Convex Optimization M2

Lecture 9

Applications in Statistics

- MLE problems
- Experiment Design

Parametric distribution estimation

- distribution estimation problem: estimate probability density p(y) of a random variable from observed values
- parametric distribution estimation: choose from a family of densities $p_x(y)$, indexed by a parameter x

maximum likelihood estimation

maximize (over x) $\log p_x(y)$

- y is observed value
- $l(x) = \log p_x(y)$ is called log-likelihood function
- can add constraints $x \in C$ explicitly, or define $p_x(y) = 0$ for $x \notin C$
- a convex optimization problem if $\log p_x(y)$ is concave in x for fixed y

Linear measurements with IID noise

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

- $x \in \mathbb{R}^n$ is vector of unknown parameters
- v_i is IID measurement noise, with density p(z)
- y_i is measurement: $y \in \mathbb{R}^m$ has density $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

maximum likelihood estimate: any solution x of

maximize
$$l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$

(y is observed value)

examples

Gaussian noise $\mathcal{N}(0,\sigma^2)$: $p(z) = (2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^m (a_i^T x - y_i)^2$$

ML estimate is LS solution

• Laplacian noise: $p(z) = (1/(2a))e^{-|z|/a}$,

$$l(x) = -m\log(2a) - \frac{1}{a}\sum_{i=1}^{m} |a_i^T x - y_i|$$

ML estimate is ℓ_1 -norm solution

• uniform noise on [-a, a]:

$$l(x) = \begin{cases} -m \log(2a) & |a_i^T x - y_i| \le a, \quad i = 1, \dots, m \\ -\infty & \text{otherwise} \end{cases}$$

ML estimate is any x with $|a_i^T x - y_i| \leq a$

A. d'Aspremont. Convex Optimization M2.

Logistic regression

random variable $y \in \{0, 1\}$ with distribution

$$p = \operatorname{\mathbf{Prob}}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- a, b are parameters; $u \in \mathbb{R}^n$ are (observable) explanatory variables
- estimation problem: estimate a, b from m observations (u_i, y_i)

log-likelihood function (for $y_1 = \cdots = y_k = 1$, $y_{k+1} = \cdots = y_m = 0$):

$$l(a,b) = \log\left(\prod_{i=1}^{k} \frac{\exp(a^{T}u_{i}+b)}{1+\exp(a^{T}u_{i}+b)} \prod_{i=k+1}^{m} \frac{1}{1+\exp(a^{T}u_{i}+b)}\right)$$
$$= \sum_{i=1}^{k} (a^{T}u_{i}+b) - \sum_{i=1}^{m} \log(1+\exp(a^{T}u_{i}+b))$$

concave in a, b

A. d'Aspremont. Convex Optimization M2.

example (n = 1, m = 50 measurements)

• circles show 50 points (u_i, y_i)

• solid curve is ML estimate of $p = \exp(au + b)/(1 + \exp(au + b))$

(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable $X \in \{1, \ldots, n\}$, choose between:

- hypothesis 1: X was generated by distribution $p = (p_1, \ldots, p_n)$
- hypothesis 2: X was generated by distribution $q = (q_1, \ldots, q_n)$

randomized detector

- a nonnegative matrix $T \in \mathbb{R}^{2 \times n}$, with $\mathbf{1}^T T = \mathbf{1}$
- if we observe X = k, we choose hypothesis 1 with probability t_{1k} , hypothesis 2 with probability t_{2k}
- if all elements of T are 0 or 1, it is called a deterministic detector

detection probability matrix:

$$D = \begin{bmatrix} Tp & Tq \end{bmatrix} = \begin{bmatrix} 1 - P_{\rm fp} & P_{\rm fn} \\ P_{\rm fp} & 1 - P_{\rm fn} \end{bmatrix}$$

- P_{fp} is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
- P_{fn} is probability of selecting hypothesis 1 if X is generated by distribution 2 (false negative)

multicriterion formulation of detector design

$$\begin{array}{ll} \text{minimize (w.r.t. } \mathbb{R}^2_+) & (P_{\rm fp}, P_{\rm fn}) = ((Tp)_2, (Tq)_1) \\ \text{subject to} & t_{1k} + t_{2k} = 1, \quad k = 1, \dots, n \\ & t_{ik} \ge 0, \quad i = 1, 2, \quad k = 1, \dots, n \end{array}$$

variable $T \in \mathbb{R}^{2 \times n}$

scalarization (with weight $\lambda > 0$)

$$\begin{array}{ll} \mathsf{minimize} & (Tp)_2 + \lambda (Tq)_1 \\ \mathsf{subject to} & t_{1k} + t_{2k} = 1, \quad t_{ik} \geq 0, \quad i = 1, 2, \quad k = 1, \ldots, n \end{array}$$

an LP with a simple analytical solution

$$(t_{1k}, t_{2k}) = \begin{cases} (1,0) & p_k \ge \lambda q_k \\ (0,1) & p_k < \lambda q_k \end{cases}$$

- a deterministic detector, given by a likelihood ratio test
- if $p_k = \lambda q_k$ for some k, any value $0 \le t_{1k} \le 1$, $t_{1k} = 1 t_{2k}$ is optimal (*i.e.*, Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize
$$\max\{P_{\text{fp}}, P_{\text{fn}}\} = \max\{(Tp)_2, (Tq)_1\}$$

subject to $t_{1k} + t_{2k} = 1, \quad t_{ik} \ge 0, \quad i = 1, 2, \quad k = 1, \dots, n$

an LP; solution is usually not deterministic

example

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector

Experiment design

m linear measurements $y_i = a_i^T x + w_i$, $i = 1, \ldots, m$ of unknown $x \in \mathbb{R}^n$

- measurement errors w_i are IID $\mathcal{N}(0,1)$
- ML (least-squares) estimate is

$$\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^T\right)^{-1} \sum_{i=1}^{m} y_i a_i$$

• error $e = \hat{x} - x$ has zero mean and covariance

$$E = \mathbf{E} \, e e^T = \left(\sum_{i=1}^m a_i a_i^T\right)^{-1}$$

confidence ellipsoids are given by $\{x \mid (x - \hat{x})^T E^{-1} (x - \hat{x}) \le \beta\}$

experiment design: choose $a_i \in \{v_1, \ldots, v_p\}$ (a set of possible test vectors) to make E 'small'

vector optimization formulation

$$\begin{array}{ll} \text{minimize (w.r.t. } \mathbf{S}^n_+) & E = \left(\sum_{k=1}^p m_k v_k v_k^T\right)^{-1} \\ \text{subject to} & m_k \ge 0, \quad m_1 + \dots + m_p = m \\ & m_k \in \mathbf{Z} \end{array}$$

- variables are m_k (# vectors a_i equal to v_k)
- difficult in general, due to integer constraint

relaxed experiment design

assume $m \gg p$, use $\lambda_k = m_k/m$ as (continuous) real variable

minimize (w.r.t.
$$\mathbf{S}_{+}^{n}$$
) $E = (1/m) \left(\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T}\right)^{-1}$
subject to $\lambda \succeq 0, \quad \mathbf{1}^{T} \lambda = 1$

• common scalarizations: minimize $\log \det E$, $\operatorname{Tr} E$, $\lambda_{\max}(E)$, . . .

• can add other convex constraints, e.g., bound experiment cost $c^T \lambda \leq B$

A. d'Aspremont. Convex Optimization M2.

D-optimal design

minimize
$$\log \det \left(\sum_{k=1}^{p} \lambda_k v_k v_k^T\right)^{-1}$$

subject to $\lambda \succeq 0$, $\mathbf{1}^T \lambda = 1$

interpretation: minimizes volume of confidence ellipsoids

dual problem

maximize
$$\log \det W + n \log n$$

subject to $v_k^T W v_k \leq 1, \quad k = 1, \dots, p$

interpretation: $\{x \mid x^T W x \leq 1\}$ is minimum volume ellipsoid centered at origin, that includes all test vectors v_k

complementary slackness: for λ , W primal and dual optimal

$$\lambda_k (1 - v_k^T W v_k) = 0, \quad k = 1, \dots, p$$

optimal experiment uses vectors v_k on boundary of ellipsoid defined by W

example (p = 20)

design uses two vectors, on boundary of ellipse defined by optimal \boldsymbol{W}

Derivation of dual.

first reformulate primal problem with new variable \boldsymbol{X}

$$\begin{array}{ll} \text{minimize} & \log \det X^{-1} \\ \text{subject to} & X = \sum_{k=1}^{p} \lambda_k v_k v_k^T, \quad \lambda \succeq 0, \quad \mathbf{1}^T \lambda = 1 \end{array}$$

$$L(X,\lambda,Z,z,\nu) = \log \det X^{-1} + \operatorname{Tr}\left(Z\left(X - \sum_{k=1}^{p} \lambda_k v_k v_k^T\right)\right) - z^T \lambda + \nu(\mathbf{1}^T \lambda - 1)$$

- minimize over X by setting gradient to zero: $-X^{-1} + Z = 0$
- minimum over λ_k is $-\infty$ unless $-v_k^T Z v_k z_k + \nu = 0$

Dual problem

$$\begin{array}{ll} \text{maximize} & n + \log \det Z - \nu \\ \text{subject to} & v_k^T Z v_k \leq \nu, \quad k = 1, \dots, p \end{array}$$

change variable $W = Z/\nu$, and optimize over ν to get dual of page 15.