circ~$ Localization methods
 - \circ Franke-Wolfe
 - $\circ~$ Dykstra, alternating projection
 - Stochastic optimization

- Most of these methods are very old (1950-...)
- Very large catalog of algorithms, no unifying theory as in IPM
- Many variations around a few key algorithmic templates
- Better scaling, worst dependence on precision target
- In practice: algorithmic choices are dictated by problem structure.

What subproblem (projection, etc...) can you solve efficiently?

First Order Algorithms

First-order methods: introduction

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in C \end{array}$

In theory:

- The theoretical convergence speed of gradient based methods is mostly controlled by the smoothness of the objective.
- Obviously, the geometry of the (convex) feasible set also has an impact.

Convex objective $f(x)$	Iterations
Nondifferentiable	$O(1/\epsilon^2)$
Differentiable	$O(1/\epsilon^2)$
Smooth (Lipschitz gradient)	$O(1/\sqrt{\epsilon})$
Strongly convex	$O(\log(1/\epsilon))$

In practice:

- Compared to IPM, much larger gap between theoretical complexity guarantees and empirical performance.
- Conditioning, well-posedness, etc. also have a very strong impact.

First-order methods: introduction

Solve

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in C \end{array}$

in $x \in \mathbb{R}^n$, with $C \subset \mathbb{R}^n$ convex.

Main assumptions in the subgradient/gradient methods that follow:

- The gradient $\nabla f(x)$ or a subgradient can be computed efficiently.
- If C is not \mathbb{R}^n , for any $y \in \mathbb{R}^n$, the following subproblem can be solved efficiently

 $\begin{array}{ll} \text{minimize} & y^T x + d(x) \\ \text{subject to} & x \in C \end{array}$

in the variable $x \in \mathbb{R}^n$, where d(x) is a **strongly convex** function.

Typically, $d(x) = ||x||_2$ and this is an Euclidean projection.

Subgradient Method

Subgradient

Suppose that f is a convex function with $\mathbf{dom} f = \mathbb{R}^n$, and that there is a vector $g \in \mathbb{R}^n$ such that:

$$f(y) \ge f(x) + g^T(y - x), \text{ for all } y \in \mathbb{R}^n$$

- The vector g is called a **subgradient** of f at x, we write $g \in \partial f$.
- Of course, if f is differentiable, the gradient of f at x satisfies this condition
- The subgradient defines a supporting hyperplane for f at the point x

Subgradient method:

- Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex
- We update the current point x_k according to:

 $x_{k+1} = x_k + \alpha_k g_k$

where g_k is a subgradient of f at x_k

- α_k is the step size sequence
- Similar to gradient descent but, not a descent method . . .
- Instead: use the best point and the minimum function value found so far

Step size strategies:

- Constant step size: $\alpha_k = h$ for all $k \ge 0$
- Constant step length: $\alpha_k / \|g_k\| = h$ for all $k \ge 0$

Square summable but not summable:

$$\sum_{k=0}^{\infty} \alpha_k = \infty \quad \text{and} \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty$$

Nonsummable diminishing:

$$\sum_{k=0}^{\infty} \alpha_k = \infty \quad \text{and} \quad \lim_{k \to \infty} \alpha_k = 0$$

Subgradient Methods

Convergence:

Assuming $||g||_2 \leq G$, for all $g \in \partial f$, we can show

$$f_{\text{best}} - f^* \le \frac{\operatorname{dist}(x_1, x^*) + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i}$$

For constant step $\alpha_i = h$, this becomes

$$f_{\text{best}} - f^{\star} \le \frac{\operatorname{dist}(x_1, x^*)}{2hk} + G^2 h/2$$

to get an ϵ solution, we set $h=2\epsilon/G^2$ and

$$\frac{\operatorname{dist}(x_1, x^*)}{2hk} \le \epsilon$$

hence

$$k \ge \frac{\operatorname{dist}(x_1, x^*)G^2}{4\epsilon^2}.$$

A. d'Aspremont. Convex Optimization M2.

If the problem has constraints:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

where $C \subset \mathbb{R}^n$ is a convex set

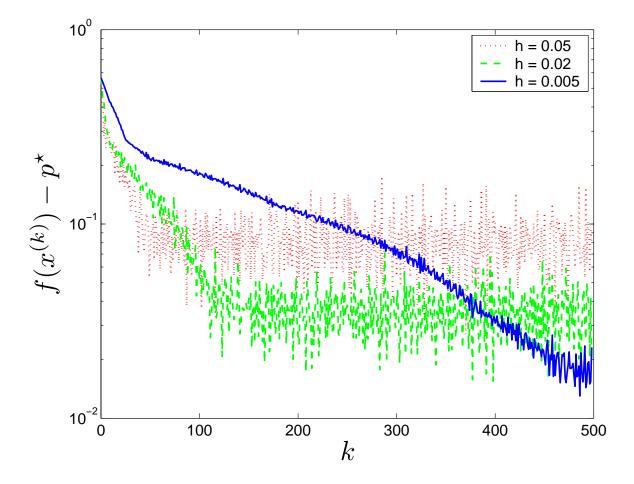
• Use the Euclidean projection $p_C(\cdot)$

$$x_{k+1} = p_C(x_k + \alpha_k g_k)$$

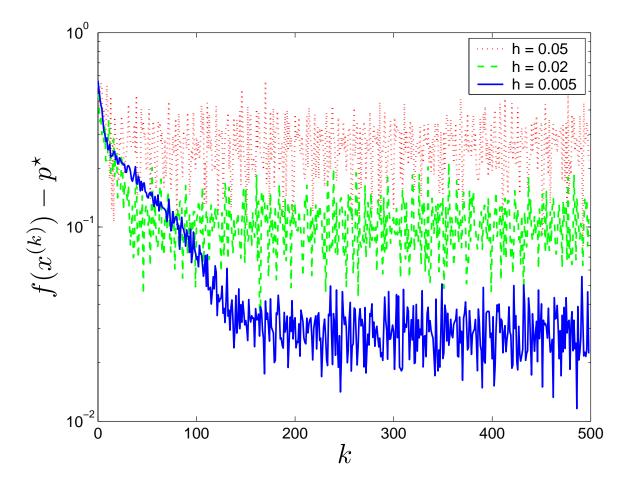
- Similar complexity analysis
- Some numerical examples on piecewise linear minimization. . . Problem instance with n = 10 variables, m = 100 terms

Subgradient Methods: Numerical Examples

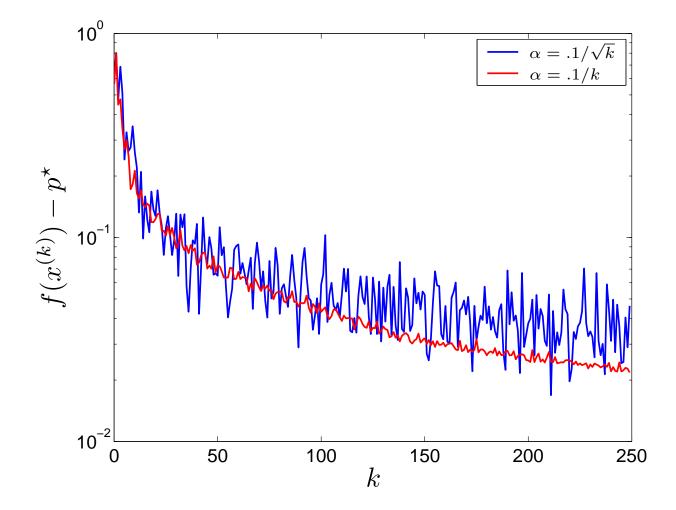
Constant step length, h = 0.05, 0.02, 0.005



Constant step size h = 0.05, 0.02, 0.005

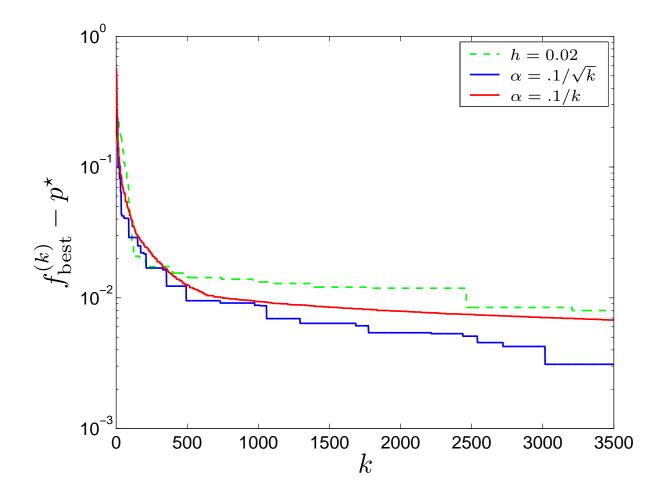


Diminishing step rule $\alpha = 0.1/\sqrt{k}$ and square summable step size rule $\alpha = 0.1/k$.



A. d'Aspremont. Convex Optimization M2.

Constant step length h = 0.02, diminishing step size rule $\alpha = 0.1/\sqrt{k}$, and square summable step rule $\alpha = 0.1/k$



Gradient Descent

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x := -\nabla f(x)$.

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

• stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$

• convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type.

- this means $O(\log 1/\epsilon)$ iterations to get ϵ solution.
- very simple, but often very slow; rarely used in practice

quadratic problem in \mathbb{R}^2

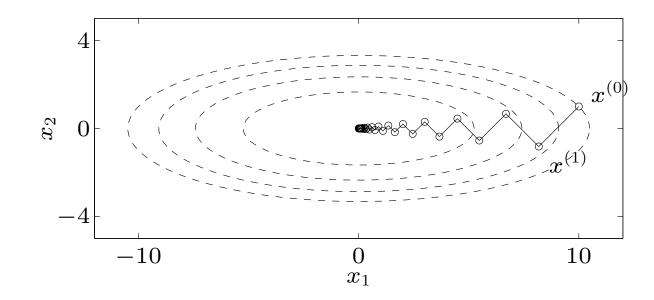
$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

• very slow if
$$\gamma \gg 1$$
 or $\gamma \ll 1$

• example for $\gamma = 10$:



Solve

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

in $x \in \mathbb{R}^n$, with $C \subset \mathbb{R}^n$ convex.

Additional smoothness assumption: the gradient is Lipschitz continuous

$$\|
abla f(x) -
abla f(y)\| \le L \|x - y\|$$
 for all $x, y \in C$

where $\|\cdot\|$ is the Euclidean norm (to simplify).

A. d'Aspremont. Convex Optimization M2.

 Under this new smoothness assumption, we can improve the complexity bound for the most basic gradient method

$$x_{k+1} = x_k - h\nabla f(x_k)$$

for some h > 0. We get

$$f(x_k) - f(x^*) \le \frac{2L(f(x_0) - f(x^*)) ||x_0 - x^*||^2}{2L ||x_0 - x^*||^2 + k(f(x_0) - f(x^*))}$$

having set h = 1/L.

Roughly $O(1/\epsilon)$ iterations to get ϵ -solution. This is suboptimal as the lower complexity bound is $O(1/\sqrt{\epsilon})$. In what follows, we will see how to reach this optimal complexity.

The fact that the gradient $\nabla f(x)$ is Lipschitz continuous

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\| \text{ for all } x, y \in C$$

has important algorithmic consequences:

For any $x, y \in \mathbb{R}^n$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|y - x\|^2$$

and we get a quadratic upper bound on the function f(x).

• This means in particular that if $y = x - \frac{1}{L} \nabla f(x)$, then

$$f(y) \le f(x) - \frac{1}{2L} \|\nabla f(x)\|^2$$

and we get a guaranteed decrease in the function value at each gradient step.

We construct an **estimate sequence** $\phi_k(x)$ of the function f(x), together with sequences $x_k \in \mathbb{R}^n$ and $\lambda_k \ge 0$, satisfying

$$\phi_k(x) \le (1 - \lambda_k)f(x) + \lambda_k\phi_0(x)$$

and

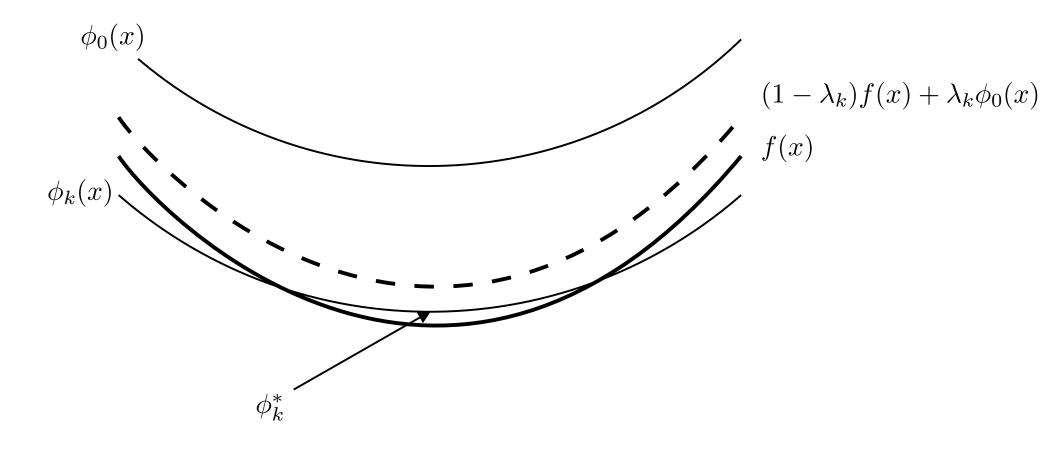
$$f(x_k) \le \phi_k^* \triangleq \min_{x \in \mathbb{R}^n} \phi_k(x).$$

This means in particular that

$$f(x_k) - f^* \le \lambda_k(\phi_0(x^*) - f^*)$$

(just plug x^* in the inequalities above) so we get convergence if $\lambda_k \to 0$.

The function f(x) and its estimate functions $\phi_k(x)$:



The functions are $\phi_k(x)$ are increasingly precise approximations of f(x) around the optimum and are easier to minimize.

Intuition behind the method. Use the fact that the gradient is Lipschitz continuous.

• The inequality

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} \|y - x\|^2$$

helps us build the bounds $\phi_k(x)$.

In fact, we can pick

$$\phi_k(x) = \phi_k^* + \gamma_k ||x - v_k||^2$$

for some $\gamma_k \geq 0$ and $v_k \in \mathbb{R}^n$.

• We get the points x_{k+1} by making a gradient step starting around the minimum of $\phi_k(x)$ (easy to compute), using the guarantee

$$f(y) \le f(x) - \frac{1}{2L} \|\nabla f(x)\|^2$$

Also solves minimization problems over simple convex sets $C \subset \mathbb{R}^n$. Define the **gradient mapping**

$$g_C(y,\gamma) = \gamma(y - x_C(y,\gamma))$$

where

$$x_C(y,\gamma) = \operatorname*{argmin}_{x \in C} \left(f(y) + \nabla f(y)^T (x-y) + \frac{\gamma}{2} \|x-y\|^2 \right)$$

- Here, $g_C(y, \gamma)$ plays the role of the gradient for constrained problems, and satisfies

$$f(x) \ge f(x_C(y,\gamma)) + g_C(y,\gamma)^T(x-y) + \frac{1}{2\gamma} \|g_C(y,\gamma)\|^2 + \frac{\mu}{2} \|x-y\|^2$$

This means in particular

$$f(x_C(y,\gamma)) \le f(y) - \frac{1}{2\gamma} \|g_C(y,\gamma)\|^2$$

(just set y = x in the previous inequality).

Minimize f(x) over $C \subset \mathbb{R}^n$. Assuming $\nabla f(x)$ is Lipschitz continuous with constant L and that f(x) is strongly convex with parameter $\mu \ge 0$.

- Choose $x_0 \in \mathbb{R}^n$ and $\alpha_0 \in (0, 1)$, set $y_0 = x_0$ and $q = \mu/L$.
- For $k = 1, \ldots, k^{max}$ iterate
 - 1. Compute $\nabla f(y_k)$ and set

$$x_{k+1} = x_C(y_k, \gamma)$$

2. Compute $\alpha_{k+1} \in (0,1)$ by solving

$$\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$$

3. Update the current point, with

$$y_{k+1} = x_{k+1} + \frac{\alpha_k (1 - \alpha_k)}{\alpha_k^2 + \alpha_{k+1}} (x_{k+1} - x_k)$$

A. d'Aspremont. Convex Optimization M2.

Suppose we set $\alpha_0 \ge \sqrt{\mu/L}$, we have the following **complexity** bound

$$f(x_k) - f^* \le \Delta_0 \min\left\{ \left(1 - \sqrt{\frac{\mu}{L}}\right)^k, \frac{4L}{(2\sqrt{L} + k\sqrt{\gamma_0})^2} \right\}$$

where

$$\Delta_0 = \left(f(x_0) - f^* + \frac{\gamma_0}{2} \|x_0 - x^*\|^2 \right) \quad \text{and} \quad \gamma_0 = \frac{\alpha_0(\alpha_0 L - \mu)}{1 - \alpha_0}.$$

When the strong convexity parameter $\mu = 0$, this means roughly $O(1/\sqrt{\epsilon})$ iterations to get an ϵ solution.

Remarks:

- The iterates y_k are not guaranteed to be feasible (in some case, f(x) is not defined outside of C).
- The norm $\|\cdot\|$ is Euclidean. Using other norms is sometimes more efficient.

Both issues can be remedied using an extra minimization subproblem.