Convex Optimization

Convex Problems

ENSAE: Optimisation 1/35

Today

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization

ENSAE: Optimisation 2/35

Optimization problem in standard form

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0: \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i=1,\ldots,m$, are the inequality constraint functions
- $h_i: \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

optimal value:

$$p^* = \inf\{f_0(x) \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

- $p^* = \infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star} = -\infty$ if problem is unbounded below

Optimal and locally optimal points

x is **feasible** if $x \in \operatorname{dom} f_0$ and it satisfies the constraints

a feasible x is **optimal** if $f_0(x) = p^*$; X_{opt} is the set of optimal points

x is **locally optimal** if there is an R>0 such that x is optimal for

minimize (over
$$z$$
) $f_0(z)$ subject to
$$f_i(z) \leq 0, \quad i=1,\ldots,m, \quad h_i(z)=0, \quad i=1,\ldots,p$$
 $\|z-x\|_2 \leq R$

examples (with n = 1, m = p = 0)

- $f_0(x) = 1/x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point
- $f_0(x) = -\log x$, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -\infty$
- $f_0(x) = x \log x$, $dom f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, x = 1/e is optimal
- $f_0(x) = x^3 3x$, $p^* = -\infty$, local optimum at x = 1

ENSAE: Optimisation

Implicit constraints

the standard form optimization problem has an implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

- lacksquare we call ${\mathcal D}$ the **domain** of the problem
- the constraints $f_i(x) \leq 0$, $h_i(x) = 0$ are the explicit constraints
- lacksquare a problem is **unconstrained** if it has no explicit constraints (m=p=0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

ENSAE: Optimisation 5/35

Feasibility problem

find
$$x$$
 subject to $f_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize
$$0$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $h_i(x) = 0, \quad i = 1, \dots, p$

- $p^* = 0$ if constraints are feasible; any feasible x is optimal
- $p^{\star} = \infty$ if constraints are infeasible

ENSAE: Optimisation 6/35

Convex optimization problem

standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $a_i^T x = b_i, \quad i = 1, \dots, p$

- lacksquare f_0 , f_1 , . . . , f_m are convex; equality constraints are affine
- **problem** is *quasiconvex* if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

often written as

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$ $Ax = b$

important property: feasible set of a convex optimization problem is convex

ENSAE: Optimisation 7/35

example

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1+x_2)^2 = 0$

- f_0 is convex; feasible set $\{(x_1, x_2) \mid x_1 = -x_2 \leq 0\}$ is convex
- not a convex problem (according to our definition): f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

ENSAE: Optimisation 8/35

Local and global optima

z feasible,
$$||z-x||_2 \leq R \implies f_0(z) \geq f_0(x)$$

consider $z = \theta y + (1 - \theta)x$ with $\theta = R/(2||y - x||_2)$

- $||y-x||_2 > R$, so $0 < \theta < 1/2$
- z is a convex combination of two feasible points, hence also feasible
- $||z x||_2 = R/2$ and

$$f_0(z) \le \theta f_0(x) + (1 - \theta) f_0(y) < f_0(x)$$

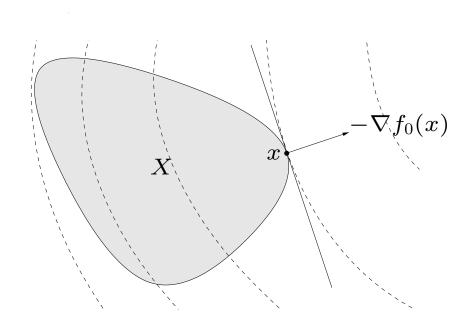
which contradicts our assumption that x is locally optimal

ENSAE: Optimisation 9/35

Optimality criterion for differentiable f_0

x is optimal if and only if it is feasible and

$$\nabla f_0(x)^T(y-x) \ge 0$$
 for all feasible y



 $\nabla f_0(x)^T(y-x)$ for all $y\in X$, means that $\nabla f_0(x)\neq 0$ defines a supporting hyperplane to feasible set X at x

ENSAE: Optimisation 10/35

unconstrained problem: x is optimal if and only if

$$x \in \operatorname{\mathbf{dom}} f_0, \qquad \nabla f_0(x) = 0$$

equality constrained problem

minimize $f_0(x)$ subject to Ax = b

x is optimal if and only if there exists a ν such that

$$x \in \operatorname{dom} f_0, \qquad Ax = b, \qquad \nabla f_0(x) + A^T \nu = 0$$

minimization over nonnegative orthant

minimize $f_0(x)$ subject to $x \succeq 0$

x is optimal if and only if

$$x \in \text{dom } f_0, \qquad x \succeq 0, \qquad \begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0 \\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Equivalent convex problems

two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

is equivalent to

minimize (over
$$z$$
) $f_0(Fz + x_0)$
subject to $f_i(Fz + x_0) \le 0, \quad i = 1, \dots, m$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0 \text{ for some } z$$

ENSAE: Optimisation 12/35

introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \leq 0, \quad i = 1, \dots, m$

is equivalent to

minimize (over
$$x$$
, y_i) $f_0(y_0)$ subject to $f_i(y_i) \leq 0, \quad i=1,\ldots,m$ $y_i=A_ix+b_i, \quad i=0,1,\ldots,m$

introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

is equivalent to

minimize (over
$$x$$
, s) $f_0(x)$ subject to $a_i^T x + s_i = b_i, \quad i = 1, \dots, m$ $s_i \geq 0, \quad i = 1, \dots m$

epigraph form: standard form convex problem is equivalent to

minimize (over
$$x$$
, t) t subject to
$$f_0(x) - t \leq 0 \\ f_i(x) \leq 0, \quad i = 1, \dots, m \\ Ax = b$$

minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

is equivalent to

minimize
$$\tilde{f}_0(x_1)$$
 subject to $f_i(x_1) \leq 0, \quad i = 1, \dots, m$

where
$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

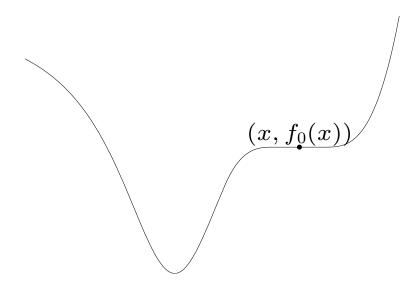
Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $Ax = b$

with $f_0: \mathbf{R}^n \to \mathbf{R}$ quasiconvex, f_1, \ldots, f_m convex

can have locally optimal points that are not (globally) optimal



ENSAE: Optimisation 15/35

convex representation of sublevel sets of f_0

if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $\phi_t(x)$ is convex in x for fixed t
- $lue{t}$ -sublevel set of f_0 is 0-sublevel set of ϕ_t , i.e.,

$$f_0(x) \le t \iff \phi_t(x) \le 0$$

example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \geq 0$, q(x) > 0 on $\operatorname{dom} f_0$ can take $\phi_t(x) = p(x) - tq(x)$:

- for $t \geq 0$, ϕ_t convex in x
- $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (1)

- lacktriangle for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method for quasiconvex optimization

given $l \leq p^{\star}$, $u \geq p^{\star}$, tolerance $\epsilon > 0$. repeat

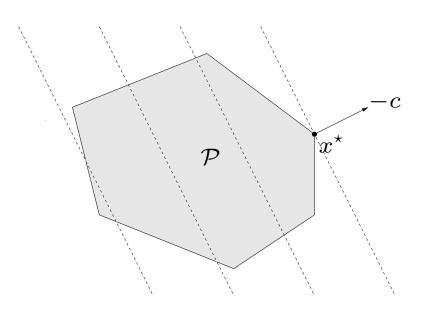
- 1. t := (l + u)/2.
- 2. Solve the convex feasibility problem (1).
- 3. if (1) is feasible, u:=t; else l:=t. until $u-l \leq \epsilon$.

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations (where u, l are initial values)

Linear program (LP)

$$\begin{array}{ll} \text{minimize} & c^Tx+d\\ \text{subject to} & Gx \leq h\\ & Ax=b \end{array}$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron



ENSAE: Optimisation 18/35

Examples

diet problem: choose quantities x_1, \ldots, x_n of n foods

- lacksquare one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- \blacksquare healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

minimize
$$c^T x$$
 subject to $Ax \succeq b$, $x \succeq 0$

piecewise-linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

equivalent to an LP

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \quad i = 1, \dots, m$

ENSAE: Optimisation 19/35

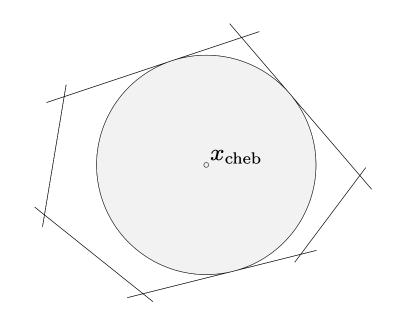
Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{ x \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$$

is center of largest inscribed ball

$$\mathcal{B} = \{ x_c + u \mid ||u||_2 \le r \}$$



 $\mathbf{a}_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c + u) \mid ||u||_2 \le r\} = a_i^T x_c + r||a_i||_2 \le b_i$$

 $lue{}$ hence, x_c , r can be determined by solving the LP

maximize
$$r$$
 subject to $a_i^T x_c + r ||a_i||_2 \leq b_i, \quad i = 1, \dots, m$

ENSAE: Optimisation 20/35

(Generalized) linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

linear-fractional program

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 $\mathbf{dom} \, f_0(x) = \{x \mid e^T x + f > 0\}$

- a quasiconvex optimization problem; can be solved by bisection
- \blacksquare also equivalent to the LP (variables y, z)

$$\begin{array}{ll} \text{minimize} & c^Ty+dz\\ \text{subject to} & Gy \leq hz\\ & Ay=bz\\ & e^Ty+fz=1\\ & z>0 \end{array}$$

ENSAE: Optimisation 21/35

generalized linear-fractional program

$$f_0(x) = \max_{i=1,\dots,r} \frac{c_i^T x + d_i}{e_i^T x + f_i},$$
 $\mathbf{dom} \, f_0(x) = \{x \mid e_i^T x + f_i > 0, \ i = 1,\dots,r\}$

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy

maximize (over
$$x$$
, x^+) $\min_{i=1,...,n} x_i^+/x_i$ subject to $x^+ \succeq 0, \quad Bx^+ \preceq Ax$

- $x, x^+ \in \mathbf{R}^n$: activity levels of n sectors, in current and next period
- $(Ax)_i$, $(Bx^+)_i$: produced, resp. consumed, amounts of good i
- x_i^+/x_i : growth rate of sector i

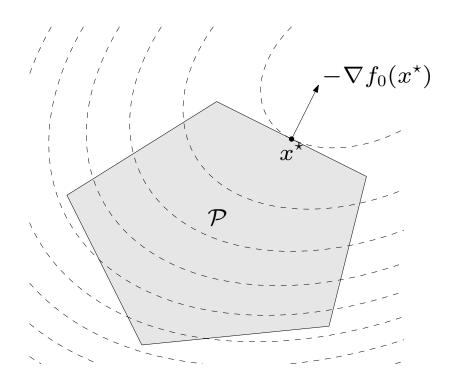
allocate activity to maximize growth rate of slowest growing sector

ENSAE: Optimisation 22/35

Quadratic program (QP)

$$\begin{array}{ll} \text{minimize} & (1/2)x^TPx + q^Tx + r\\ \text{subject to} & Gx \preceq h\\ & Ax = b \end{array}$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



ENSAE: Optimisation 23/35

Examples

least-squares

minimize
$$||Ax - b||_2^2$$

- analytical solution $x^* = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- $lue{}$ can add linear constraints, e.g., $l \leq x \leq u$

linear program with random cost

minimize
$$\bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \operatorname{var}(c^T x)$$
 subject to $Gx \leq h, \quad Ax = b$

- ullet c is random vector with mean $ar{c}$ and covariance Σ
- hence, c^Tx is random variable with mean \bar{c}^Tx and variance $x^T\Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

ENSAE: Optimisation 24/35

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^TP_0x + q_0^Tx + r_0$$
 subject to
$$(1/2)x^TP_ix + q_i^Tx + r_i \leq 0, \quad i = 1, \dots, m$$

$$Ax = b$$

- $\mathbf{P}_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of m ellipsoids and an affine set

ENSAE: Optimisation 25/35

Second-order cone programming

minimize
$$f^Tx$$
 subject to
$$\begin{aligned} \|A_ix+b_i\|_2 &\leq c_i^Tx+d_i, \quad i=1,\ldots,m\\ Fx=g \end{aligned}$$

$$(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$$

inequalities are called second-order cone (SOC) constraints:

$$(A_i x + b_i, c_i^T x + d_i) \in \text{second-order cone in } \mathbf{R}^{n_i+1}$$

- for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

ENSAE: Optimisation 26/35

Generalized inequality constraints

convex problem with generalized inequality constraints

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \preceq_{K_i} 0, \quad i=1,\dots,m \\ & Ax = b \end{array}$$

- $\mathbf{I}_0: \mathbf{R}^n \to \mathbf{R}$ convex; $f_i: \mathbf{R}^n \to \mathbf{R}^{k_i}$ K_i -convex w.r.t. proper cone K_i
- same properties as standard convex problem (convex feasible set, local optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

extends linear programming $(K = \mathbf{R}_{+}^{m})$ to nonpolyhedral cones

ENSAE: Optimisation 27/35

Semidefinite program (SDP)

minimize
$$c^Tx$$
 subject to $x_1F_1+x_2F_2+\cdots+x_nF_n+G\preceq 0$ $Ax=b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \leq 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \leq 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \leq 0$$

ENSAE: Optimisation 28/35

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize c^Tx SDP: minimize c^Tx subject to $Ax \leq b$ subject to $\operatorname{diag}(Ax - b) \leq 0$

(note different interpretation of generalized inequality \leq)

SOCP and equivalent SDP

SOCP: minimize $f^T x$ subject to $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, \dots, m$

SDP: minimize f^Tx subject to $\begin{bmatrix} (c_i^Tx+d_i)I & A_ix+b_i \\ (A_ix+b_i)^T & c_i^Tx+d_i \end{bmatrix} \succeq 0, \quad i=1,\ldots,m$

ENSAE: Optimisation 29/35

Eigenvalue minimization

minimize
$$\lambda_{\max}(A(x))$$

where
$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$
 (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

ENSAE: Optimisation 30/35

Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{S}^{p \times q}$)

equivalent SDP

minimize
$$t$$
 subject to
$$\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \quad t \ge 0$$

$$\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \succeq 0$$

ENSAE: Optimisation 31/35

Multicriterion optimization

vector optimization problem with $K = \mathbf{R}_+^q$

$$f_0(x) = (F_1(x), \dots, F_q(x))$$

- \blacksquare q different objectives F_i ; roughly speaking we want all F_i 's to be small
- feasible x^* is optimal if

$$y$$
 feasible \Longrightarrow $f_0(x^*) \leq f_0(y)$

if there exists an optimal point, the objectives are noncompeting

 $lue{}$ feasible x^{po} is Pareto optimal if

$$y$$
 feasible, $f_0(y) \leq f_0(x^{\mathrm{po}}) \implies f_0(x^{\mathrm{po}}) = f_0(y)$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

ENSAE: Optimisation 32/35

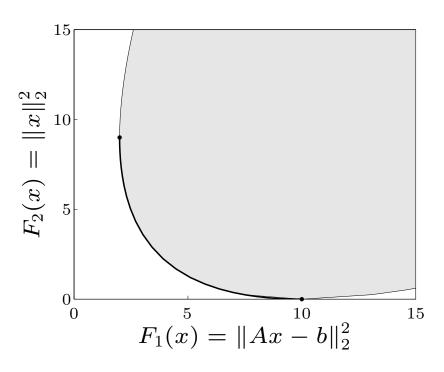
Regularized least-squares

multicriterion problem with two objectives

$$F_1(x) = ||Ax - b||_2^2, F_2(x) = ||x||_2^2$$

$$F_2(x) = ||x||_2^2$$

- example with $A \in \mathbf{R}^{100 \times 10}$
- $lue{}$ shaded region is \mathcal{O}
- heavy line is formed by Pareto optimal points



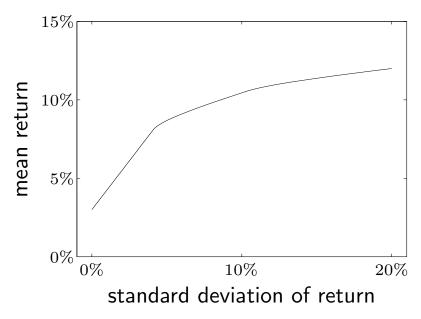
ENSAE: Optimisation 33/35

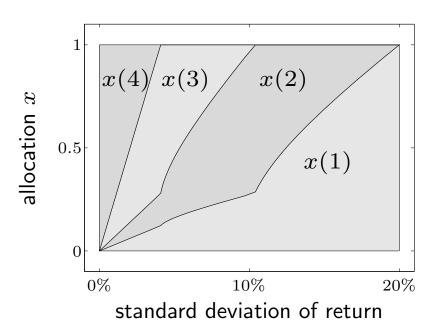
Risk return trade-off in portfolio optimization

minimize (w.r.t.
$$\mathbf{R}_+^2$$
) $(-\bar{p}^T x, x^T \Sigma x)$ subject to $\mathbf{1}^T x = 1, \quad x \succeq 0$

- $\mathbf{x} \in \mathbf{R}^n$ is investment portfolio; x_i is fraction invested in asset i
- $p \in \mathbf{R}^n$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p} , covariance Σ
- $\bar{p}^T x = \mathbf{E}r$ is expected return; $x^T \Sigma x = \mathbf{var} r$ is return variance

example





ENSAE: Optimisation 34/35

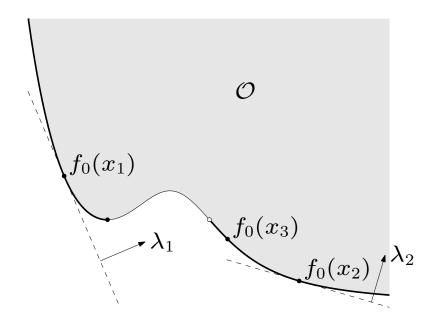
Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$
 $h_i(x) = 0, \quad i = 1, \dots, p$

if x is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem



for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

ENSAE: Optimisation 35/35