Convex Optimization Exam, November 2016.

You have three hours. You may use a single double-sided page of notes. Please keep your answers as concise as possible.

Exercise 1 (Duality) Derive the dual of the following LP

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b\\ & Dx = g\\ & x \geq 0 \end{array}$$

in the variable $x \in \mathbf{R}^n$. Start by writing the Lagrangian, then the dual function and finally the Lagrange dual problem.

Exercise 2 (QP) Derive a dual problem of the Support Vector Machine problem

minimize
$$\frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^m v_i$$

subject to $x_i^T w + v_i \ge 1, \quad i = 1, \dots, m$
 $v_i \ge 0, \quad i = 1, \dots, m,$

in the variables $w \in \mathbf{R}^n$, $v \in \mathbf{R}^m$, where C > 0 and $x_1, \ldots, x_m \in \mathbf{R}^n$. Simplify it as much as you can.

Exercise 3 (Convexity) Show that the function

 $\log \det(X)$

is concave in $X \in \mathbf{S}_n$ (*Hint: remember that we can always write* $X = X^{\frac{1}{2}}X^{\frac{1}{2}}$).

Exercise 4 Let P be a polytope written

$$P = \{x \in \mathbf{R}^n : a_i^T x \le b_i, i = 1, \dots, m\}$$

Write the problem of finding the ball

$$B = \{x_c + ru : ||u||_2 \le 1\}$$

inscribed in P and with maximum radius, as an LP.

Exercise 5 (SDP) Here, we seek to approximate a given symmetric matrix $A \in \mathbf{S}_n$ such that $A \succeq 0$, by another one $X \in \mathbf{S}_n$ whose condition number

$$\kappa(X) = \frac{\lambda_{\max}(X)}{\lambda_{\min}(X)}$$

is minimal. This number controls the stability of solutions to linear systems for example.

- Let $y, z \in \mathbf{R}^+$, show that the constraints $\lambda_{\max}(X) \leq y$ and $\lambda_{\min}(X) \geq z$ can both be written as linear matrix inequalities.
- Consider the optimization problem

$$\min_{\substack{X,y,z \\ s.t.}} \quad \frac{y}{z} \\ s.t. \quad (X,y,z) \in C \\ y,z \ge 0; \quad X \succeq 0$$

where C is the set formed by the inequalities

- 1. $\lambda_{\max}(X) \leq y$,
- 2. $\lambda_{\min}(X) \ge z$,
- 3. $||X A||_F \le \epsilon$ for some $\epsilon > 0$.

Show that C is a convex set. Is the objective function convex?

• Rewrite the previous program as a convex minimization problem whose objective is affine. (*Hint*: with appropriate modifications, you can force $\lambda_{\min}(X) = 1$).