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Applications in Statistics
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Outline

� MLE problems

� Experiment Design
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Parametric distribution estimation

� distribution estimation problem: estimate probability density p(y) of a random
variable from observed values

� parametric distribution estimation: choose from a family of densities px(y),
indexed by a parameter x

maximum likelihood estimation

maximize (over x) log px(y)

� y is observed value

� l(x) = log px(y) is called log-likelihood function

� can add constraints x ∈ C explicitly, or define px(y) = 0 for x 6∈ C

� a convex optimization problem if log px(y) is concave in x for fixed y
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Linear measurements with IID noise

linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m

� x ∈ Rn is vector of unknown parameters

� vi is IID measurement noise, with density p(z)

� yi is measurement: y ∈ Rm has density px(y) =
∏m
i=1 p(yi − aTi x)

maximum likelihood estimate: any solution x of

maximize l(x) =
∑m
i=1 log p(yi − aTi x)

(y is observed value)
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examples

� Gaussian noise N (0, σ2): p(z) = (2πσ2)−1/2e−z
2/(2σ2),

l(x) = −m
2
log(2πσ2)− 1

2σ2

m∑
i=1

(aTi x− yi)2

ML estimate is LS solution

� Laplacian noise: p(z) = (1/(2a))e−|z|/a,

l(x) = −m log(2a)− 1

a

m∑
i=1

|aTi x− yi|

ML estimate is `1-norm solution

� uniform noise on [−a, a]:

l(x) =

{
−m log(2a) |aTi x− yi| ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aTi x− yi| ≤ a
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Logistic regression

random variable y ∈ {0, 1} with distribution

p = Prob(y = 1) =
exp(aTu+ b)

1 + exp(aTu+ b)

� a, b are parameters; u ∈ Rn are (observable) explanatory variables

� estimation problem: estimate a, b from m observations (ui, yi)

log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log

 k∏
i=1

exp(aTui + b)

1 + exp(aTui + b)

m∏
i=k+1

1

1 + exp(aTui + b)


=

k∑
i=1

(aTui + b)−
m∑
i=1

log(1 + exp(aTui + b))

concave in a, b
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example (n = 1, m = 50 measurements)
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� circles show 50 points (ui, yi)

� solid curve is ML estimate of p = exp(au+ b)/(1 + exp(au+ b))
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(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable X ∈ {1, . . . , n}, choose between:

� hypothesis 1: X was generated by distribution p = (p1, . . . , pn)

� hypothesis 2: X was generated by distribution q = (q1, . . . , qn)

randomized detector

� a nonnegative matrix T ∈ R2×n, with 1TT = 1

� if we observe X = k, we choose hypothesis 1 with probability t1k, hypothesis 2
with probability t2k

� if all elements of T are 0 or 1, it is called a deterministic detector
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detection probability matrix:

D =
[
Tp Tq

]
=

[
1− Pfp Pfn

Pfp 1− Pfn

]

� Pfp is probability of selecting hypothesis 2 if X is generated by distribution 1
(false positive)

� Pfn is probability of selecting hypothesis 1 if X is generated by distribution 2
(false negative)

multicriterion formulation of detector design

minimize (w.r.t. R2
+) (Pfp, Pfn) = ((Tp)2, (Tq)1)

subject to t1k + t2k = 1, k = 1, . . . , n
tik ≥ 0, i = 1, 2, k = 1, . . . , n

variable T ∈ R2×n
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scalarization (with weight λ > 0)

minimize (Tp)2 + λ(Tq)1
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP with a simple analytical solution

(t1k, t2k) =

{
(1, 0) pk ≥ λqk
(0, 1) pk < λqk

� a deterministic detector, given by a likelihood ratio test

� if pk = λqk for some k, any value 0 ≤ t1k ≤ 1, t1k = 1− t2k is optimal (i.e.,
Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize max{Pfp, Pfn} = max{(Tp)2, (Tq)1}
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP; solution is usually not deterministic
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example

P =


0.70 0.10
0.20 0.10
0.05 0.70
0.05 0.10
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solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment design

m linear measurements yi = aTi x+ wi, i = 1, . . . ,m of unknown x ∈ Rn

� measurement errors wi are IID N (0, 1)

� ML (least-squares) estimate is

x̂ =

(
m∑
i=1

aia
T
i

)−1 m∑
i=1

yiai

� error e = x̂− x has zero mean and covariance

E = E eeT =

(
m∑
i=1

aia
T
i

)−1

confidence ellipsoids are given by {x | (x− x̂)TE−1(x− x̂) ≤ β}

experiment design: choose ai ∈ {v1, . . . , vp} (a set of possible test vectors) to
make E ‘small’
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vector optimization formulation

minimize (w.r.t. Sn+) E =
(∑p

k=1mkvkv
T
k

)−1
subject to mk ≥ 0, m1 + · · ·+mp = m

mk ∈ Z

� variables are mk (# vectors ai equal to vk)

� difficult in general, due to integer constraint

relaxed experiment design

assume m� p, use λk = mk/m as (continuous) real variable

minimize (w.r.t. Sn+) E = (1/m)
(∑p

k=1 λkvkv
T
k

)−1
subject to λ � 0, 1Tλ = 1

� common scalarizations: minimize log detE, TrE, λmax(E), . . .

� can add other convex constraints, e.g., bound experiment cost cTλ ≤ B
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Experiment design

D-optimal design

minimize log det
(∑p

k=1 λkvkv
T
k

)−1
subject to λ � 0, 1Tλ = 1

interpretation: minimizes volume of confidence ellipsoids

dual problem
maximize log detW + n log n
subject to vTkWvk ≤ 1, k = 1, . . . , p

interpretation: {x | xTWx ≤ 1} is minimum volume ellipsoid centered at origin,
that includes all test vectors vk

complementary slackness: for λ, W primal and dual optimal

λk(1− vTkWvk) = 0, k = 1, . . . , p

optimal experiment uses vectors vk on boundary of ellipsoid defined by W
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Experiment design

example (p = 20)

λ1 = 0.5

λ2 = 0.5

design uses two vectors, on boundary of ellipse defined by optimal W
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Experiment design

Derivation of dual.

first reformulate primal problem with new variable X

minimize log detX−1

subject to X =
∑p
k=1 λkvkv

T
k , λ � 0, 1Tλ = 1

L(X,λ, Z, z, ν) = log detX−1+Tr

(
Z

(
X −

p∑
k=1

λkvkv
T
k

))
−zTλ+ν(1Tλ−1)

� minimize over X by setting gradient to zero: −X−1 + Z = 0

� minimum over λk is −∞ unless −vTk Zvk − zk + ν = 0

Dual problem
maximize n+ log detZ − ν
subject to vTk Zvk ≤ ν, k = 1, . . . , p

change variable W = Z/ν, and optimize over ν to get dual of page 15.
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