Convex Optimization

Convex Sets

Today

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad(\theta \in \mathbf{R})
$$

affine set: contains the line through any two distinct points in the set
example: solution set of linear equations $\{x \mid A x=b\}$
(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_{1} and x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2}
$$

with $0 \leq \theta \leq 1$
convex set: contains line segment between any two points in the set

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
convex hull $\operatorname{Co} S$: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_{1} and x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}
$$

with $\theta_{1} \geq 0, \theta_{2} \geq 0$

convex cone: set that contains all conic combinations of points in the set

Hyperplanes and halfspaces

hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\}(a \neq 0)$

halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\} \quad(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

ellipsoid: set of the form

$$
\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

with $P \in \mathbf{S}_{++}^{n}$ (i.e., P symmetric positive definite)

other representation: $\left\{x_{c}+A u \mid\|u\|_{2} \leq 1\right\}$ with A square and nonsingular

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $\|x\| \geq 0 ;\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$
notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text {symb }}$ is particular norm norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
norm cone: $\{(x, t) \mid\|x\| \leq t\}$
Euclidean norm cone is called secondorder cone

norm balls and cones are convex

Polyhedra

solution set of finitely many linear inequalities and equalities

$$
A x \preceq b, \quad C x=d
$$

($A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq$ is componentwise inequality)

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

notation:

- \mathbf{S}^{n} is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succeq 0\right\}$: positive semidefinite $n \times n$ matrices

$$
X \in \mathbf{S}_{+}^{n} \quad \Longleftrightarrow \quad z^{T} X z \geq 0 \text { for all } z
$$

\mathbf{S}_{+}^{n} is a convex cone

- $\mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succ 0\right\}:$ positive definite $n \times n$ matrices
example: $\left[\begin{array}{ll}x & y \\ y & z\end{array}\right] \in \mathbf{S}_{+}^{2}$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity

- intersection
- affine functions
- perspective function
- linear-fractional functions

Intersection

the intersection of (any number of) convex sets is convex

example:

$$
S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \pi / 3\right\}
$$

where $p(t)=x_{1} \cos t+x_{2} \cos 2 t+\cdots+x_{m} \cos m t$
for $m=2$:

Affine function

suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine $\left(f(x)=A x+b\right.$ with $\left.A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}\right)$

- the image of a convex set under f is convex

$$
S \subseteq \mathbf{R}^{n} \text { convex } \quad \Longrightarrow \quad f(S)=\{f(x) \mid x \in S\} \text { convex }
$$

- the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$
C \subseteq \mathbf{R}^{m} \text { convex } \quad \Longrightarrow \quad f^{-1}(C)=\left\{x \in \mathbf{R}^{n} \mid f(x) \in C\right\} \text { convex }
$$

examples

- scaling, translation, projection

■ solution set of linear matrix inequality $\left\{x \mid x_{1} A_{1}+\cdots+x_{m} A_{m} \preceq B\right\}$ (with $A_{i}, B \in \mathbf{S}^{p}$)

- hyperbolic cone $\left\{x \mid x^{T} P x \leq\left(c^{T} x\right)^{2}, c^{T} x \geq 0\right\}$ (with $P \in \mathbf{S}_{+}^{n}$)

Perspective and linear-fractional function

perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$:

$$
P(x, t)=x / t, \quad \operatorname{dom} P=\{(x, t) \mid t>0\}
$$

images and inverse images of convex sets under perspective are convex
linear-fractional function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$:

$$
f(x)=\frac{A x+b}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x \mid c^{T} x+d>0\right\}
$$

images and inverse images of convex sets under linear-fractional functions are convex
example of a linear-fractional function

$$
f(x)=\frac{1}{x_{1}+x_{2}+1} x
$$

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^{n}$ is a proper cone if

- K is closed (contains its boundary)
- K is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- nonnegative orthant $K=\mathbf{R}_{+}^{n}=\left\{x \in \mathbf{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$
- positive semidefinite cone $K=\mathbf{S}_{+}^{n}$
- nonnegative polynomials on $[0,1]$:

$$
K=\left\{x \in \mathbf{R}^{n} \mid x_{1}+x_{2} t+x_{3} t^{2}+\cdots+x_{n} t^{n-1} \geq 0 \text { for } t \in[0,1]\right\}
$$

generalized inequality defined by a proper cone K :

$$
x \preceq_{K} y \quad \Longleftrightarrow \quad y-x \in K, \quad x \prec_{K} y \quad \Longleftrightarrow \quad y-x \in \operatorname{int} K
$$

examples

- componentwise inequality $\left(K=\mathbf{R}_{+}^{n}\right)$

$$
x \preceq_{\mathbf{R}_{+}^{n}} y \quad \Longleftrightarrow \quad x_{i} \leq y_{i}, \quad i=1, \ldots, n
$$

- matrix inequality $\left(K=\mathbf{S}_{+}^{n}\right)$

$$
X \preceq \mathbf{S}_{+}^{n} Y \quad \Longleftrightarrow \quad Y-X \text { positive semidefinite }
$$

these two types are so common that we drop the subscript in \preceq_{K} properties: many properties of \preceq_{K} are similar to \leq on \mathbf{R}, e.g.,

$$
x \preceq_{K} y, \quad u \preceq_{K} v \quad \Longrightarrow \quad x+u \preceq_{K} y+v
$$

Minimum and minimal elements

\preceq_{K} is not in general a linear ordering: we can have $x \npreceq_{K} y$ and $y \preceq_{K} x$
$x \in S$ is the minimum element of S with respect to \preceq_{K} if

$$
y \in S \quad \Longrightarrow \quad x \preceq_{K} y
$$

$x \in S$ is a minimal element of S with respect to \preceq_{K} if

$$
y \in S, \quad y \preceq_{K} x \quad \Longrightarrow \quad y=x
$$

example $\left(K=\mathbf{R}_{+}^{2}\right)$
x_{1} is the minimum element of S_{1} x_{2} is a minimal element of S_{2}

Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists $a \neq 0, b$ such that

$$
a^{T} x \leq b \text { for } x \in C, \quad a^{T} x \geq b \text { for } x \in D
$$

the hyperplane $\left\{x \mid a^{T} x=b\right\}$ separates C and D
strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_{0} :

$$
\left\{x \mid a^{T} x=a^{T} x_{0}\right\}
$$

where $a \neq 0$ and $a^{T} x \leq a^{T} x_{0}$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Dual cones and generalized inequalities

dual cone of a cone K :

$$
K^{*}=\left\{y \mid y^{T} x \geq 0 \text { for all } x \in K\right\}
$$

examples

- $K=\mathbf{R}_{+}^{n}: K^{*}=\mathbf{R}_{+}^{n}$

■ $K=\mathbf{S}_{+}^{n}: K^{*}=\mathbf{S}_{+}^{n}$

- $K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}: K^{*}=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}$

■ $K=\left\{(x, t) \mid\|x\|_{1} \leq t\right\}: K^{*}=\left\{(x, t) \mid\|x\|_{\infty} \leq t\right\}$
first three examples are self-dual cones
dual cones of proper cones are proper, hence define generalized inequalities:

$$
y \succeq_{K^{*}} 0 \quad \Longleftrightarrow \quad y^{T} x \geq 0 \text { for all } x \succeq_{K} 0
$$

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \preceq_{K}
x is minimum element of S iff for all
$\lambda \succ_{K^{*}} 0, x$ is the unique minimizer of $\lambda^{T} z$ over S
minimal element w.r.t. \preceq_{K}

- if x minimizes $\lambda^{T} z$ over S for some $\lambda \succ_{K^{*}} 0$, then x is minimal

- if x is a minimal element of a convex set S, then there exists a nonzero $\lambda \succeq_{K^{*}} 0$ such that x minimizes $\lambda^{T} z$ over S

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbf{R}^{n}$
- production set P : resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}_{+}^{n}
example ($n=2$)
x_{1}, x_{2}, x_{3} are efficient; x_{4}, x_{5} are not

