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Geometrical problems
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Linear discrimination

separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane:

aTxi + b > 0, i = 1, . . . , N, aTyi + b < 0, i = 1, . . . ,M

homogeneous in a, b, hence equivalent to

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b
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Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/‖a‖2

to separate two sets of points by maximum margin,

minimize (1/2)‖a‖2
subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M
(1)

(after squaring objective) a QP in a, b
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Lagrange dual of maximum margin separation problem

maximize 1Tλ+ 1Tµ

subject to 2
∥∥∥∑N

i=1 λixi −
∑M
i=1 µiyi

∥∥∥
2
≤ 1

1Tλ = 1Tµ, λ � 0, µ � 0

(2)

from duality, optimal value is inverse of maximum margin of separation

interpretation

� change variables to θi = λi/1
Tλ, γi = µi/1

Tµ, t = 1/(1Tλ+ 1Tµ)

� invert objective to minimize 1/(1Tλ+ 1Tµ) = t

minimize t

subject to
∥∥∥∑N

i=1 θixi −
∑M
i=1 γiyi

∥∥∥
2
≤ t

θ � 0, 1Tθ = 1, γ � 0, 1Tγ = 1

optimal value is distance between convex hulls
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Approximate linear separation of non-separable sets

minimize 1Tu+ 1Tv
subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

� an LP in a, b, u, v

� at optimum, ui = max{0, 1− aTxi − b}, vi = max{0, 1 + aTyi + b}

� can be interpreted as a heuristic for minimizing #misclassified points
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Support vector classifier

minimize ‖a‖2 + γ(1Tu+ 1Tv)
subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

produces point on trade-off curve between inverse of margin 2/‖a‖2 and
classification error, measured by total slack 1Tu+ 1Tv

same example as previous page, with
γ = 0.1:
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Support Vector Machines: Duality

Given m data points xi ∈ Rn with labels yi ∈ {−1, 1}.

� The maximum margin classification problem can be written

minimize 1
2‖w‖

2
2 + C1Tz

subject to yi(w
Txi) ≥ 1− zi, i = 1, . . . ,m

z ≥ 0

in the variables w, z ∈ Rn, with parameter C > 0.

� We can set w = (w,1) and increase the problem dimension by 1. So we can
assume w.l.o.g. b = 0 in the classifier wTxi + b.

� The Lagrangian is written

L(w, z, α) =
1

2
‖w‖22 + C1Tz +

m∑
i=1

αi(1− zi − yiwTxi)

with dual variable α ∈ Rm+ .
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Support Vector Machines: Duality

� The Lagrangian can be rewritten

L(w, z, α) =
1

2

∥∥∥∥∥w −
m∑
i=1

αiyixi

∥∥∥∥∥
2

2

−

∥∥∥∥∥
m∑
i=1

αiyixi

∥∥∥∥∥
2

2

+ (C1− α)Tz + 1Tα

with dual variable α ∈ Rn+.

� Minimizing in (w, z) we form the dual problem

maximize −1
2 ‖
∑m
i=1αiyixi‖

2

2
+ 1Tα

subject to 0 ≤ α ≤ C

� At the optimum, we must have

w =

m∑
i=1

αiyixi and αi = C if zi > 0

(this is the representer theorem).
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Support Vector Machines: the kernel trick

� If we write X the data matrix with columns xi, the dual can be rewritten

maximize −1
2α

T diag(y)XTX diag(y)α+ 1Tα
subject to 0 ≤ α ≤ C

� This means that the data only appears in the dual through the gram matrix

K = XTX

which is called the kernel matrix.

� In particular, the original dimension n does not appear in the dual. SVM
complexity only grows with the number of samples.

� In particular, the xi are allowed to be infinite dimensional.

� The only requirement on K is that K � 0.
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Approximation problems
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Norm approximation

minimize ‖Ax− b‖

(A ∈ Rm×n with m ≥ n, ‖ · ‖ is a norm on Rm)

interpretations of solution x? = argminx ‖Ax− b‖:

� geometric: Ax? is point in R(A) closest to b

� estimation: linear measurement model

y = Ax+ v

y are measurements, x is unknown, v is measurement error

given y = b, best guess of x is x?

� optimal design: x are design variables (input), Ax is result (output)

x? is design that best approximates desired result b
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examples

� least-squares approximation (‖ · ‖2): solution satisfies normal equations

ATAx = AT b

(x? = (ATA)−1AT b if RankA = n)

� Chebyshev approximation (‖ · ‖∞): can be solved as an LP

minimize t
subject to −t1 � Ax− b � t1

� sum of absolute residuals approximation (‖ · ‖1): can be solved as an LP

minimize 1Ty
subject to −y � Ax− b � y
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Penalty function approximation

minimize φ(r1) + · · ·+ φ(rm)
subject to r = Ax− b

(A ∈ Rm×n, φ : R→ R is a convex penalty function)

examples

� quadratic: φ(u) = u2

� deadzone-linear with width a:

φ(u) = max{0, |u| − a}

� log-barrier with limit a:

φ(u) =

{
−a2 log(1− (u/a)2) |u| < a
∞ otherwise

u

φ
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example (m = 100, n = 30): histogram of residuals for penalties

φ(u) = |u|, φ(u) = u2, φ(u) = max{0, |u| − a}, φ(u) = − log(1− u2)
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shape of penalty function has large effect on distribution of residuals
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Huber penalty function (with parameter M)

φhub(u) =

{
u2 |u| ≤M
M(2|u| −M) |u| > M

linear growth for large u makes approximation less sensitive to outliers
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� left: Huber penalty for M = 1

� right: affine function f(t) = α+ βt fitted to 42 points ti, yi (circles) using
quadratic (dashed) and Huber (solid) penalty

A. d’Aspremont. Convex Optimization M2. 18/57



Combinatorial problems
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Nonconvex Problems

Nonconvexity makes problems essentially untractable...

� sometimes the result of bad problem formulation

� however, often arises because of some natural limitation: fixed transaction
costs, binary communications, ...

What can be done?... we will use convex optimization results to:

� find bounds on the optimal value, by relaxation

� get ”good” feasible points via randomization
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Nonconvex Problems

Focus here on a specific class of problems, general QCQPs, written

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

� if all Pi are p.s.d., this is a convex problem...

� so here, we suppose at least one Pi is not p.s.d.
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Example: Boolean Least Squares

Boolean least-squares problem:

minimize ‖Ax− b‖2
subject to x2i = 1, i = 1, . . . , n

� basic problem in digital communications

� could check all 2n possible values of x . . .

� an NP-hard problem, and very hard in practice

� many heuristics for approximate solution
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Example: Partitioning Problem

Two-way partitioning problem described in §5.1.4 of the textbook

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

where W ∈ Sn, with Wii = 0.

� a feasible x corresponds to the partition

{1, . . . , n} = {i | xi = −1} ∪ {i | xi = 1}

� the matrix coefficient Wij can be interpreted as the cost of having the
elements i and j in the same partition.

� the objective is to find the partition with least total cost

� classic particular instance: MAXCUT (Wij ≥ 0)
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Convex Relaxation

the original QCQP

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

can be rewritten

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m

X � xxT
Rank(X) = 1

the only nonconvex constraint is now Rank(X) = 1...
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Convex Relaxation: Semidefinite Relaxation

� we can directly relax this last constraint, i.e. drop the nonconvex
Rank(X) = 1 to keep only X � xxT

� the resulting program gives a lower bound on the optimal value

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m

X � xxT

Tricky. . . Can be improved?

A. d’Aspremont. Convex Optimization M2. 25/57



Lagrangian Relaxation

Start from the original problem

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

form the Lagrangian

L(x, λ) = xT

(
P0 +

m∑
i=1

λiPi

)
x+

(
q0 +

m∑
i=1

λiqi

)T
x+ r0 +

m∑
i=1

λiri

in the variables x ∈ Rn and λ ∈ Rm+ ...
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Lagrangian Relaxation: Lagrangian

the dual can be computed explicitly as an (unconstrained) quadratic minimization
problem

inf
x∈R

xTPx+ qTx+ r =

{
r − 1

4q
TP †q, if P � 0 and q ∈ R(P )

−∞, otherwise

so

infxL(x, λ) = −1
4 (q0 +

∑m
i=1 λiqi)

T
(P0 +

∑m
i=1 λiPi)

†
(q0 +

∑m
i=1 λiqi)

+
∑m
i=1 λiri + r0

where we recognize a Schur complement...
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Lagrangian Relaxation: Dual

the dual of the QCQP is then given by

maximize γ +
∑m
i=1 λiri + r0

subject to

[
(P0 +

∑m
i=1 λiPi) (q0 +

∑m
i=1 λiqi) /2

(q0 +
∑m
i=1 λiqi)

T
/2 −γ

]
� 0

λi ≥ 0, i = 1, . . . ,m

which is a semidefinite program in the variable λ ∈ Rm and can be solved
efficiently

Let us look at what happens when we use semidefinite duality to compute the
dual of this last program (bidual of the original problem)...
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Lagrangian Relaxation: Bidual

Taking the dual again, we get an SDP is given by

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m[

X xT

x 1

]
� 0

in the variables X ∈ Sn and x ∈ Rn

� this is a convexification of the original program

� we have recovered the semidefinite relaxation in an “automatic” way

A. d’Aspremont. Convex Optimization M2. 29/57



Lagrangian Relaxation: Boolean LS

An example: boolean lest squares

Using this technique, we can relax the original Boolean LS problem

minimize ‖Ax− b‖2
subject to x2i = 1, i = 1, . . . , n

and relax it as an SDP

minimize Tr(AX) + 2bTAx+ bT b

subject to

[
X xT

x 1

]
� 0

Xii = 1, i = 1, . . . , n,

this program then produces a lower bound on the optimal value of the original
Boolean LS program
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Lagrangian Relaxation: Partitioning

the partitioning problem defined above is

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

the variable x disappears from the relaxation, which becomes:

minimize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n

Feasible points?

� Lagrangian relaxations only provide lower bounds on the optimal value

� how can we compute good feasible points?

� can we measure how suboptimal this lower bound is?
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Randomization

The original QCQP

minimize xTP0x+ qT0 x+ r0
subject to xTPix+ qTi x+ ri ≤ 0, i = 1, . . . ,m

was relaxed into

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m[

X xT

x 1

]
� 0

� the last (Schur complement) constraint is equivalent to X − xxT � 0

� hence, if x and X are the solution to the relaxed program, then X − xxT is a
covariance matrix...
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Randomization

For the problem

minimize Tr(XP0) + qT0 x+ r0
subject to Tr(XPi) + qTi x+ ri ≤ 0, i = 1, . . . ,m[

X xT

x 1

]
� 0

� pick y as a Gaussian variable with y ∼ N (x,X − xxT )
� y will solve the QCQP ”on average” over this distribution

in other words, with E[yyT ] = E[(y − x)(y − x)T ] + 2× 0 + xxT = X, which
means E[yTPy] = Tr(PX) and the problem above becomes

minimize E[yTP0y + qT0 y + r0]
subject to E[yTPiy + qTi y + ri] ≤ 0, i = 1, . . . ,m

a good feasible point can then be obtained by sampling enough y. . .
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Bounds on suboptimality

� In certain particular cases, it is possible to get a hard bound on the gap
between the optimal value and the relaxation result

� A classic example is that of the MAXCUT bound

The MAXCUT problem is a particular case of the partitioning problem

maximize xTWx
subject to x2i = 1, i = 1, . . . , n

with W � 0, its Lagrangian relaxation is computed as

maximize Tr(WX)
subject to X � 0

Xii = 1, i = 1, . . . , n

A. d’Aspremont. Convex Optimization M2. 34/57



Bounds on suboptimality: MAXCUT

Let X be a solution to this program

� We look for a feasible point by sampling a normal distribution N (0, X)

� We convert each sample point x to a feasible point by rounding it to the
nearest value in {−1, 1}, i.e. taking

x̂ = sgn(x)

Crucially, when x̂ is sampled using that procedure, the expected value of the
objective E[x̂TWx̂] can be computed explicitly

E[x̂TWx̂] =
2

π

n∑
i,j=1

Wij arcsin(Xij) =
2

π
Tr(W arcsin(X))
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Bounds on suboptimality: MAXCUT

� We are guaranteed to reach this expected value 2
π Tr(W arcsin(X)) after

sampling a few (feasible) points x̂

� Hence we know that the optimal value OPT of the MAXCUT problem satisfies

2

π
Tr(W arcsin(X)) ≤ OPT ≤ Tr(WX)

� Furthermore, with
X � arcsin(X),

we can simplify (and relax) the above expression to get

2

π
Tr(WX) ≤ OPT ≤ Tr(WX)

the procedure detailed above guarantees that we can find a feasible point at
most 2/π suboptimal
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Numerical Example: Boolean LS

Boolean least-squares problem

minimize ‖Ax− b‖2
subject to x2i = 1, i = 1, . . . , n

with

‖Ax− b‖2 = xTATAx− 2bTAx+ bT b

= TrATAX − 2bTATx+ bT b

where X = xxT , hence can express BLS as

minimize TrATAX − 2bTAx+ bT b
subject to Xii = 1, X � xxT , rank(X) = 1

. . . still a very hard problem

A. d’Aspremont. Convex Optimization M2. 37/57



SDP relaxation for BLS

using Lagrangian relaxation, remember:

X � xxT ⇐⇒
[
X x
xT 1

]
� 0

we obtained the SDP relaxation (with variables X, x)

minimize TrATAX − 2bTATx+ bT b

subject to Xii = 1,

[
X x
xT 1

]
� 0

� optimal value of SDP gives lower bound for BLS

� if optimal matrix is rank one, we’re done
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Interpretation via randomization

� can think of variables X, x in SDP relaxation as defining a normal distribution
z ∼ N (x,X − xxT ), with E z2i = 1

� SDP objective is E ‖Az − b‖2

suggests randomized method for BLS:

� find Xopt, xopt, optimal for SDP relaxation

� generate z from N (xopt, Xopt − xoptxoptT )
� take x = sgn(z) as approximate solution of BLS

(can repeat many times and take best one)
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Example

� (randomly chosen) parameters A ∈ R150×100, b ∈ R150

� x ∈ R100, so feasible set has 2100 ≈ 1030 points

LS approximate solution: minimize ‖Ax− b‖ s.t. ‖x‖2 = n, then round yields

objective 8.7% over SDP relaxation bound

randomized method: (using SDP optimal distribution)

� best of 20 samples: 3.1% over SDP bound

� best of 1000 samples: 2.6% over SDP bound
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Example: Partitioning Problem
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Example: Partitioning Problem

we go back now to the two-way partitioning problem considered in exercise 5.39
of the textbook:

minimize xTWx
subject to x2i = 1, i = 1, . . . , n

the Lagrange dual of this problem is given by the SDP:

maximize −1Tν
subject to W + diag(ν) � 0
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Example: Partitioning

the dual of this SDP is the new SDP

minimize TrWX
subject to X � 0

Xii = 1, i = 1, . . . , n

the solution Xopt gives a lower bound on the optimal value popt of the
partitioning problem

� solve this SDP to find Xopt (and the bound popt)

� let v denote an eigenvector of Xopt associated with its largest eigenvalue

� now let
x̂ = sgn(v)

the vector x̂ is our guess for a good partition
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Partitioning: Randomization

� we generate independent samples x(1), . . . , x(K) from a normal distribution
with zero mean and covariance Xopt

� for each sample we consider the heuristic approximate solution

x̂(k) = sgn(x(k))

� we then take the one with lowest cost

We compare the performance of these methods on a randomly chosen problem

� the optimal SDP lower bound popt is equal to −1641
� the simple sign(x) heuristic gives a partition with total cost −1280

exactly what the optimal value is, we can’t say; all we can say at this point is that
it is between −1641 and −1280
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Partitioning: Numerical Example
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histogram of the objective obtained by the randomized heuristic, over 1000
samples: the minimum value reached here is −1328
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Partitioning: Numerical Example
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we’re not sure what the optimal cost is, but now we know it’s between −1641 and
−1328
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Applications in Statistics
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Parametric distribution estimation

� distribution estimation problem: estimate probability density p(y) of a random
variable from observed values

� parametric distribution estimation: choose from a family of densities px(y),
indexed by a parameter x

maximum likelihood estimation

maximize (over x) log px(y)

� y is observed value

� l(x) = log px(y) is called log-likelihood function

� can add constraints x ∈ C explicitly, or define px(y) = 0 for x 6∈ C

� a convex optimization problem if log px(y) is concave in x for fixed y
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Linear measurements with IID noise

linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m

� x ∈ Rn is vector of unknown parameters

� vi is IID measurement noise, with density p(z)

� yi is measurement: y ∈ Rm has density px(y) =
∏m
i=1 p(yi − aTi x)

maximum likelihood estimate: any solution x of

maximize l(x) =
∑m
i=1 log p(yi − aTi x)

(y is observed value)
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examples

� Gaussian noise N (0, σ2): p(z) = (2πσ2)−1/2e−z
2/(2σ2),

l(x) = −m
2
log(2πσ2)− 1

2σ2

m∑
i=1

(aTi x− yi)2

ML estimate is LS solution

� Laplacian noise: p(z) = (1/(2a))e−|z|/a,

l(x) = −m log(2a)− 1

a

m∑
i=1

|aTi x− yi|

ML estimate is `1-norm solution

� uniform noise on [−a, a]:

l(x) =

{
−m log(2a) |aTi x− yi| ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aTi x− yi| ≤ a
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Logistic regression

random variable y ∈ {0, 1} with distribution

p = Prob(y = 1) =
exp(aTu+ b)

1 + exp(aTu+ b)

� a, b are parameters; u ∈ Rn are (observable) explanatory variables

� estimation problem: estimate a, b from m observations (ui, yi)

log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log

 k∏
i=1

exp(aTui + b)

1 + exp(aTui + b)

m∏
i=k+1

1

1 + exp(aTui + b)


=

k∑
i=1

(aTui + b)−
m∑
i=1

log(1 + exp(aTui + b))

concave in a, b
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example (n = 1, m = 50 measurements)
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� circles show 50 points (ui, yi)

� solid curve is ML estimate of p = exp(au+ b)/(1 + exp(au+ b))
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Experiment design

m linear measurements yi = aTi x+ wi, i = 1, . . . ,m of unknown x ∈ Rn

� measurement errors wi are IID N (0, 1)

� ML (least-squares) estimate is

x̂ =

(
m∑
i=1

aia
T
i

)−1 m∑
i=1

yiai

� error e = x̂− x has zero mean and covariance

E = E eeT =

(
m∑
i=1

aia
T
i

)−1

confidence ellipsoids are given by {x | (x− x̂)TE−1(x− x̂) ≤ β}

experiment design: choose ai ∈ {v1, . . . , vp} (a set of possible test vectors) to
make E ‘small’
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vector optimization formulation

minimize (w.r.t. Sn+) E =
(∑p

k=1mkvkv
T
k

)−1
subject to mk ≥ 0, m1 + · · ·+mp = m

mk ∈ Z

� variables are mk (# vectors ai equal to vk)

� difficult in general, due to integer constraint

relaxed experiment design

assume m� p, use λk = mk/m as (continuous) real variable

minimize (w.r.t. Sn+) E = (1/m)
(∑p

k=1 λkvkv
T
k

)−1
subject to λ � 0, 1Tλ = 1

� common scalarizations: minimize log detE, TrE, λmax(E), . . .

� can add other convex constraints, e.g., bound experiment cost cTλ ≤ B
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Experiment design

D-optimal design

minimize log det
(∑p

k=1 λkvkv
T
k

)−1
subject to λ � 0, 1Tλ = 1

interpretation: minimizes volume of confidence ellipsoids

dual problem
maximize log detW + n log n
subject to vTkWvk ≤ 1, k = 1, . . . , p

interpretation: {x | xTWx ≤ 1} is minimum volume ellipsoid centered at origin,
that includes all test vectors vk

complementary slackness: for λ, W primal and dual optimal

λk(1− vTkWvk) = 0, k = 1, . . . , p

optimal experiment uses vectors vk on boundary of ellipsoid defined by W
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Experiment design

example (p = 20)

λ1 = 0.5

λ2 = 0.5

design uses two vectors, on boundary of ellipse defined by optimal W
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Experiment design

Derivation of dual.

first reformulate primal problem with new variable X

minimize log detX−1

subject to X =
∑p
k=1 λkvkv

T
k , λ � 0, 1Tλ = 1

L(X,λ, Z, z, ν) = log detX−1+Tr

(
Z

(
X −

p∑
k=1

λkvkv
T
k

))
−zTλ+ν(1Tλ−1)

� minimize over X by setting gradient to zero: −X−1 + Z = 0

� minimum over λk is −∞ unless −vTk Zvk − zk + ν = 0

Dual problem
maximize n+ log detZ − ν
subject to vTk Zvk ≤ ν, k = 1, . . . , p

change variable W = Z/ν, and optimize over ν to get dual of page 55.
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