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OPTIMAL AFFINE INVARIANT SMOOTH MINIMIZATION ALGORITHMS

ALEXANDRE D’ASPREMONT, CRISTÓBAL GUZMÁN, AND MARTIN JAGGI

ABSTRACT. We formulate an affine invariant implementation of the accelerated first-order algorithm in [Nes-
terov, 1983]. Its complexity bound is proportional to an affine invariant regularity constant defined with respect
to the Minkowski gauge of the feasible set. We extend these results to more general problems, optimizing
Hölder smooth functions using p-uniformly convex prox terms, and derive an algorithm whose complexity bet-
ter fits the geometry of the feasible set and adapts to both the best Hölder smoothness parameter and the best
gradient Lipschitz constant. Finally, we detail matching complexity lower bounds when the feasible set is an
`p ball. In this setting, our upper bounds on iteration complexity for the algorithm in [Nesterov, 1983] are thus
optimal in terms of target precision, smoothness and problem dimension.

1. INTRODUCTION

Here, we show how to implement the smooth minimization algorithm described in [Nesterov, 1983, 2005]
so that both its iterations and its complexity bound are invariant with respect to a change of coordinates in
the problem. We focus on a generic convex minimization problem written

minimize f(x)
subject to x ∈ Q, (1)

where f is a convex function with Lipschitz continuous gradient and Q is a compact convex set. Without
too much loss of generality, we will assume that the interior of Q is nonempty and contains zero. When Q
is sufficiently simple, in a sense that will be made precise later, Nesterov [1983] showed that this problem
can be solved with a complexity O(1/

√
ε), where ε is the target precision. Furthermore, it can be shown

that this complexity bound is optimal in ε for the class of smooth problems [Nesterov, 2003].
While the dependence in 1/

√
ε of the complexity bound in Nesterov [1983] is optimal in ε, the various

factors in front of that bound contain parameters which can heavily vary with implementation, i.e. the choice
of norm and prox regularization function. In fact, the full upper bound on the iteration complexity of the
optimal algorithm in [Nesterov, 2003] is written√

8Ld(x?)

σε

where L is the Lipschitz constant of the gradient, d(x?) the value of the prox at the optimum and σ its strong
convexity parameter, all varying with the choice of norm and prox. This means in particular that, everything
else being equal, this bound is not invariant with respect to an affine change of coordinates.

Arguably then, the complexity bound varies while the intrinsic complexity of problem (1) remains un-
changed. Optimality in ε is thus no guarantee of computational efficiency, and a poorly parameterized
optimal method can exhibit far from optimal numerical performance. On the other hand, optimal choices of
norm and prox, hence of L and d should produce affine invariant bounds. Hence, affine invariance, besides
its implications in terms of numerical stability, can also act as a guide to optimally choose norm and prox.

Here, we show how to choose an underlying norm and a prox term for the algorithm in [Nesterov, 1983,
2005] which make its iterations and complexity invariant by a change of coordinates. In Section 3, we
construct the norm as the Minkowski gauge of centrally symmetric sets Q, then derive the prox using a def-
inition of the regularity of Banach spaces used by [Juditsky and Nemirovski, 2008] to derive concentration
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inequalities. These systematic choices allow us to derive an affine invariant bound on the complexity of the
algorithm in [Nesterov, 1983].

When Q is an `p ball, we show that this complexity bound is optimal for most, but not all, high dimen-
sional regimes in (n, ε). In Section 4, we thus extend our results to much more general problems, deriving
a new algorithm to optimize Hölder smooth functions using p-uniformly convex prox functions. This ex-
tends the results of [Nemirovskii and Nesterov, 1985] by incorporating adaptivity to the Hölder continuity
of the gradient, and those of [Nesterov, 2015] by allowing general uniformly convex prox functions, not just
strongly convex ones.

These additional degrees of freedom allow us to match optimal complexity lower bounds derived in Sec-
tion 5 from [Guzmán and Nemirovski, 2015] when optimizing on `p balls, with adaptivity in the Hölder
smoothness parameter and Lipschitz constant as a bonus. This means that, on `p-balls at least, our com-
plexity bounds are optimal not only in terms of target precision ε, but also in terms of smoothness and
problem dimension. This shows that, in the `p setting at least, affine invariance does indeed lead to optimal
complexity.

2. SMOOTH OPTIMIZATION ALGORITHM

We first recall the basic structure of the algorithm in [Nesterov, 1983]. While many variants of this
method have been derived, we use the formulation in [Nesterov, 2005]. We choose a norm ‖ · ‖ and assume
that the function f in problem (1) is convex with Lipschitz continuous gradient, so

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
L‖y − x‖2, x, y ∈ Q, (2)

for some L > 0. We also choose a prox function d(x) for the set Q, i.e. a continuous, strongly convex
function on Q with parameter σ (see Nesterov [2003] or Hiriart-Urruty and Lemaréchal [1993] for a dis-
cussion of regularization techniques using strongly convex functions). We let x0 be the center of Q for the
prox-function d(x) so that

x0 , argmin
x∈Q

d(x),

assuming w.l.o.g. that d(x0) = 0, we then get in particular

d(x) ≥ 1

2
σ‖x− x0‖2. (3)

We write TQ(x) a solution to the following subproblem

TQ(x) , argmin
y∈Q

{
〈∇f(x), y − x〉+

1

2
L‖y − x‖2

}
. (4)

We let y0 , TQ(x0) where x0 is defined above. We recursively define three sequences of points: the current
iterate xt, the corresponding yt = TQ(xt), and the points

zt , argmin
x∈Q

{
L

σ
d(x) +

t∑
i=0

αi[f(xi) + 〈∇f(xi), x− xi〉]

}
(5)

given a step size sequence αk ≥ 0 with α0 ∈ (0, 1] so that

xt+1 = τtzt + (1− τt)yt
yt+1 = TQ(xt+1)

(6)

where τt = αt+1/At+1 with At =
∑t

i=0 αi. We implicitly assume here that Q is simple enough so that
the two subproblems defining yt and zt can be solved very efficiently. We have the following convergence
result.
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Theorem 2.1. Nesterov [2005]. Suppose αt = (t + 1)/2 with the iterates xt, yt and zt defined in (5) and
(6), then for any t ≥ 0 we have

f(yt)− f(x?) ≤ 4Ld(x?)

σ (t+ 1)2

where x? is an optimal solution to problem (1).

If ε > 0 is the target precision, Theorem 2.1 ensures that Algorithm 1 will converge to an ε-accurate
solution in no more than √

8Ld(x?)

σε
(7)

iterations. In practice of course, d(x?) needs to be bounded a priori and L and σ are often hard to evaluate.

Algorithm 1 Smooth minimization.
Input: x0, the prox center of the set Q.

1: for t = 0, . . . , T do
2: Compute ∇f(xt).
3: Compute yt = TQ(xt).
4: Compute zt = argminx∈Q

{
L
σ d(x) +

∑t
i=0 αi[f(xi) + 〈∇f(xi), x− xi〉]

}
.

5: Set xt+1 = τtzt + (1− τt)yt.
6: end for

Output: xT , yT ∈ Q.

While most of the parameters in Algorithm 1 are set explicitly, the norm ‖ · ‖ and the prox function d(x)
are chosen arbitrarily. In what follows, we will see that a natural choice for both makes the algorithm affine
invariant.

3. AFFINE INVARIANT IMPLEMENTATION

We can define an affine change of coordinates x = Ay where A ∈ Rn×n is a nonsingular matrix, for
which the original optimization problem in (1) is transformed so

minimize f(x)
subject to x ∈ Q, becomes minimize f̂(y)

subject to y ∈ Q̂,
(8)

in the variable y ∈ Rn, where
f̂(y) , f(Ay) and Q̂ , A−1Q. (9)

UnlessA is pathologically ill-conditioned, both problems are equivalent and should have identical complex-
ity bounds and iterations. In fact, the complexity analysis of Newton’s method based on the self-concordance
argument developed in [Nesterov and Nemirovskii, 1994] produces affine invariant complexity bounds and
the iterates themselves are invariant. Here we will show how to choose the norm ‖ · ‖ and the prox function
d(x) to get a similar behavior for Algorithm 1.

3.1. Choosing the Norm. We start by a few classical results and definitions. Recall that the Minkowski
gauge of a set Q is defined as follows.

Definition 3.1. Given Q ⊂ Rn containing zero, we define the Minkowski gauge of Q as

γQ(x) , inf{λ ≥ 0 : x ∈ λQ}

with γQ(x) = 0 when Q is unbounded in the direction x.
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WhenQ is a compact convex, centrally symmetric set with respect to the origin and has nonempty interior,
the Minkowski gauge defines a norm. We write this norm ‖ · ‖Q , γQ(·). From now on, we will assume
that the set Q is centrally symmetric or use for example Q̄ = Q−Q (in the Minkowski sense) for the gauge
when it is not (this can be improved and extending these results to the nonsymmetric case is a classical
topic in functional analysis). Note that any linear transform of a centrally symmetric convex set remains
centrally symmetric. The following simple result shows why ‖ · ‖Q is potentially a good choice of norm for
Algorithm 1.

Lemma 3.2. Suppose f : Rn → R, Q is a centrally symmetric convex set with nonempty interior and let
A ∈ Rn×n be a nonsingular matrix. Then f has Lipschitz continuous gradient with respect to the norm
‖ · ‖Q with constant L > 0, i.e.

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
L‖y − x‖2Q, x, y ∈ Q,

if and only if the function f̂(w) , f(Aw) has Lipschitz continuous gradient with respect to the norm
‖ · ‖A−1Q with the same constant L.

Proof. Let w, y ∈ Q, with y = Az and x = Aw, then

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
L‖y − x‖2Q, x, y ∈ Q,

is equivalent to

f(Az) ≤ f(Aw) +
〈
A−T∇wf(Aw), Az −Aw

〉
+

1

2
L‖Az −Aw‖2Q, z, w ∈ A−1Q,

and, using the fact that ‖Aw‖Q = ‖w‖A−1Q, this is also

f(Az) ≤ f(Aw) +
〈
∇wf(Aw), A−1(Az −Aw)

〉
+

1

2
L‖z − w‖2A−1Q, z, w ∈ A−1Q,

hence the desired result.

An almost identical argument shows the following analogous result for the property of strong convexity
with respect to the norm ‖ · ‖Q and affine changes of coordinates. However, when starting from the above
Lemma 3.2, this can also be seen as a consequence of the well-known duality between smoothness and
strong convexity (see e.g. [Hiriart-Urruty and Lemaréchal, 1993, Chap. X, Theorem 4.2.1]).

Theorem 3.3. Let f : Q → R be a convex l.s.c. function. Then f is strongly convex w.r.t. norm ‖ · ‖ with
constant µ > 0 if and only f∗ has Lipschitz continuous gradient w.r.t. norm ‖ · ‖∗ with constant L = 1/µ.

From the previous two results, we immediately have the following lemma.

Lemma 3.4. Suppose f : Rn → R, Q is a centrally symmetric convex set with nonempty interior and let
A ∈ Rn×n be a nonsingular matrix. Suppose f is strongly convex with respect to the norm ‖ · ‖Q with
parameter σ > 0, i.e.

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

2
σ‖y − x‖2Q, x, y ∈ Q,

if and only if the function f̂(w) , f(Aw) is strongly convex with respect to the norm ‖ · ‖A−1Q with the
same parameter σ.

We now turn our attention to the choice of prox function in Algorithm 1.
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3.2. Choosing the Prox. Choosing the norm as ‖ · ‖Q allows us to define a norm without introducing an
arbitrary geometry in the algorithm, since the norm is extracted directly from the problem definition. Notice
furthermore that by Theorem 3.3 when (‖ · ‖2Q)∗ is smooth, we can set d(x) = ‖x‖2Q. The immediate impact
of this choice is that the term d(x?) in (7) is bounded by one, by construction. This choice has other natural
benefits which are highlighted below. We first recall a result showing that the conjugate of a squared norm
is the squared dual norm.

Lemma 3.5. Let ‖ · ‖ be a norm and ‖ · ‖∗ its dual norm, then

1

2
(‖y‖∗)2 = sup

x
yTx− 1

2
‖x‖2.

Proof. We recall the proof in [Boyd and Vandenberghe, 2004, Example 3.27] as it will prove useful in
what follows. By definition, xT y ≤ ‖y‖∗ ‖x‖, hence

yTx− 1

2
‖x‖2 ≤ ‖y‖∗ ‖x‖ − 1

2
‖x‖2 ≤ 1

2
(‖y‖∗)2

because the second term is a quadratic function of ‖x‖2, with maximum (‖y‖∗)2 /2. This maximum is at-
tained by any x such that xT y = ‖y‖∗ ‖x‖ (there must be one by construction of the dual norm), normalized
so ‖x‖ = ‖y‖∗, which yields the desired result.

Computing the prox-mapping in (4) amounts to taking the conjugate of ‖ · ‖2, so this last result (and
its proof) shows that, in the unconstrained case, solving the prox mapping is equivalent to finding a vector
aligned with the gradient, with respect to the Minkowski norm ‖ · ‖Q. We now recall another simple result
showing that the dual of the norm ‖ · ‖Q is given by ‖ · ‖Q◦ where Q◦ is the polar of the set Q.

Lemma 3.6. Let Q be a centrally symmetric convex set with nonempty interior, then ‖ · ‖∗Q = ‖ · ‖Q◦ .

Proof. We write

‖x‖Q◦ = inf{λ ≥ 0 : x ∈ λQ◦} = inf{λ ≥ 0 : xT y ≤ λ, for all y ∈ Q}

= inf

{
λ ≥ 0 : sup

y∈Q
xT y ≤ λ

}
= sup

y∈Q
xT y = ‖x‖∗Q

which is the desired result.

In the light of the results above, we conclude that whenever Q◦ is smooth we obtain a natural prox
function d(x) = ‖x‖2Q, whose strong convexity parameter is controlled by the Lipschitz constant of the
gradient of ‖ · ‖2Q◦ . However, this does not cover the case where the squared norm ‖ · ‖Q is not strongly
convex. In that scenario, we need to pick the norm based on Q but find a strongly convex prox function
not too different from ‖ · ‖2Q. This is exactly the dual of the problem studied by Juditsky and Nemirovski
[2008] who worked on concentration inequalities for vector-valued martingales and defined the regularity of
a Banach space (E, ‖ · ‖E) in terms of the smoothness of the best smooth approximation of the norm ‖.‖E.

We first recall a few more definitions, and we will then show that the regularity constant defined by
Juditsky and Nemirovski [2008] produces an affine invariant bound on the term d(x?)/σ in the complexity
of the smooth algorithm in [Nesterov, 1983].

Definition 3.7. Suppose ‖·‖X and ‖·‖Y are two norms on a space E, the distortion d(‖·‖X , ‖·‖Y ) between
these two norms is equal to the smallest product ab > 0 such that

1

b
‖x‖Y ≤ ‖x‖X ≤ a‖x‖Y

over all x ∈ E.

Note that log d(‖ · ‖X , ‖ · ‖Y ) defines a metric on the set of all symmetric convex bodies in Rn, called the
Banach-Mazur distance. We then recall the regularity definition in [Juditsky and Nemirovski, 2008].
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Definition 3.8. The regularity constant of a Banach space (E, ‖.‖) is the smallest constant ∆ > 0 for which
there exists a smooth norm p(x) such that

(i) p(x)2/2 has a Lipschitz continuous gradient with constant µ w.r.t. the norm p(x), with 1 ≤ µ ≤ ∆,
(ii) the norm p(x) satisfies

‖x‖2 ≤ p(x)2 ≤ ∆

µ
‖x‖2, for all x ∈ E (10)

hence d(p(x), ‖.‖) ≤
√

∆/µ.

Note that in finite dimension, since all norms are equivalent to the Euclidean norm with distortion at most√
dimE, we know that all finite dimensional Banach spaces are at least (dimE)-regular. Furthermore, the

regularity constant is invariant with respect to an affine change of coordinates since both the distortion and
the smoothness bounds are. We are now ready to prove the main result of this section.

Proposition 3.9. Let ε > 0 be the target precision, suppose that the function f has a Lipschitz continuous
gradient with constant LQ with respect to the norm ‖ · ‖Q and that the space (Rn, ‖ · ‖∗Q) is ∆Q-regular,
then Algorithm 1 will produce an ε-solution to problem (1) in at most√

4LQ∆Q

ε
(11)

iterations. The constants LQ and ∆Q are affine invariant.

Proof. If (Rn, ‖ · ‖∗Q) is ∆Q-regular, then by Definition 3.8, there exists a norm p∗(x) such that p∗(x)2/2

has a Lipschitz continuous gradient with constant µ with respect to the norm p∗(x), and [Juditsky and
Nemirovski, 2008, Prop. 3.2] shows by conjugacy that the prox function d(x) , p(x)2/2 is strongly convex
with respect to the norm p(x) with constant 1/µ. Now (10) means that√

µ

∆Q
‖x‖Q ≤ p(x) ≤ ‖x‖Q, for all x ∈ Q

since ‖ · ‖∗∗ = ‖ · ‖, hence

d(x+ y) ≥ d(x) + 〈∂d(x), y〉+
1

2µ
p(y)2

≥ d(x) + 〈∂d(x), y〉+
1

2∆Q
‖y‖2Q

so d(x) is strongly convex with respect to ‖ · ‖Q with constant σ = 1/∆Q, and using (10) as above

d(x?)

σ
=
p(x?)2∆Q

2
≤
‖x?‖2Q∆Q

2
≤

∆Q

2

by definition of ‖ · ‖Q, if x? is an optimal (hence feasible) solution of problem (1). The bound in (11)
then follows from (7) and its affine invariance follows directly from affine invariance of the distortion and
Lemmas 3.2 and 3.4.

In Section 5, we will see that, when Q is an `p ball, the complexity bound in (11) is optimal for most, but
not all, high dimensional regimes in (n, ε) where n is greater than ε−1/2. In the section that follows, we thus
extend Algorithm 1 to much more general problems, optimizing Hölder smooth functions using p-uniformly
convex prox functions (not just strongly convex ones). These additional degrees of freedom will allow us to
match optimal complexity lower bounds, with adaptivity in the Hölder smoothness parameter as a bonus.
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4. HÖLDER SMOOTH FUNCTIONS & UNIFORMLY CONVEX PROX

We now extend the results of Section 3 to problems where the objective f(x) is Hölder smooth and the
prox function is p-uniformly convex, with arbitrary p. This generalization is necessary to derive optimal
complexity bounds for smooth convex optimization over `p-balls when p > 2, and will require some exten-
sions of the ideas we presented for the standard analysis, which was based on a strongly convex prox. We
will consider a slightly different accelerated method, that can be seen as a combination of mirror and gradi-
ent steps Allen-Zhu and Orecchia [2014]. This variant of the accelerated gradient method is not substantially
different however from the one used in the previous section, and its purpose is to make the step-size analysis
more transparent. It is worth emphasizing that an interesting byproduct of our method is the analysis of an
adaptive step-size policy, which can exploit weaker levels of Hölder continuity for the gradient.

In order to motivate our choice of p-uniformly convex prox, we begin with an example highlighting
how the difficult geometries of `p-spaces when p > 2 necessarily lead to weak (dimension-dependent)
complexity bounds for any prox.

Example 4.1. Let 2 < p ≤ ∞ and let Bp be the unit p-ball on Rn. Let Ψ : Rn → R be any strongly convex
(prox) function w.r.t. ‖ · ‖p with constant 1, and suppose w.l.o.g. that Ψ(0) = 0. We will prove that

sup
x∈Bp

Ψ(x) ≥ n1−2/p/2.

We start from point x0 = 0 and choose a direction e1+ ∈ {e1,−e1} so that 〈∇Ψ(0), e1+〉 ≥ 0. By strong
convexity, we have, for x1 , x0 + e1

n1/p ,

Ψ(x1) ≥ Ψ(x0) + 〈∇Ψ(0), e1+〉+
1

2
‖x1 − x0‖2 ≥

1

2n2/p
.

Inductively, we can proceed adding coordinate vectors one by one, xi , xi−1 + ei+
n1/p , for i = 1, . . . , n,

where ei+ ∈ {ei,−ei} is chosen so that 〈∇Ψ(xi−1), ei+〉 ≥ 0. For this choice we can guarantee

Ψ(xi) ≥ Ψ(xi−1) + 〈∇Ψ(xi−1), ei+〉+
1

2n2/p
≥ i

2n2/p
.

At the end, the vector xn ∈ Bp and Ψ(xn) ≥ n1−2/p/2.

4.1. Uniform Convexity and Smoothness. The previous example shows that strong convexity of the prox
function is too restrictive when dealing with certain domain geometries, such as Q = Bp when p > 2.
In order to obtain dimension-independent bounds for these cases, we will have to consider relaxed notions
of regularity for the prox, namely p-uniform convexity and its dual notion of q-uniform smoothness. For
simplicity, we will only consider the case of subdifferentiable convex functions, which suffices for our
purposes.

Definition 4.2 (Uniform convexity and uniform smoothness). Let 2 ≤ p <∞, µ > 0 andQ ⊆ Rn, a closed
convex set. A subdifferentiable function Ψ : Q→ R is p-uniformly convex with constant µ w.r.t. ‖ · ‖ iff for
all x ∈ Q̊, y ∈ Q,

Ψ(y) ≥ Ψ(x) + 〈∇Ψ(x), y − x〉+
µ

p
‖y − x‖p. (12)

Now let 1 < q ≤ 2 and L > 0. A subdifferentiable function Φ : Q → R is q-uniformly smooth with
constant L w.r.t. ‖ · ‖ iff for all x ∈ Q̊, y ∈ Q,

Φ(y) ≤ Φ(x) + 〈∇Φ(x), y − x〉+
L

q
‖y − x‖q. (13)

From now on, whenever the constant µ of p-uniform convexity is not explicitly stated, µ = 1. We turn
our attention to the question of how to obtain an affine invariant prox in the uniformly convex setup. In the
previous section it was observed that the regularity constant of the dual space provided such tuning among
strongly convex prox functions, however we are not aware of extensions of this notion to the uniformly
smooth setup. Nevertheless, the same purpose can be achieved by directly minimizing the growth factor
among the class of uniformly convex functions, which leads to the following notion.

7



Definition 4.3 (Constant of variation). Given a p-uniformly convex function Ψ : Rn → R, we define its
constant of variation on Q as DΨ(Q) , supx∈Q Ψ(x)− infx∈Q Ψ(x). Furthermore, we define

Dp,Q , inf
Ψ

{
sup
x∈Q

Ψ(x)

∣∣∣∣ Ψ : Q→ R+ is p-uniformly convex w.r.t. ‖ · ‖, Ψ(0) = 0

}
. (14)

Some comments are in order. First, for fixed p, the constant Dp,Q provides the optimal constant of
variation among p-uniformly convex functions over Q, which means that, by construction, Dp,Q is affine-
invariant. Second, Example 4.1 showed that when 2 < p <∞, we haveD2,Bp ≥ n1−2/p/2, and the function
Ψ(x) = ‖x‖22/2 shows this bound is tight. We will later see that Dp,Bp = 1, which is a major improvement
for large dimensions. [Juditsky and Nemirovski, 2008, Prop. 3.3] also shows that ∆Q ≥ D2,Q ≥ c∆Q,
where ∆Q is the regularity constant defined in (3.8) and c > 0 is an absolute constant, since Ψ(x) is not
required to be a norm here.

When Q is the unit ball of a norm, a classical result by Pisier [1975] links the constant of variation in (14)
above with the notion of martingale cotype. A Banach space (E, ‖.‖) has M-cotype q iff there is some
constant C > 0 such that for any T ≥ 1 and martingale difference d1, . . . , dT ∈ E we have(

T∑
t=1

E [‖dt‖q]

)1/q

≤ C E
[∥∥∥∑T

t=1 dt

∥∥∥]
Pisier [1975] then shows the following result.

Theorem 4.4. [Pisier, 1975] A Banach space (E, ‖.‖) has M-cotype q iff there exists a q uniformly convex
norm equivalent to ‖ · ‖.

In the same spirit, there exists a concrete characterization of a function achieving the optimal constant of
variation, see e.g. [Srebro et al., 2011]. Unfortunately, this characterization does not lead to an efficiently
computable prox. For the analysis of our accelerated method with uniformly convex prox, we will also need
the notion of Bregman divergence.

Definition 4.5 (Bregman divergence). Let (Rn, ‖ · ‖) be a normed space, and Ψ : Q→ R be a p-uniformly
convex function w.r.t. ‖ · ‖. We define the Bregman divergence as

Vx(y) , Ψ(y)− 〈∇Ψ(x), y − x〉 −Ψ(x) ∀x ∈ Q̊, ∀y ∈ Q.

Observe that Vx(x) = 0 and Vx(y) ≥ 1
p‖y − x‖

p.

For starters, let us prove a simple fact that will be useful in the complexity bounds.

Lemma 4.6. Let Ψ : Q → R be a p-uniformly convex function, and Vx(·) the corresponding Bregman
divergence. Then, for all x, x′ and u in Q

Vx(u)− Vx′(u)− Vx(x′) = 〈∇Vx(x′), u− x′〉.

Proof. From simple algebra

Vx(u)− Vx′(u)− Vx(x′)

= Ψ(u)− 〈∇Ψ(x), u− x〉 −Ψ(x)− [Ψ(u)− 〈∇Ψ(x′), u− x′〉 −Ψ(x′)]− Vx(x′)

= 〈∇Ψ(x′)−∇Ψ(x), u− x′〉+ Ψ(x′)− 〈∇Ψ(x), x′ − x〉 −Ψ(x)︸ ︷︷ ︸
=Vx(x′)

−Vx(x′).

= 〈∇Ψ(x′)−∇Ψ(x), u− x′〉 = 〈∇Vx(x′), u− x′〉.

which is the desired result.
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4.2. An Accelerated Method for Minimizing Hölder Smooth Functions. We consider classes of weakly-
smooth convex functions. For a Hölder exponent σ ∈ (1, 2] we denote the class Fσ‖·‖(Q,Lσ) as the set of
convex functions f : Q→ R such that for all x, y ∈ Q

‖∇f(x)−∇f(y)‖∗ ≤ Lσ ‖x− y‖σ−1.

Before describing the method, we first define a step sequence that is useful in the algorithm. For a given p
such that 2 ≤ p <∞, consider the sequence (γt)t≥0 defined by γ1 = 1 and for any t > 1, γt+1 is the major
root of

γpt+1 = γp−1
t+1 + γpt .

This sequence has the following properties.

Proposition 4.7. The following properties hold for the auxiliary sequence (γt)t≥0

(i) The sequence is increasing.
(ii) γpt =

∑t
s=1 γ

p−1
s .

(iii) t
p ≤ γt ≤ t.

(iv)
∑t

s=1 γ
p
s ≤ tγpt .

Proof. We get

(i) By definition, γpt+1 = γp−1
t+1 + γpt ≥ γ

p
t , thus γt+1 ≥ γt.

(ii) By telescoping the recursion, γpt =
∑t

s=1 γ
p−1
s .

(iii) For the lower bound, a Fenchel type inequality yields

γt = γ
1/p∗
t+1 [γt+1 − 1]1/p ≤ γt+1

p∗
+
γt+1 − 1

p
= γt+1 −

1

p
.

The upper bound is proved by induction as follows

(t+ 1)p = (t+ 1)p−1 + t(t+ 1)p−1 > (t+ 1)p−1 + t[tp−1 + (p− 1)tp−2] ≥ (t+ 1)p−1 + γpt ,

where the last inequality holds by induction hypothesis, γt ≤ t. As a conclusion, the major root
defining γt+1 has to be at most t+ 1.

(iv) By (ii), we have,

t∑
s=1

γps =

t∑
s=1

s∑
r=1

γp−1
s =

t∑
r=1

(t− r)γp−1
r ≤ t

t∑
r=1

γp−1
r = tγpt .

which concludes the proof.

We now prove a simple Lemma controlling the smoothness of f terms of ‖ · ‖p. This idea is a minor
extension of the “inexact gradient trick” proposed in [Devolder et al., 2011] and further studied in [Nesterov,
2015], which corresponds to the special case where p = 2 in the results described here. As in [Devolder
et al., 2011], this trick will allow us to minimize Hölder smooth functions by treating their gradient as an
inexact oracle on the gradient of a smooth function.

Lemma 4.8. Let f ∈ Fσ‖·‖(Q,Lσ), then for any δ > 0 and

M ≥
[

2

p

(
p− σ
σ

)
1

δ

] p−σ
σ

L
p
σ
σ (15)

we have that for all x, y ∈ Q

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

p
M‖y − x‖p +

δ

2
.
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Proof. By assumption on f , the following bound holds for any x, y ∈ Q

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
Lσ
σ
‖y − x‖σ.

Notice first that it suffices to show that for all t ≥ 0

Lσ
σ
tσ ≤ M

p
tp +

δ

2
. (16)

This can be seen by letting t = ‖y − x‖ and using (16) in the preceding inequality. Let us prove (16). First
recall the following Fenchel type inequality: if r, s ≥ 1 and 1/r+ 1/s = 1 then for all x and y we have that
xy ≤ 1

rx
r + 1

sy
s. For r = p/σ, s = p/(p− σ) and x = tσ, we obtain

Lσ
σ
tσ ≤ 1

p

Lσ
y
tp +

Lσ(p− σ)

pσ
y

σ
p−σ .

Now we choose y so that δ2 = Lσ(p−σ)
pσ y

σ
p−σ , which leads to the inequality

Lσ
σ
tσ ≤ 1

p

Lσ
y
tp +

δ

2
.

Finally, by our choice of M we have that M ≥ Lσ/y, proving (16) and therefore the result.

Algorithm 2 Accelerated Method with Bregman Prox
Input: x0 ∈ Q

1: y0 = x0, z0 = x0, and A0 = 0
2: for t = 0, . . . , T − 1 do
3: αt+1 = γp−1

t+1 /M
4: At+1 = At + αt+1

5: τt = αt+1/At+1

6: xt+1 = τtzt + (1− τt)yt
7: Obtain from oracle∇f(xt+1), and update

yt+1 = arg min
y∈Q

{
M

p
‖y − xt+1‖p + 〈∇f(xt+1), y − xt+1〉

}
(17)

zt+1 = arg min
z∈Q
{Vzt(z) + αt+1〈∇f(xt+1), z − zt〉} (18)

8: end for
9: return yT

As we will show below, the accelerated method described in Algorithm 2 extends the `p-setting for
acceleration first proposed by [Nemirovskii and Nesterov, 1985] to nonsmooth spaces, using Bregman di-
vergences. This gives us more flexibility in the choice of prox function and allows us in particular to better
fit the geometry of the feasible set.

Proposition 4.9. Let f ∈ Fσ‖·‖(Q,Lσ) and Ψ : Q → R be p-uniformly convex w.r.t. ‖ · ‖. Then for any

ε > 0, setting δ , ε/T , and M satisfying (15), the accelerated method in Algorithm 2 guarantees an
accuracy

f(yT )− f(y∗) ≤ DΨ(Q)

AT
+
ε

2

after T iterations.
10



Proof. Let u ∈ Q be an arbitrary vector. Using the optimality conditions for subproblem (18), and
Lemma 4.6, we get

αt+1〈∇f(xt+1), zt − u〉 = αt+1〈∇f(xt+1), zt − zt+1〉+ αt+1〈∇f(xt+1), zt+1 − u〉
≤ αt+1〈∇f(xt+1), zt − zt+1〉 − 〈∇Vzt(zt+1), zt+1 − u〉
= αt+1〈∇f(xt+1), zt − zt+1〉+ Vzt(u)− Vzt+1(u)− Vzt(zt+1)

≤
[
αt+1〈∇f(xt+1), zt − zt+1〉 −

1

p
‖zt − zt+1‖p

]
+ Vzt(u)− Vzt+1(u).

Let us examine the latter term in brackets closely. For this, let v = τtzt+1 + (1 − τt)yt and note that
xt+1 − v = τt(zt − zt+1). With τt = αt+1/At+1 we also have, using Proposition 4.7 (ii),

1

τpt
=

(
L
∑t+1

s=1 γ
p−1
s

Lγp−1
t+1

)p
= γpt+1 = MAt+1.

From this we obtain

αt+1〈∇f(xt+1), zt − zt+1〉 −
1

p
‖zt − zt+1‖p =

〈
αt+1

τt
∇f(xt+1), xt+1 − v

〉
− 1

pτpt
‖xt+1 − v‖p

= At+1

[
〈∇f(xt+1), xt+1 − v〉 −

M

p
‖xt+1 − v‖p

]
≤ At+1

[
〈∇f(xt+1), xt+1 − yt+1〉 −

M

p
‖xt+1 − yt+1‖p

]
≤ At+1

[
f(xt+1)− f(yt+1) +

δ

2

]
,

where the first inequality holds by the definition of yt+1, and the last inequality holds by Lemma 4.8 and the
choice of M . This means that

αt+1〈∇f(xt+1), zt − u〉 ≤ At+1 [f(xt+1)− f(yt+1) + δ/2] + Vzt(u)− Vzt+1(u). (19)

From (19) and other simple estimates

αt+1[f(xt+1)− f(u)]

≤ αt+1〈∇f(xt+1), xt+1 − u〉
= αt+1〈∇f(xt+1), xt+1 − zt〉+ αt+1〈∇f(xt+1), zt − u〉

=
(1− τt)αt+1

τt
〈∇f(xt+1), yt − xt+1〉+ αt+1〈∇f(xt+1), zt − u〉

≤ (1− τt)αt+1

τt
[f(yt)− f(xt+1)] + αt+1〈∇f(xt+1), zt − u〉

≤ (1− τt)αt+1

τt
[f(yt)− f(xt+1)] +At+1[f(xt+1)− f(yt+1) + δ/2] + Vzt(u)− Vzt+1(u)

= (At+1 − αt+1)[f(yt)− f(xt+1)] +At+1[f(xt+1)− f(yt+1) + δ/2] + Vzt(u)− Vzt+1(u).

Therefore

At+1f(yt+1)−Atf(yt) + Vzt+1(u)− Vzt(u) ≤ αt+1f(u) +At+1
δ

2
.

Summing these inequlities, we obtain

AT f(yT ) + [Vzt+1(u)− Vz0(u)] ≤ AT f(u) +

T∑
t=1

At
δ

2
.

11



Now, by Proposition 4.7, we have
1

AT

∑T
t=1At ≤

1

γpT
TγpT ≤ T , thus by the choice δ = ε/T , we obtain

f(yT )− f(u) ≤ Vz0(u)

AT
+
ε

2
.

Definition 4.5 together with the fact that 〈∇Ψ(x), y − x〉 ≥ 0 when x minimizes Ψ(x) over Q then yields
the desired result.

In order to obtain the convergence rate of the method, we need to estimate the value of AT given the
choice of M . For this we assume the bound in (15) is satisfied with equality. Since AT = γpT /M we can
use Proposition 4.7 (iii), so that

AT = γpT

[
p

2

(
σ

p− σ

)
ε

T

] p−σ
σ

L
− p
σ

σ

≥ p−pT p+1− p
σ ε

p
σ
−1

[
p

2

(
σ

p− σ

)] p−σ
σ

L
− p
σ

σ .

Notice that to obtain an ε-solution it suffices to have AT ≥ 2DΨ(Q)/ε. By imposing this lower bound on
the lower bound obtained for AT we get the following complexity estimate.

Corollary 4.10. Let f ∈ Fσ‖·‖(Q,Lσ) and Ψ : X → R be p-uniformly convex w.r.t. ‖ · ‖. Setting δ , ε/T ,
and M satisfying (15), the accelerated method in Algorithm 2 requires

T < p

[
2p
(
p− σ
σ

)p−σ DΨ(Q)σLpσ
εp

] 1
(p+1)σ−p

+ 1.

iterations to reach an accuracy ε.

We will later see that the algorithm above leads to optimal complexity bounds (that is, unimprovable up
to constant factors), for `p-setups. However, our algorithm is highly sensitive to several parameters, the
most important being σ (the smoothness) and Lσ which sets the step-size. We now focus on designing an
adaptive step-size policy, that does not require Lσ as input, and adapts itself to the best weak smoothness
parameter σ ∈ (1, 2].

4.3. An Adaptive Gradient Method. We will now extend the adaptive algorithm in [Nesterov, 2015, Th.3]
to handle p-uniformly convex prox functions using Bregman divergences. This new method with adaptive
step-size policy is described as Algorithm 3. From line 5 in Algorithm 3 we get the following identities

Ap−1 = αpM (21)
1

τp
= MA. (22)

These identities are analogous to the ones derived for the non-adaptive variant. For this reason, the analysis
of the adaptive variant is almost identical. There are a few extra details to address, which is what we do now.
First, we need to show that the line-search procedure is feasible. That is, it always terminates in finite time.
This is intuitively true from Lemma 4.8, but let us make this intuition precise. From (21) and (22) we have

Mτ
p−σ
σ =

Ap−1

αp

(α
A

) p
σ
−1

=
1

α

(
A

α

)p− p
σ

≥ 1

α
.

Notice that whenever the condition (20) of Algorithm 3 is not satisfied, M is increased by a factor two.
Suppose the line-search does not terminate, then α → 0. However, by Lemma 4.8, the termination condi-
tion (20) is guaranteed to be satisfied as soon as

M ≥
[

2

p

(
p− σ
σ

)
1

ετ

] p−σ
σ

L
p
σ
σ ,

12



Algorithm 3 Accelerated Method with Bregman Prox and Adaptive Stepsize

Input: x0 ∈ Q
1: Set y0 = x0, z0 = x0, M0 = 1 and A0 = 0.
2: for t = 0, . . . , T − 1 do
3: M = Mt/2
4: repeat
5: Set

M = 2M

α = max
{
a : M

1
p−1ap∗ − a = At

}
A = At + α

τ = α/A

xt+1 = τzt + (1− τ)yt

6: Obtain∇f(xt+1), and compute

yt+1 = arg min
y∈Q

{
M

p
‖y − xt+1‖p + 〈∇f(xt+1), y − xt+1〉

}
7: until

f(yt+1) ≤ f(xt+1) + 〈∇f(xt+1), yt+1 − xt+1〉+
M

p
‖yt+1 − xt+1‖p +

τε

2
(20)

8: Set Mt+1 = M/2, αt+1 = α, At+1 = A, τt = τ .
9: Compute

zt+1 = arg min
z∈Q
{Vzt(z) + αt+1〈∇f(xt+1), z − zt〉}

10: end for
11: return y

which is a contradiction with α→ 0.
To produce convergence rates, we need a lower bound on the sequence At. Unfortunately, the analysis

in [Nesterov, 2015] only works when p = 2, we will thus use a different argument. First, notice that by the
line-search rule

Mt+1

2
≤
[

2

p

(
p− σ
σ

)
1

ετt

] p−σ
σ

L
p
σ
σ ,

from which we obtain

αpt+1 = τpt A
p
t+1 =

Ap−1
t+1

Mt+1

≥ Ap−1
t+1

1

2

[
p

2

(
σ

p− σ

)
ετt

] p
σ
−1

L
− p
σ

σ

≥ 1

2

[
εp

2

(
σ

p− σ

)] p−σ
σ

L
− p
σ

σ A
p− p

σ
t+1 α

p
σ
−1

t+1 .

This allows us to conclude

α
(p+1)σ−p

σ
t+1 ≥ 1

2

[
εp

2

(
σ

p− σ

)] p−σ
σ

L
− p
σ

σ A
pσ−p
σ

t+1 ,
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which gives an inequality involving αt+1 and At+1

αt+1 ≥

(
2
− σ

(p+1)σ−p

[
εp

2

(
σ

p− σ

)] p−σ
(p+1)σ−p

L
− p

(p+1)σ−p
σ

)
A

pσ−p
(p+1)σ−p
t+1 .

Here is where we need to depart from Nesterov’s analysis, as the condition γ ≥ 1/2 in that proof does not
hold. Instead, we show the following bound.

Lemma 4.11. Suppose αt ≥ 0, α0 = 0 and At =
∑t

j=0 αj , satisfy

αt ≥ βAst
for some s ∈ [0, 1[ and β ≥ 0. Then,

At ≥ ((1− s)βt)
1

1−s

for any t ≥ 0.

Proof. The sequence At follows the recursion At−At−1 ≥ βAst . The function h(x) , x− βxs satisfies
h(0) = 0, h′(0+) < 0 and h′(x) only has a single positive root. Hence, when At−1 > 0, the equation

At − βAst = At−1

in the variable At only has a single positive root, after which h(At) is increasing. This means that to get a
lower bound on At it suffices to consider the extreme case of the sequence satisfying

At −At−1 = βAst .

Because At is increasing, the sequence At − At−1 is increasing, hence there exists an increasing, convex,
piecewise affine function A(t) that interpolates At, whose breakpoints are located at integer values of t. By
construction, this function A(t) satisfies

A′(t) = Abt+1c −Abtc = αbt+1c ≥ βAsbt+1c ≥ βA(t)s

for any t /∈ N. In particular, the interpolant satisfies

A′(t) ≥ βAs(t) (23)

for any t ≥ 0. Note that 1/As(t) is a convergent integral around 0, as A(t) is linear around 0, and A′(·)
can be defined as a right continuous nondecreasing function, which is furthermore constant around 0; there-
fore the involved functions are integrable, and the Theorem of change of variables holds. Integrating the
differential inequality we get

βt ≤
∫ t

0

A′(t)

As(t)
dt =

∫ A(t)

0

du

us
=
A(t)1−s

1− s
,

yielding the desired result.

Using Lemma 4.11 with s = (pσ − p)/((p+ 1)σ − p) produces the following bound on AT

AT ≥
1

2

(
σ

(p+ 1)σ − p

) (p+1)σ−p
σ

(
εp

2

σ

p− σ

) p−σ
σ

L
− p
σ

σ T
(p+1)σ−p

σ .

To guarantee that AT ≥ 2DΨ(Q)/ε, it suffices to impose

T ≥ C(p, σ)

(
Dσ

Ψ(Q)Lpσ
εp

) 1
(p+1)σ−p

where

C(p, σ) ,

(
(p+ 1)σ − p

σ

)(
2(p− σ)

pσ

) p−σ
(p+1)σ−p

2
2σ

(p+1)σ−p .
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Corollary 4.12. Let f ∈ Fσ‖·‖(Q,Lσ) and Ψ : X → R is p-uniformly convex w.r.t. ‖ · ‖. Then the number
of iterations required by Algorithm 3 to produce a solution with accuracy ε is bounded by

T ≤ inf
1<σ≤2

[
C(p, σ)

(
Dσ

Ψ(Q)Lpσ
εp

) 1
(p+1)σ−p

]
.

From Corollary 4.12 we obtain the affine-invariant bound on iteration complexity. Given a centrally
symmetric convex body Q ⊆ Rn, we choose the norm as its Minkowski gauge ‖ · ‖ = ‖ · ‖Q, and p-
uniformly convex prox as the minimizer defining the optimal p-variation constant, supx∈Q Ψ(x) = Dp,Q.
With these choices, the iteration complexity is

T ≤ inf
1<σ≤2

C(p, σ)

(
Dσ
p,QL

p
σ,Q

εp

) 1
(p+1)σ−p

 ,
where Lσ,Q is the Hölder constant of f quantified in the Minkowski gauge norm ‖ · ‖Q. As a consequence,
the bound above is affine-invariant, since alsoDp,Q is affine-invariant by construction. Observe our iteration
bound automatically adapts to the best possible weak smoothness parameter σ ∈ (1, 2]; note however that
an implementable algorithm requires an accuracy certificate in order to stop with this adaptive bound. These
details are beyond the scope of this paper, but we refer to [Nesterov, 2015] for details. Finally, we will see
in what follows that this affine invariant bound also matches corresponding lower bounds when Q is an `p
ball.

5. EXPLICIT BOUNDS ON PROBLEMS OVER `p BALLS

5.1. Upper Bounds. To illustrate our results, first consider the problem of minimizing a smooth convex
function over the unit simplex, written

minimize f(x)
subject to 1Tx ≤ 1, x ≥ 0,

(24)

in the variable x ∈ Rn.
As discussed in [Juditsky et al., 2009, §3.3], choosing ‖·‖1 as the norm and d(x) = log n+

∑n
i=1 xi log xi

as the prox function, we have σ = 1 and d(x?) ≤ log n, which means the complexity of solving (24) using
Algorithm 1 is bounded by √

8
L1 log n

ε
(25)

where L1 is the Lipschitz constant of ∇f with respect to the `1 norm. This choice of norm and prox has a
double advantage here. First, the prox term d(x?) grows only as log n with the dimension. Second, the `∞
norm being the smallest among all `p norms, the smoothness bound L1 is also minimal among all choices
of `p norms.

Let us now follow the construction of Section 3. The simplex C = {x ∈ Rn : 1Tx ≤ 1, x ≥ 0} is
not centrally symmetric, but we can symmetrize it as the `1 ball. The Minkowski norm associated with
that set is then equal to the `1-norm, so ‖ · ‖Q = ‖ · ‖1 here. The space (Rn, ‖ · ‖∞) is 2 log n regular
[Juditsky and Nemirovski, 2008, Example 3.2] with the prox function chosen here as ‖ · ‖2α/2, with α =
2 log n/(2 log n− 1). Proposition 3.9 then shows that the complexity bound we obtain using this procedure
is identical to that in (25). A similar result holds in the matrix case.

5.1.1. Strongly Convex Prox. We can generalize this result to all cases where Q is an lp ball. When p ∈
[1, 2], [Juditsky et al., 2009, Ex. 3.2] shows that the dual norm ‖ · ‖ p

p−1
is ∆p regular, with

∆p = inf
2≤ρ< p

p−1

(ρ− 1)n
2
ρ
− 2(p−1)

p ≤ min

{
p

p− 1
, C log n

}
, when p ∈ [1, 2].
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When p ∈ [2,∞], the regularity is only controlled by the distortion d(‖ · ‖ p
p−1

, ‖ · ‖2), since ‖ · ‖α is only
smooth when α ≥ 2. This means that ‖ · ‖ p

p−1
is ∆p regular, with

∆p = n
p−2
p , when p ∈ [2,∞].

This means that the complexity of solving

minimize f(x)
subject to x ∈ Bp

(26)

in the variable x ∈ Rn, where Bp is the `p ball, using Algorithm 1, is bounded by√
4Lp∆p

ε
(27)

where Lp is the Lipschitz constant of ∇f with respect to the `p norm. We will later see that this bound
is nearly optimal when 1 ≤ p ≤ 2; however, the dimension dependence on the bounds when p > 2 is
essentially suboptimal. In order to obtain the optimal methods in this range we will need our p-uniformly
convex extensions.

5.1.2. Uniformly Convex Bregman Prox. In the case 2 ≤ p < ∞, the function Ψp(w) = 1
p‖w‖

p
p is p-

uniformly convex w.r.t. ‖ · ‖p (see, e.g. [Ball et al., 1994]), and thus

Dp,Bp = 1, when p ∈ [2,∞].

As a consequence, Algorithm 2 with Ψp as p-uniformly requires

T ≥ C(p)

(
Lp
ε

) p
p+2

(28)

iterations to reach a target precision ε, where C(p) is a constant only depending on p (which nevertheless
diverges as p→∞). This complexity guarantee admits passage to the limit p→∞ with a poly-logarithmic
extra factor. Note however that in this case we can avoid any dimension dependence by the much simpler
Frank-Wolfe method.

5.2. Lower Bounds. We show that in the case of `p balls estimates from the proposed methods are nearly
optimal in terms of information-based complexity. We consider the class of problems given by the minimiza-
tion of smooth convex objectives with a bound Lp on the Lipschitz constant of their gradients w.r.t. norm
‖ · ‖p, and the feasible domain given the radius Rp > 0 ball Bp(R). We emphasize that the lower bounds
we present only hold for the large-scale regime, where the number of iterations T is upper bounded by the
dimension of the space, n. It is well-known that when one can afford a super-linear (in dimension) num-
ber of iterations, methods such as the center of gravity or ellipsoid can achieve better complexity estimates
[Nemirovskii and Yudin, 1979].

First, in the range 1 ≤ p ≤ 2 we can immediately use the lower bound on risk from [Guzmán and
Nemirovski, 2015],

Ω

(
LpR

2
p

T 2 log(T + 1)

)
where T is the number of iterations, which translates into the following lower bound on iteration complexity

Ω

√ LpR2
p

ε log n


as a function of the target precision ε > 0. Therefore, the affine invariant algorithm is optimal, up to
poly-logarithmic factors, in this range.
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For the second range, 2 < p ≤ ∞, the lower bound states the accuracy after T steps is no better than

Ω

(
LpR

2
p

min[p, log n]T 1+2/p

)
,

which translates into the iteration complexity lower bound

Ω

( LpR
2
p

min[p, log n]ε

) p
p+2

 .

For fixed 2 ≤ p <∞, this lower bound matches –up to constant factors– our iteration complexity obtained
for these setups. For the case p = ∞, our algorithm also turns out to be optimal, up to polylogarithmic in
the dimension factors.

6. NUMERICAL RESULTS

We now briefly illustrate the numerical performance of our methods on a simple problem taken from
[Nesterov, 2015]. To test the adaptivity of Algorithm 3, we focus on solving the following continuous
Steiner problem

min
‖x‖2≤1

m∑
i=1

‖x− xi‖q (29)

in the variable x ∈ Rn, with parameters xi ∈ Rn for i = 1, . . . ,m. The parameter q ∈ [1, 2] controls the
Hölder continuity of the objective. We sample the points x uniformly at random in the cube [0, 1]n. We
set n = 50, m = 10 and the target precision ε = 10−12. We compare iterates with the optimum obtained
using CVX [Grant et al., 2001]. We observe that while the algorithm solving the three cases q = 1, 1.5, 2 is
identical, it is significantly faster on smoother problems, as forecast by the adaptive bound in Corollary 4.12.
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FIGURE 1. We test the adaptivity of of Algorithm 3. Left: Convergence plot of Algorithm 3
applied to the continuous Steiner problem (29) for q = 1, 1.5, 2. Right: Value of the local
smoothness parameter M across iterations.
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7. CONCLUSION

From a practical point of view, the results above offer guidance in the choice of a prox function depending
on the geometry of the feasible set Q. On the theoretical side, these results provide affine invariant descrip-
tions of the complexity of an optimization problem based on both the geometry of the feasible set and of
the smoothness of the objective function. In our first algorithm, this complexity bound is written in terms
of the regularity constant of the polar of the feasible set and the Lipschitz constant of ∇f with respect to
the Minkowski norm. In our last two methods, the regularity constant is replaced by a Bregman diameter
constructed from an optimal choice of prox.

When Q is an `p ball, matching lower bounds on iteration complexity for the algorithm in [Nesterov,
1983] show that these bounds are optimal in terms of target precision, smoothness and problem dimension,
up to a polylogarithmic term.

However, while we show that it is possible to formulate an affine invariant implementation of the optimal
algorithm in [Nesterov, 1983], we do not yet show that this is always a good idea outside of the `p case...
In particular, given our choice of norm the constants LQ and ∆Q are both affine invariant, with LQ optimal
by our choice of prox function minimizing ∆Q over all smooth square norms. However, outside of the
cases where Q is an `p ball, this does not mean that our choice of norm (Minkowski gauge of a centrally
symmetric feasible set) minimizes the product LQ min{∆Q/2, n}, hence that we achieve the best possible
bound for the complexity of the smooth algorithm in [Nesterov, 1983] and its derivatives. Furthermore,
while our bounds give clear indications of what an optimal choice of prox should look like, given a choice
of norm, this characterization is not constructive outside of special cases like `p-balls.
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