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Today

� Classification

� Maximum likelihood estimation

� Optimal detector design

� Experiment design

� Collaborative prediction

� Transportation problems

ENSAE: Optimisation 2/63



Linear discrimination

Separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane:

aTxi + bi > 0, i = 1, . . . , N, aTyi + bi < 0, i = 1, . . . ,M

homogeneous in a, b, hence equivalent to

aTxi + bi ≥ 1, i = 1, . . . , N, aTyi + bi ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b
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Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/‖a‖2

to separate two sets of points by maximum margin,

minimize (1/2)‖a‖2
subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M
(1)

(after squaring objective) a QP in a, b
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Lagrange dual of maximum margin separation problem

maximize 1Tλ+ 1Tµ

subject to 2
∥∥∥∑N

i=1 λixi −
∑M
i=1 µiyi

∥∥∥
2
≤ 1

1Tλ = 1Tµ, λ � 0, µ � 0

(2)

from duality, optimal value is inverse of maximum margin of separation

interpretation

� change variables to θi = λi/1
Tλ, γi = µi/1

Tµ, t = 1/(1Tλ+ 1Tµ)

� invert objective to minimize 1/(1Tλ+ 1Tµ) = t

minimize t

subject to
∥∥∥∑N

i=1 θixi −
∑M
i=1 γiyi

∥∥∥
2
≤ t

θ � 0, 1Tθ = 1, γ � 0, 1Tγ = 1

optimal value is distance between convex hulls
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Approximate linear separation of non-separable sets

minimize 1Tu+ 1Tv
subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

� an LP in a, b, u, v

� at optimum, ui = max{0, 1− aTxi − b}, vi = max{0, 1 + aTyi + b}

� can be interpreted as a heuristic for minimizing #misclassified points
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Support vector classifier

minimize ‖a‖2 + C(1Tu+ 1Tv)
subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

produces point on trade-off curve between inverse of margin 2/‖a‖2 and
classification error, controlled by C > 0, measured by total slack 1Tu+ 1Tv

same example as previous page, with
C = 0.1:

ENSAE: Optimisation 7/63



Nonlinear discrimination

Separate two sets of points by a nonlinear function:

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . ,M

� choose a linearly parametrized family of functions

f(z) = θTF (z)

F = (F1, . . . , Fk) : Rn → Rk are basis functions

� solve a set of linear inequalities in θ:

θTF (xi) ≥ 1, i = 1, . . . , N, θTF (yi) ≤ −1, i = 1, . . . ,M
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quadratic discrimination: f(z) = zTPz + qTz + r

xTi Pxi + qTxi + r ≥ 1, yTi Pyi + qTyi + r ≤ −1

can add additional constraints (e.g., P � −I to separate by an ellipsoid)

polynomial discrimination: F (z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial
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Support Vector Machines: Duality

Given m data points xi ∈ Rn with labels yi ∈ {−1, 1}.

� The maximum margin classification problem can be written

minimize 1
2‖w‖

2
2 + C1Tz

subject to yi(w
Txi) ≥ 1− zi, i = 1, . . . ,m

z ≥ 0

in the variables w, z ∈ Rn, with parameter C > 0.

� We can set w = (w,1) and increase the problem dimension by 1. So we can
assume w.l.o.g. b = 0 in the classifier wTxi + b.

� The Lagrangian is written

L(w, z, α) =
1

2
‖w‖22 + C1Tz +

m∑
i=1

αi(1− zi − yiwTxi)

with dual variable α ∈ Rm+ .
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Support Vector Machines: Duality

� The Lagrangian can be rewritten

L(w, z, α) =
1

2

∥∥∥∥∥w −
m∑
i=1

αiyixi

∥∥∥∥∥
2

2

−

∥∥∥∥∥
m∑
i=1

αiyixi

∥∥∥∥∥
2

2

+ (C1− α)Tz + 1Tα

with dual variable α ∈ Rn+.

� Minimizing in (w, z) we form the dual problem

maximize −1
2 ‖
∑m
i=1αiyixi‖

2

2
+ 1Tα

subject to 0 ≤ α ≤ C

� At the optimum, we must have

w =

m∑
i=1

αiyixi and αi = C if zi > 0

(this is the representer theorem).
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Support Vector Machines: the kernel trick

� If we write X the data matrix with columns xi, the dual can be rewritten

maximize −1
2α

T diag(y)XTX diag(y)α+ 1Tα
subject to 0 ≤ α ≤ C

� This means that the data only appears in the dual through the gram matrix

K = XTX

which is called the kernel matrix.

� In particular, the original dimension n does not appear in the dual. SVM
complexity only grows with the number of samples.

� In particular, the xi are allowed to be infinite dimensional.

� The only requirement on K is that K � 0.

Suppose we want to classify a problem with x of size 30,000 and we have 170
sample points: we only solve a problem of size 170. . .

ENSAE: Optimisation 12/63



Kernels

The matrix of scalar products Kij = (xTi xj) has the following properties:

� If two points xi, xj are similar, then their scalar product xTi xj is large.

� As a scalar product matrix, the matrix K is positive semidefinite
(i.e. vTKv ≥ 0, for all vectors v).

We can generalize this. What defines a kernel matrix?

� It should be positive semidefinite.

� It should also represent similarity: high coefficients Kij for similar data points.

� It should be easy to compute.
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Kernels

There a lot more kernels. . .

� Very common choice, the Gaussian kernel:

K(x, y) = exp

(
−‖x− y‖

2
2

2σ2

)

� Another popular choice for text classification:

K(x, y) = exp

(
−‖x− y‖1

γ

)

� Optimize σ and C simultaneously. . .

The best choice of kernel varies with the application.
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Text Classification

How can we do this on text? Suppose our data is composed of news articles:

� Start from a (large) dictionary.

� For each article: form a vector counting the frequency of dictionary words
inside the article.

Example from Reuters.

Ryanair Q3 profit up 30%, stronger than expected.

DUBLIN, Feb 5 (Reuters) - Ryanair (RYA.I: Quote, Profile , Research)
posted a 30 pct jump in third-quarter net profit on Monday, confounding
analyst expectations for a fall, and ramped up its full-year profit goal
while predicting big fuel-cost savings for the following year (. . . ).

This becomes:

profit loss up down jump fall below expectations ramped up
3 0 2 0 1 1 0 1 1
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Kernels

What if we want to use a mix of data types:

time series + text

e.g. a big spike 5 minutes before an article would mean that the news is already
out.

� We can pick the best possible kernel: e.g. K1 for the time series and K2 for
text.

� Any convex combination of kernels is again a kernel

K = λK1 + (1− λ)K2

� Optimize in λ to find the optimal mix.
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Cross-validation

How do we get C (and the kernel parameter σ)?

� First, split the sample data between training and test set.

� Perform cross-validation (CV) on the training set:

◦ Randomly split the training set into several equally large subsets.

◦ Train the classifier on all but one of these subsets.

◦ Measure its performance (precision & recall) on the remaining subset.

◦ Repeat for each subset of the training set.

� Compute performance of best classifier from CV on the original test set data.
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A simple example

Simple illustrative example.

� Picked 16 active stocks from 3 sectors: Healthcare, Energy and Technology.

� Every day, collected the top Reuters articles containing the stock ticker.
(using Google news.)

� Created a dictionary of 168 common financial terms.

� All the articles are reduced to vectors (with the frequency of each word).

� One month of data: Dec. 12, 2005 until Jan. 21, 2006.

� Collected 1134 articles.
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Stocks tracked

Company Ticker Sector Industry

Amgen, Inc. AMGN Healthcare Biotechnology & Drugs
Apple Computers, Inc. AAPL Technology Computer Hardware

AstraZeneca plc AZN Healthcare Major Drugs
BP plc BP Energy Oil & Gas - Integrated

ConocoPhillips COP Energy Oil & Gas - Integrated
Exxon Mobil Corp. XOM Energy Oil & Gas - Integrated

Genentech, Inc. DNA Healthcare Biotechnology & Drugs
Google Inc. GOOG Technology Computer Services

Guidant Corp. GDT Healthcare Medical Equipment and Supplies
Pfizer PFE Healthcare Major Drugs

Royal Dutch Shell plc. RDS Energy Oil & Gas - Integrated
Samsung Electronics Co. Ltd. N/A Consumer Cyclical Audio and Visual Equipment

Sanofi-Aventis SNY Healthcare Biotechnology & Drugs
Sony Corp. SNE Consumer Cyclical Audio and Visual Equipment

Teva Pharmaceutical Industries Ltd. TEVA Healthcare Biotechnology & Drugs
Wyeth WYE Healthcare Major Drugs
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Sample dictionary words

Theme Dictionary Words
Announcement of new product line, innovation announce, introduce, product, innovate, develop, technology,

begin, prospects, excite, design, hot, new

Companys earnings, sales information earning, sales, met expectations, below expectations,
above expectations, growth, data, gross margin,
quarterly, profit, forecast

Competition competition, competing, threat, shift, replace

Deal, merger, acquisition talks, sell, sold, deal, buy, acquire, bid, bought, agree,
acquisition, hopes

Negative sentiment murky, worry, end, loss, dampen, down, drop, fall, severe,
thin, weak, offset, slow, hurt, negative, suffer, sink, below,
fell short, lackluster, flaw, failure

Positive sentiment grow, increase, rise, surge, bullish, strength, fast, positive,
lead, prominent, success, gain, high, jump

ENSAE: Optimisation 20/63



A simple example

Record answers for the following questions:

� Does the article relate good news or bad news for the company? (Good, Bad)

� Does the article relate new news or updated news regarding the company?
(New, Updated)

� Is the company in the Healthcare sector? (Yes, No)

� Is the company in the Energy sector? (Yes, No)

� Does the article refer to a corporate acquisition, merger, deal regarding the
company or within the industry of the company? (Yes, No)

� Is the article firm-specific? (Yes, No)

� Is the article industry-specific? (Yes, No)

� Does the article refer to the release of earnings/sales/profits figures of the
company? (Yes, No)

For each article, manually classify it to create a training set. . .
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A simple example

Results (Recall), leave-one-out cross-validation:

Recall =
TP

FN + TP

Question Recall

Good news or bad news? 65%

New news? 65%

Healthcare sector? 94%

Energy sector? 100%

Corporate acquisition, merger, deal? 89%

Firm-specific? 66%

Industry-specific? 89%

Release of earnings/sales/profits figures of the company? 91%
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A simple example
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Stock returns (bars) and news (good in green, bad in red) for Google.
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A simple example
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Stock returns (bars) and news (good in green, bad in red) for Genentech.
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Another simple example

Another classic example on a larger data set:

� Question: Is this article about corporate acquisitions?

� Original data: 21578 Reuters articles.

� Train the classifier on a set of 2000 articles: 1000 positive, 1000 negative.

� Test the classifier on another set of 600 articles.

Results:

� Accuracy on test set: 97.33%

Accuracy =
TP

FP + TP

� Recall on test set: 95.81%

Recall =
TP

FN + TP

ENSAE: Optimisation 25/63



Maximum Likelihood

ENSAE: Optimisation 26/63



Parametric distribution estimation

� distribution estimation problem: estimate probability density p(y) of a random
variable from observed values

� parametric distribution estimation: choose from a family of densities px(y),
indexed by a parameter x

maximum likelihood estimation

maximize (over x) log px(y)

� y is observed value

� l(x) = log px(y) is called log-likelihood function

� can add constraints x ∈ C explicitly, or define px(y) = 0 for x 6∈ C

� a convex optimization problem if log px(y) is concave in x for fixed y
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Linear measurements with IID noise

linear measurement model

yi = aTi x+ vi, i = 1, . . . ,m

� x ∈ Rn is vector of unknown parameters

� vi is IID measurement noise, with density p(z)

� yi is measurement: y ∈ Rm has density px(y) =
∏m
i=1 p(yi − aTi x)

maximum likelihood estimate: any solution x of

maximize l(x) =
∑m
i=1 log p(yi − aTi x)

(y is observed value)
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examples

� Gaussian noise N (0, σ2): p(z) = (2πσ2)−1/2e−z
2/(2σ2),

l(x) = −m
2
log(2πσ2)− 1

2σ2

m∑
i=1

(aTi x− yi)2

ML estimate is LS solution

� Laplacian noise: p(z) = (1/(2a))e−|z|/a,

l(x) = −m log(2a)− 1

a

m∑
i=1

|aTi x− yi|

ML estimate is `1-norm solution

� uniform noise on [−a, a]:

l(x) =

{
−m log(2a) |aTi x− yi| ≤ a, i = 1, . . . ,m
−∞ otherwise

ML estimate is any x with |aTi x− yi| ≤ a
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Logistic regression

random variable y ∈ {0, 1} with distribution

p = Prob(y = 1) =
exp(aTu+ b)

1 + exp(aTu+ b)

� a, b are parameters; u ∈ Rn are (observable) explanatory variables

� estimation problem: estimate a, b from m observations (ui, yi)

log-likelihood function (for y1 = · · · = yk = 1, yk+1 = · · · = ym = 0):

l(a, b) = log

 k∏
i=1

exp(aTui + b)

1 + exp(aTui + b)

m∏
i=k+1

1

1 + exp(aTui + b)


=

k∑
i=1

(aTui + b)−
m∑
i=1

log(1 + exp(aTui + b))

concave in a, b

ENSAE: Optimisation 30/63



example (n = 1, m = 50 measurements)
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� circles show 50 points (ui, yi)

� solid curve is ML estimate of p = exp(au+ b)/(1 + exp(au+ b))
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Hypothesis Testing
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(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable X ∈ {1, . . . , n}, choose between:

� hypothesis 1: X was generated by distribution p = (p1, . . . , pn)

� hypothesis 2: X was generated by distribution q = (q1, . . . , qn)

randomized detector

� a nonnegative matrix T ∈ R2×n, with 1TT = 1

� if we observe X = k, we choose hypothesis 1 with probability t1k, hypothesis 2
with probability t2k

� if all elements of T are 0 or 1, it is called a deterministic detector
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detection probability matrix:

D =
[
Tp Tq

]
=

[
1− Pfp Pfn

Pfp 1− Pfn

]

� Pfp is probability of selecting hypothesis 2 if X is generated by distribution 1
(false positive)

� Pfn is probability of selecting hypothesis 1 if X is generated by distribution 2
(false negative)

multicriterion formulation of detector design

minimize (w.r.t. R2
+) (Pfp, Pfn) = ((Tp)2, (Tq)1)

subject to t1k + t2k = 1, k = 1, . . . , n
tik ≥ 0, i = 1, 2, k = 1, . . . , n

variable T ∈ R2×n
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scalarization (with weight λ > 0)

minimize (Tp)2 + λ(Tq)1
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP with a simple analytical solution

(t1k, t2k) =

{
(1, 0) pk ≥ λqk
(0, 1) pk < λqk

� a deterministic detector, given by a likelihood ratio test

� if pk = λqk for some k, any value 0 ≤ t1k ≤ 1, t1k = 1− t2k is optimal (i.e.,
Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize max{Pfp, Pfn} = max{(Tp)2, (Tq)1}
subject to t1k + t2k = 1, tik ≥ 0, i = 1, 2, k = 1, . . . , n

an LP; solution is usually not deterministic
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example

P =


0.70 0.10
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0.05 0.10
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solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector
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Experiment Design
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Experiment design

m linear measurements yi = aTi x+ wi, i = 1, . . . ,m of unknown x ∈ Rn

� measurement errors wi are IID N (0, 1)

� ML (least-squares) estimate is

x̂ =

(
m∑
i=1

aia
T
i

)−1 m∑
i=1

yiai

� error e = x̂− x has zero mean and covariance

E = EeeT =

(
m∑
i=1

aia
T
i

)−1

confidence ellipsoids are given by {x | (x− x̂)TE−1(x− x̂) ≤ β}

experiment design: choose ai ∈ {v1, . . . , vp} (a set of possible test vectors) to
make E ‘small’
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vector optimization formulation

minimize (w.r.t. Sn+) E =
(∑p

k=1mkvkv
T
k

)−1
subject to mk ≥ 0, m1 + · · ·+mp = m

mk ∈ Z

� variables are mk (# vectors ai equal to vk)

� difficult in general, due to integer constraint

relaxed experiment design

assume m� p, use λk = mk/m as (continuous) real variable

minimize (w.r.t. Sn+) E = (1/m)
(∑p

k=1 λkvkv
T
k

)−1
subject to λ � 0, 1Tλ = 1

� common scalarizations: minimize log detE, TrE, λmax(E), . . .

� can add other convex constraints, e.g., bound experiment cost cTλ ≤ B
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D-optimal design

minimize log det
(∑p

k=1 λkvkv
T
k

)−1
subject to λ � 0, 1Tλ = 1

interpretation: minimizes volume of confidence ellipsoids

dual problem
maximize log detW + n log n
subject to vTkWvk ≤ 1, k = 1, . . . , p

interpretation: {x | xTWx ≤ 1} is minimum volume ellipsoid centered at origin,
that includes all test vectors vk

complementary slackness: for λ, W primal and dual optimal

λk(1− vTkWvk) = 0, k = 1, . . . , p

optimal experiment uses vectors vk on boundary of ellipsoid defined by W
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example (p = 20)

λ1 = 0.5

λ2 = 0.5

design uses two vectors, on boundary of ellipse defined by optimal W
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derivation of dual

first reformulate primal problem with new variable X:

minimize log detX−1

subject to X =
∑p
k=1 λkvkv

T
k , λ � 0, 1Tλ = 1

L(X,λ, Z, z, ν) = log detX−1+Tr

(
Z

(
X −

p∑
k=1

λkvkv
T
k

))
−zTλ+ν(1Tλ−1)

� minimize over X by setting gradient to zero: −X−1 + Z = 0

� minimum over λk is −∞ unless −vTk Zvk − zk + ν = 0

dual problem
maximize n+ log detZ − ν
subject to vTk Zvk ≤ ν, k = 1, . . . , p

change variable W = Z/ν, and optimize over ν to get dual of page 40
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Collaborative prediction
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Collaborative prediction

� Users assign ratings to a certain number of movies:

U
se

rs

Movies

� Objective: make recommendations for other movies. . .
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Collaborative prediction

� Infer user preferences and movie features from user ratings.

� We use a linear prediction model:

ratingij = uTi vj

where ui represents user characteristics and vj movie features.

� This makes collaborative prediction a matrix factorization problem

� Overcomplete representation. . .
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Collaborative prediction

� Inputs: a matrix of ratings Mij = {−1,+1} for (i, j) ∈ S, where S is a subset
of all possible user/movies combinations.

� We look for a linear model by factorizing M ∈ Rn×m as:

M = UTV

where U ∈ Rn×k represents user characteristics and V ∈ Rk×m movie features.

� Parsimony. . . We want k to be as small as possible.

� Output: a matrix X ∈ Rn×m which is a low-rank approximation of the ratings
matrix M .
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Least-Squares

� Choose Means Squared Error as measure of discrepancy.

� Suppose S is the full set, our problem becomes:

min
{X: Rank(X)=k}

‖X −M‖2

� This is just a singular value decomposition (SVD). . .

Problem: Not true when S is not the full set (partial observations). Also, MSE
not a good measure of prediction performance. . .
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Relaxation

Partial observations for pairs (i, j) ∈ S.

minimize Rank(X) + c
∑

(i,j)∈S

max(0, 1−XijMij)

non-convex and numerically hard. . .

� Relaxation result in Fazel et al. [2001]: replace Rank(X) by its convex
envelope on the spectahedron to solve:

minimize ‖X‖∗ + c
∑

(i,j)∈S

max(0, 1−XijMij)

where ‖X‖∗ is the nuclear norm, i.e. sum of the singular values of X.

� Srebro [2004]: This relaxation also corresponds to multiple large margin SVM
classifications.
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Transportation Problems
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Transportation problem

� A company stocks a certain product at various locations across the country.

� When demand shifts geographically, this stock needs to be readjusted.

� Input: An initial stock configuration, the transportation cost between two
locations.

� Objective: Find the optimal transportation plan for moving the stock from
one configuration to another.

� Output: A transportation plan.
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Transportation problem

15
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The total stock is the same in both configurations: 49. What’s the best
transportation plan?
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Transportation problem

We can formulate this as a linear program.

� Let ai be the stock at factory i in configuration one, with i = 1, . . . , n.

� Let bi be the stock at factory i in configuration two, with i = 1, . . . , n.

� Let Cij the cost of moving one unit of stock from factory i to factory j.

� Our variable is X ∈ Rn×n, where Xij represents the stock moving from
factory i to factory j.

The problem can be written:

minimize
∑n
i,j=1CijXij

subject to
∑n
i=1Xij = bj, j = 1, . . . , n∑n
j=1Xij = ai, i = 1, . . . , n

Xij ≥ 0
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Transportation problem

� The total cost of the transportation plan X is given by

n∑
i,j=1

CijXij

� The constraint
∑n
i=1Xij = bj ensures that the total stock going to factory j is

equal to bj.

� The constraint
∑n
j=1Xij = ai ensures that the total stock extracted from

factory i is equal to ai

This can also be written as:

minimize Tr(CTX)
subject to 1TX = bT

X1 = a
X ≥ 0
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Transportation problem

� If there are n factories, this is a linear program with O(n2) variables.

� This means that the complexity of solving the transportation problem in this
format grows as O(n7).

Simple example:

C =

 0 1 2
1 0 1
2 1 0

 a =

 1
2
4

 b =

 2
3
2


The factories are on a line. We solve:

d(a, b) = minimize Tr(CTX)
subject to 1TX = bT

X1 = a
X ≥ 0

which has 9 variables.
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Transportation problem

Graphically, this is:

1 2 4

2 3 2

The optimal cost is 3 and the optimal transport plan is here:

X =

 1.0000 0.00000 0.00000
0.82877 1.1712 0.00000
0.17123 1.8288 2.0000


Interpretation?
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Transportation problem: generalization

For our choice of C, the function d(a, b) satisfies:

� d(a, b) = d(b, a) ≥ 0 and d(a, b) = 0 iff a = b.

� d(a, c) ≤ d(a, b) + d(b, c).

This means that it defines a distance (called the Earth Mover’s Distance).

� We can always normalize the vectors a and b so that they sum to 1.

� If a and b are two positive vectors that sum to one, they can be probability
vectors.

n∑
i=1

ai = 1, a ≥ 0

� We can use this to compute distances between probability distributions.

� This has tons of applications in imaging, probability theory, etc.
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Image Classification

Let’s look at an application to image classification:

� Start from a collection of images

� Try to categorize them according to some key features

� Simple enough to process very large databases

� Should be independent of resolution, size, orientation, etc.
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Image Classification

Looking for ocean pictures on Google images. . .

03/01/2007 06:25 PMocean - Google Image Search

Page 1 of 2http://images.google.com/images?hl=en&q=ocean&btnG=Search+Images&gbv=2

Sign in

  

Web    Images    Video    News    Maps    more »

ocean  Search   Advanced Image Search
  Preferences

Moderate SafeSearch is on

 Images  Showing:  All image sizes Results 1 - 18 of about 1,340,000 for ocean [definition]. (0.06 seconds) 

FSU Ocean Processes
Group

1600 x 1200 pixels - 68k -
 jpg

turbulence.ocean.fsu.edu

55 foot lap and Infinity
Lap pool ...

750 x 563 pixels -
129k - jpg

www.hawaii-ocean-
retreat.com

2004-02-16--Ocean.jpg
...

640 x 480 pixels - 39k -
 jpg

brandon.fuller.name

Ocean Screensaver
1280 x 1024 pixels - 459k -

 jpg
www.privateislandsonline.com

Ocean Screensaver
1024 x 768 pixels - 317k - jpg
www.privateislandsonline.com

[ More results from
www.privateislandsonline.com ]

autorun.inf and ocean.ico
1890 x 1890 pixels -

218k - jpg
www.bahai-education.org

imprec073 Ocean Here
Where Nothing ...

900 x 1237 pixels - 261k -
 jpg

www.importantrecords.com

VISIT POKER OCEAN
803 x 628 pixels -

103k - jpg
www.playsolidpoker.com

VISIT POKER OCEAN
804 x 630 pixels - 132k -

 jpg
www.playsolidpoker.com

Fajardo Ocean
1280 x 960 pixels - 425k -

 jpg
www.atpm.com

Current subsurface ocean
analyses

900 x 900 pixels - 898k - gif
www.bom.gov.au

Current subsurface
ocean analyses

900 x 900 pixels - 898k -
 gif

www.bom.gov.au
[ More results from
www.bom.gov.au ]
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Image Classification

Our fundamental feature here: the spectrum.

� Each color corresponds to a particular light wavelength:

◦ Red is 825 nm.
◦ Green is 550 nm.
◦ Blue is 412 nm.

� For each image in the collection, we can extract its spectrum, i.e. the
distribution of colors in the image.

� Alternative: use hue from rgb2hsv in MATLAB.

� Good invariance properties. The spectrum of an image is not affected by:

◦ Scaling

◦ Rotation

◦ Resolution

◦ Brightness
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Image Classification

Example of image spectrum.
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Image Classification

Another example of image spectrum.

200 400 600 800 10001200
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Image Classification

Compare two images:

� Compute the spectrum of each image. Create two positive vectors a and b
with sum 1.

� Compute the Earth Mover’s Distance between a and b by solving:

d(a, b) = minimize Tr(CTX)
subject to 1TX = a

X1 = b
X ≥ 0

� Group images where d(a, b) is small (note: not an easy visualization problem).
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Image Classification

Example, image classification using EMD (Rubner et al. 1997):
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