
Convex Optimization M2

Lecture 6

A. d’Aspremont. Convex Optimization M2. 1/30



Large Scale Optimization

A. d’Aspremont. Convex Optimization M2. 2/30



Outline

� First-order methods: introduction

� Exploiting structure

� First order algorithms

◦ Subgradient methods

◦ Gradient methods

◦ Accelerated gradient methods

� Other algorithms

◦ Coordinate descent methods

◦ Localization methods

◦ Franke-Wolfe

◦ Dykstra, alternating projection

◦ Stochastic optimization

A. d’Aspremont. Convex Optimization M2. 3/30



First-order methods: introduction

� Most of these methods are very old (1950-. . . )

� Very large catalog of algorithms, no unifying theory as in IPM

� Many variations around a few key algorithmic templates

� Better scaling, worst dependence on precision target

� In practice: algorithmic choices are dictated by problem structure.

What subproblem (projection, etc...) can you solve efficiently?

A. d’Aspremont. Convex Optimization M2. 4/30



First Order Algorithms

A. d’Aspremont. Convex Optimization M2. 5/30



First-order methods: introduction

minimize f(x)
subject to x ∈ C

In theory:

� The theoretical convergence speed of gradient based methods is mostly
controlled by the smoothness of the objective.

� Obviously, the geometry of the (convex) feasible set also has an impact.

Convex objective f(x) Iterations. . .
Nondifferentiable O(1/ε2)
Differentiable O(1/ε2)
Smooth (Lipschitz gradient) O(1/

√
ε)

Strongly convex O(log(1/ε))

In practice:

� Compared to IPM, much larger gap between theoretical complexity guarantees
and empirical performance.

� Conditioning, well-posedness, etc. also have a very strong impact.

A. d’Aspremont. Convex Optimization M2. 6/30



First-order methods: introduction

Solve
minimize f(x)
subject to x ∈ C

in x ∈ Rn, with C ⊂ Rn convex.

Main assumptions in the subgradient/gradient methods that follow:

� The gradient ∇f(x) or a subgradient can be computed efficiently.

� If C is not Rn, for any y ∈ Rn, the following subproblem can be solved
efficiently

minimize yTx+ d(x)
subject to x ∈ C

in the variable x ∈ Rn, where d(x) is a strongly convex function.

Typically, d(x) = ‖x‖2 and this is an Euclidean projection.

A. d’Aspremont. Convex Optimization M2. 7/30



Subgradient Method

A. d’Aspremont. Convex Optimization M2. 8/30



Subgradient Methods

Subgradient

� Suppose that f is a convex function with domf = Rn, and that there is a
vector g ∈ Rn such that:

f(y) ≥ f(x) + gT (y − x), for all y ∈ Rn

� The vector g is called a subgradient of f at x, we write g ∈ ∂f .

� Of course, if f is differentiable, the gradient of f at x satisfies this condition

� The subgradient defines a supporting hyperplane for f at the point x

A. d’Aspremont. Convex Optimization M2. 9/30



Subgradient Methods

Subgradient method:

� Suppose f : Rn → R is convex

� We update the current point xk according to:

xk+1 = xk + αkgk

where gk is a subgradient of f at xk

� αk is the step size sequence

� Similar to gradient descent but, not a descent method . . .

� Instead: use the best point and the minimum function value found so far

A. d’Aspremont. Convex Optimization M2. 10/30



Subgradient Methods

Step size strategies:

� Constant step size: αk = h for all k ≥ 0

� Constant step length: αk/‖gk‖ = h for all k ≥ 0

� Square summable but not summable:

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞

� Nonsummable diminishing:

∞∑
k=0

αk =∞ and lim
k→∞

αk = 0

A. d’Aspremont. Convex Optimization M2. 11/30



Subgradient Methods

Convergence:

Assuming ‖g‖2 ≤ G, for all g ∈ ∂f , we can show

fbest − f? ≤
dist(x1, x

∗) +G2
∑k

i=1α
2
i

2
∑k

i=1αi

For constant step αi = h, this becomes

fbest − f? ≤
dist(x1, x

∗)

2hk
+G2h/2

to get an ε solution, we set h = 2ε/G2 and

dist(x1, x
∗)

2hk
≤ ε

hence

k ≥ dist(x1, x
∗)G2

4ε2
.

A. d’Aspremont. Convex Optimization M2. 12/30



Subgradient Methods

� If the problem has constraints:

minimize f(x)
subject to x ∈ C

where C ⊂ Rn is a convex set

� Use the Euclidean projection pC(·)

xk+1 = pC(xk + αkgk)

� Similar complexity analysis

� Some numerical examples on piecewise linear minimization. . . Problem
instance with n = 10 variables, m = 100 terms

A. d’Aspremont. Convex Optimization M2. 13/30



Subgradient Methods: Numerical Examples

Constant step length, h = 0.05, 0.02, 0.005

0 100 200 300 400 500
10

−2

10
−1

10
0

h = 0.05
h = 0.02
h = 0.005

k

f
(x

(k
) )
−

p
⋆

A. d’Aspremont. Convex Optimization M2. 14/30



Constant step size h = 0.05, 0.02, 0.005

0 100 200 300 400 500
10

−2

10
−1

10
0

h = 0.05
h = 0.02
h = 0.005

k

f
(x

(k
) )
−

p
⋆

A. d’Aspremont. Convex Optimization M2. 15/30



Diminishing step rule α = 0.1/
√
k and square summable step size rule α = 0.1/k.

0 50 100 150 200 250
10

−2

10
−1

10
0

α = .1/
√
k

α = .1/k

k

f
(x

(k
) )
−

p
⋆

A. d’Aspremont. Convex Optimization M2. 16/30



Constant step length h = 0.02, diminishing step size rule α = 0.1/
√
k, and square

summable step rule α = 0.1/k

0 500 1000 1500 2000 2500 3000 3500
10

−3

10
−2

10
−1

10
0

h = 0.02

α = .1/
√
k

α = .1/k

k

f
(k

)
b
e
st
−

p
⋆

A. d’Aspremont. Convex Optimization M2. 17/30



Gradient Descent

A. d’Aspremont. Convex Optimization M2. 18/30



Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

� stopping criterion usually of the form ‖∇f(x)‖2 ≤ ε

� convergence result: for strongly convex f ,

f(x(k))− p? ≤ ck(f(x(0))− p?)

c ∈ (0, 1) depends on m, x(0), line search type.

� this means O(log 1/ε) iterations to get ε solution.

� very simple, but often very slow; rarely used in practice

A. d’Aspremont. Convex Optimization M2. 19/30



quadratic problem in R2

f(x) = (1/2)(x21 + γx22) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

� very slow if γ � 1 or γ � 1

� example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

A. d’Aspremont. Convex Optimization M2. 20/30



Accelerated Gradient Methods

A. d’Aspremont. Convex Optimization M2. 21/30



Accelerated Gradient Methods

Solve
minimize f(x)
subject to x ∈ C

in x ∈ Rn, with C ⊂ Rn convex.

� Additional smoothness assumption: the gradient is Lipschitz continuous

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ C

where ‖ · ‖ is the Euclidean norm (to simplify).

A. d’Aspremont. Convex Optimization M2. 22/30



Accelerated Gradient Methods

� Under this new smoothness assumption, we can improve the complexity bound
for the most basic gradient method

xk+1 = xk − h∇f(xk)

for some h > 0. We get

f(xk)− f(x∗) ≤ 2L(f(x0)− f(x∗))‖x0 − x∗‖2

2L‖x0 − x∗‖2 + k(f(x0)− f(x∗))

having set h = 1/L.

� Roughly O(1/ε) iterations to get ε-solution. This is suboptimal as the lower
complexity bound is O(1/

√
ε). In what follows, we will see how to reach this

optimal complexity.

A. d’Aspremont. Convex Optimization M2. 23/30



Accelerated Gradient Methods

The fact that the gradient ∇f(x) is Lipschitz continuous

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ C

has important algorithmic consequences:

� For any x, y ∈ Rn,

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

and we get a quadratic upper bound on the function f(x).

� This means in particular that if y = x− 1
L∇f(x), then

f(y) ≤ f(x)− 1

2L
‖∇f(x)‖2

and we get a guaranteed decrease in the function value at each gradient step.

A. d’Aspremont. Convex Optimization M2. 24/30



Accelerated Gradient Methods

We construct an estimate sequence φk(x) of the function f(x), together with
sequences xk ∈ Rn and λk ≥ 0, satisfying

φk(x) ≤ (1− λk)f(x) + λkφ0(x)

and
f(xk) ≤ φ∗k , min

x∈Rn
φk(x).

This means in particular that

f(xk)− f∗ ≤ λk(φ0(x
∗)− f∗)

(just plug x∗ in the inequalities above) so we get convergence if λk → 0.

A. d’Aspremont. Convex Optimization M2. 25/30



Accelerated Gradient Methods

The function f(x) and its estimate functions φk(x):

φ0(x)

φk(x)

φ∗
k

(1− λk)f(x) + λkφ0(x)

f(x)

The functions are φk(x) are increasingly precise approximations of f(x) around
the optimum and are easier to minimize.

A. d’Aspremont. Convex Optimization M2. 26/30



Accelerated Gradient Methods

Intuition behind the method. Use the fact that the gradient is Lipschitz
continuous.

� The inequality

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖2

helps us build the bounds φk(x).

� In fact, we can pick
φk(x) = φ∗k + γk‖x− vk‖2

for some γk ≥ 0 and vk ∈ Rn.

� We get the points xk+1 by making a gradient step starting around the
minimum of φk(x) (easy to compute), using the guarantee

f(y) ≤ f(x)− 1

2L
‖∇f(x)‖2

A. d’Aspremont. Convex Optimization M2. 27/30



Accelerated Gradient Methods

Also solves minimization problems over simple convex sets C ⊂ Rn. Define the
gradient mapping

gC(y, γ) = γ(y − xC(y, γ))

where
xC(y, γ) = argmin

x∈C

(
f(y) +∇f(y)T (x− y) +

γ

2
‖x− y‖2

)
� Here, gC(y, γ) plays the role of the gradient for constrained problems, and

satisfies

f(x) ≥ f(xC(y, γ)) + gC(y, γ)T (x− y) +
1

2γ
‖gC(y, γ)‖2 +

µ

2
‖x− y‖2

� This means in particular

f(xC(y, γ)) ≤ f(y)− 1

2γ
‖gC(y, γ)‖2

(just set y = x in the previous inequality).

A. d’Aspremont. Convex Optimization M2. 28/30



Accelerated Gradient Methods

Minimize f(x) over C ⊂ Rn. Assuming ∇f(x) is Lipschitz continuous with
constant L and that f(x) is strongly convex with parameter µ ≥ 0.

� Choose x0 ∈ Rn and α0 ∈ (0, 1), set y0 = x0 and q = µ/L.

� For k = 1, . . . , kmax iterate

1. Compute ∇f(yk) and set

xk+1 = xC(yk, γ)

2. Compute αk+1 ∈ (0, 1) by solving

α2
k+1 = (1− αk+1)α

2
k + qαk+1

3. Update the current point, with

yk+1 = xk+1 +
αk(1− αk)

α2
k + αk+1

(xk+1 − xk)

A. d’Aspremont. Convex Optimization M2. 29/30



Accelerated Gradient Methods

Suppose we set α0 ≥
√
µ/L, we have the following complexity bound

f(xk)− f∗ ≤ ∆0 min

{(
1−

√
µ

L

)k

,
4L

(2
√
L+ k

√
γ0)2

}

where

∆0 =
(
f(x0)− f∗ +

γ0
2
‖x0 − x∗‖2

)
and γ0 =

α0(α0L− µ)

1− α0
.

When the strong convexity parameter µ = 0, this means roughly O(1/
√
ε)

iterations to get an ε solution.

Remarks:

� The iterates yk are not guaranteed to be feasible (in some case, f(x) is not
defined outside of C).

� The norm ‖ · ‖ is Euclidean. Using other norms is sometimes more efficient.

Both issues can be remedied using an extra minimization subproblem.

A. d’Aspremont. Convex Optimization M2. 30/30


