Convex Optimization

Convex Problems

Today

- optimization problem in standard form
- convex optimization problems
- quasiconvex optimization
- linear optimization
- quadratic optimization

Optimization problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is the optimization variable
- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is the objective or cost function
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}, i=1, \ldots, m$, are the inequality constraint functions
- $h_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ are the equality constraint functions

optimal value:

$$
p^{\star}=\inf \left\{f_{0}(x) \mid f_{i}(x) \leq 0, i=1, \ldots, m, h_{i}(x)=0, i=1, \ldots, p\right\}
$$

- $p^{\star}=\infty$ if problem is infeasible (no x satisfies the constraints)
- $p^{\star}=-\infty$ if problem is unbounded below

Optimal and locally optimal points

x is feasible if $x \in \operatorname{dom} f_{0}$ and it satisfies the constraints
a feasible x is optimal if $f_{0}(x)=p^{\star} ; X_{\text {opt }}$ is the set of optimal points x is locally optimal if there is an $R>0$ such that x is optimal for

```
minimize (over z) foro(z)
subject to }\quad\mp@subsup{f}{i}{}(z)\leq0,\quadi=1,\ldots,m,\quadhi(z)=0,\quadi=1,\ldots,
\| z - x \| _ { 2 } \leq R
```

examples (with $n=1, m=p=0$)

- $f_{0}(x)=1 / x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=0$, no optimal point
- $f_{0}(x)=-\log x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=-\infty$
- $f_{0}(x)=x \log x, \operatorname{dom} f_{0}=\mathbf{R}_{++}: p^{\star}=-1 / e, x=1 / e$ is optimal
- $f_{0}(x)=x^{3}-3 x, p^{\star}=-\infty$, local optimum at $x=1$

Implicit constraints

the standard form optimization problem has an implicit constraint

$$
x \in \mathcal{D}=\bigcap_{i=0}^{m} \operatorname{dom} f_{i} \cap \bigcap_{i=1}^{p} \operatorname{dom} h_{i}
$$

- we call \mathcal{D} the domain of the problem
- the constraints $f_{i}(x) \leq 0, h_{i}(x)=0$ are the explicit constraints
- a problem is unconstrained if it has no explicit constraints $(m=p=0)$
example:

$$
\operatorname{minimize} \quad f_{0}(x)=-\sum_{i=1}^{k} \log \left(b_{i}-a_{i}^{T} x\right)
$$

is an unconstrained problem with implicit constraints $a_{i}^{T} x<b_{i}$

Feasibility problem

$$
\begin{array}{ll}
\text { find } & x \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

can be considered a special case of the general problem with $f_{0}(x)=0$:

$$
\begin{array}{ll}
\operatorname{minimize} & 0 \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

- $p^{\star}=0$ if constraints are feasible; any feasible x is optimal
- $p^{\star}=\infty$ if constraints are infeasible

Convex optimization problem

standard form convex optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& a_{i}^{T} x=b_{i}, \quad i=1, \ldots, p
\end{array}
$$

- $f_{0}, f_{1}, \ldots, f_{m}$ are convex; equality constraints are affine
- problem is quasiconvex if f_{0} is quasiconvex (and f_{1}, \ldots, f_{m} convex)
often written as

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

important property: feasible set of a convex optimization problem is convex

example

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)=x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & f_{1}(x)=x_{1} /\left(1+x_{2}^{2}\right) \leq 0 \\
& h_{1}(x)=\left(x_{1}+x_{2}\right)^{2}=0
\end{array}
$$

- f_{0} is convex; feasible set $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}=-x_{2} \leq 0\right\}$ is convex
- not a convex problem (according to our definition): f_{1} is not convex, h_{1} is not affine
- equivalent (but not identical) to the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & x_{1}^{2}+x_{2}^{2} \\
\text { subject to } & x_{1} \leq 0 \\
& x_{1}+x_{2}=0
\end{array}
$$

Local and global optima

any locally optimal point of a convex problem is (globally) optimal proof: suppose x is locally optimal and y is optimal with $f_{0}(y)<f_{0}(x)$ x locally optimal means there is an $R>0$ such that

$$
z \text { feasible, } \quad\|z-x\|_{2} \leq R \quad \Longrightarrow \quad f_{0}(z) \geq f_{0}(x)
$$

consider $z=\theta y+(1-\theta) x$ with $\theta=R /\left(2\|y-x\|_{2}\right)$

- $\|y-x\|_{2}>R$, so $0<\theta<1 / 2$
- z is a convex combination of two feasible points, hence also feasible
- $\|z-x\|_{2}=R / 2$ and

$$
f_{0}(z) \leq \theta f_{0}(x)+(1-\theta) f_{0}(y)<f_{0}(x)
$$

which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_{0}

x is optimal if and only if it is feasible and

$$
\nabla f_{0}(x)^{T}(y-x) \geq 0 \quad \text { for all feasible } y
$$

$\nabla f_{0}(x)^{T}(y-x)$ for all $y \in X$, means that $\nabla f_{0}(x) \neq 0$ defines a supporting hyperplane to feasible set X at x

- unconstrained problem: x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad \nabla f_{0}(x)=0
$$

- equality constrained problem

$$
\text { minimize } f_{0}(x) \text { subject to } A x=b
$$

x is optimal if and only if there exists a ν such that

$$
x \in \operatorname{dom} f_{0}, \quad A x=b, \quad \nabla f_{0}(x)+A^{T} \nu=0
$$

- minimization over nonnegative orthant

$$
\text { minimize } f_{0}(x) \text { subject to } x \succeq 0
$$

x is optimal if and only if

$$
x \in \operatorname{dom} f_{0}, \quad x \succeq 0, \quad\left\{\begin{array}{cc}
\nabla f_{0}(x)_{i} \geq 0 & x_{i}=0 \\
\nabla f_{0}(x)_{i}=0 & x_{i}>0
\end{array}\right.
$$

Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa
some common transformations that preserve convexity:

- eliminating equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } z) & f_{0}\left(F z+x_{0}\right) \\
\text { subject to } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where F and x_{0} are such that

$$
A x=b \quad \Longleftrightarrow \quad x=F z+x_{0} \text { for some } z
$$

- introducing equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { over } x, y_{i}\right) & f_{0}\left(y_{0}\right) \\
\text { subject to } & f_{i}\left(y_{i}\right) \leq 0, \quad i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, \quad i=0,1, \ldots, m
\end{array}
$$

- introducing slack variables for linear inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x+s_{i}=b_{i}, \quad i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1, \ldots m
\end{array}
$$

- epigraph form: standard form convex problem is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, t) & t \\
\text { subject to } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- minimizing over some variables

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(x_{1}, x_{2}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize} & \tilde{f}_{0}\left(x_{1}\right) \\
\text { subject to } & f_{i}\left(x_{1}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

where $\tilde{f}_{0}\left(x_{1}\right)=\inf _{x_{2}} f_{0}\left(x_{1}, x_{2}\right)$

Quasiconvex optimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

with $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ quasiconvex, f_{1}, \ldots, f_{m} convex
can have locally optimal points that are not (globally) optimal

convex representation of sublevel sets of f_{0}

if f_{0} is quasiconvex, there exists a family of functions ϕ_{t} such that:

- $\phi_{t}(x)$ is convex in x for fixed t
- t-sublevel set of f_{0} is 0 -sublevel set of ϕ_{t}, i.e.,

$$
f_{0}(x) \leq t \quad \Longleftrightarrow \quad \phi_{t}(x) \leq 0
$$

example

$$
f_{0}(x)=\frac{p(x)}{q(x)}
$$

with p convex, q concave, and $p(x) \geq 0, q(x)>0$ on dom f_{0}
can take $\phi_{t}(x)=p(x)-t q(x)$:

- for $t \geq 0, \phi_{t}$ convex in x
- $p(x) / q(x) \leq t$ if and only if $\phi_{t}(x) \leq 0$
quasiconvex optimization via convex feasibility problems

$$
\begin{equation*}
\phi_{t}(x) \leq 0, \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{1}
\end{equation*}
$$

- for fixed t, a convex feasibility problem in x
- if feasible, we can conclude that $t \geq p^{\star}$; if infeasible, $t \leq p^{\star}$

Bisection method for quasiconvex optimization
given $l \leq p^{\star}, u \geq p^{\star}$, tolerance $\epsilon>0$.
repeat

1. $t:=(l+u) / 2$.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, $u:=t ; \quad$ else $l:=t$.
until $u-l \leq \epsilon$.
requires exactly $\left\lceil\log _{2}((u-l) / \epsilon)\right\rceil$ iterations (where u, l are initial values)

Linear program (LP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x+d \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

diet problem: choose quantities x_{1}, \ldots, x_{n} of n foods

- one unit of food j costs c_{j}, contains amount $a_{i j}$ of nutrient i
- healthy diet requires nutrient i in quantity at least b_{i}
to find cheapest healthy diet,

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \succeq b, \quad x \succeq 0
\end{array}
$$

piecewise-linear minimization

$$
\operatorname{minimize} \max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right)
$$

equivalent to an LP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
\end{array}
$$

Chebyshev center of a polyhedron

Chebyshev center of

$$
\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}
$$

is center of largest inscribed ball

$$
\mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\}
$$

- $a_{i}^{T} x \leq b_{i}$ for all $x \in \mathcal{B}$ if and only if

$$
\sup \left\{a_{i}^{T}\left(x_{c}+u\right) \mid\|u\|_{2} \leq r\right\}=a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}
$$

- hence, x_{c}, r can be determined by solving the LP

$$
\begin{array}{ll}
\operatorname{maximize} & r \\
\text { subject to } & a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

(Generalized) linear-fractional program

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

linear-fractional program

$$
f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e^{T} x+f>0\right\}
$$

- a quasiconvex optimization problem; can be solved by bisection
- also equivalent to the LP (variables y, z)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} y+d z \\
\text { subject to } & G y \preceq h z \\
& A y=b z \\
& e^{T} y+f z=1 \\
& z \geq 0
\end{array}
$$

generalized linear-fractional program

$$
f_{0}(x)=\max _{i=1, \ldots, r, r} \frac{c_{i}^{T} x+d_{i}}{e_{i}^{T} x+f_{i}}, \quad \operatorname{dom} f_{0}(x)=\left\{x \mid e_{i}^{T} x+f_{i}>0, i=1, \ldots, r\right\}
$$

a quasiconvex optimization problem; can be solved by bisection
example: Von Neumann model of a growing economy

$$
\begin{array}{ll}
\operatorname{maximize}\left(\text { over } x, x^{+}\right) & \min _{i=1, \ldots, n} x_{i}^{+} / x_{i} \\
\text { subject to } & x^{+} \succeq 0, \quad B x^{+} \preceq A x
\end{array}
$$

- $x, x^{+} \in \mathbf{R}^{n}$: activity levels of n sectors, in current and next period
- $(A x)_{i},\left(B x^{+}\right)_{i}$: produced, resp. consumed, amounts of good i
- x_{i}^{+} / x_{i} : growth rate of sector i
allocate activity to maximize growth rate of slowest growing sector

Quadratic program (QP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & G x \preceq h \\
& A x=b
\end{array}
$$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Examples

least-squares

$$
\operatorname{minimize} \quad\|A x-b\|_{2}^{2}
$$

- analytical solution $x^{\star}=A^{\dagger} b\left(A^{\dagger}\right.$ is pseudo-inverse $)$

■ can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

$$
\begin{array}{ll}
\operatorname{minimize} & \bar{c}^{T} x+\gamma x^{T} \Sigma x=\mathbf{E} c^{T} x+\gamma \operatorname{var}\left(c^{T} x\right) \\
\text { subject to } & G x \preceq h, \quad A x=b
\end{array}
$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^{T} x$ is random variable with mean $\bar{c}^{T} x$ and variance $x^{T} \Sigma x$
- $\gamma>0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained quadratic program (QCQP)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P_{0} x+q_{0}^{T} x+r_{0} \\
\text { subject to } & (1 / 2) x^{T} P_{i} x+q_{i}^{T} x+r_{i} \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $P_{i} \in \mathbf{S}_{+}^{n}$; objective and constraints are convex quadratic
- if $P_{1}, \ldots, P_{m} \in \mathbf{S}_{++}^{n}$, feasible region is intersection of m ellipsoids and an affine set

Second-order cone programming

$$
\begin{array}{ll}
\operatorname{minimize} & f^{T} x \\
\text { subject to } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m \\
& F x=g
\end{array}
$$

$\left(A_{i} \in \mathbf{R}^{n_{i} \times n}, F \in \mathbf{R}^{p \times n}\right)$

- inequalities are called second-order cone (SOC) constraints:

$$
\left(A_{i} x+b_{i}, c_{i}^{T} x+d_{i}\right) \in \text { second-order cone in } \mathbf{R}^{n_{i}+1}
$$

- for $n_{i}=0$, reduces to an LP; if $c_{i}=0$, reduces to a QCQP
- more general than QCQP and LP

Generalized inequality constraints

convex problem with generalized inequality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq K_{i} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

- $f_{0}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ convex; $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k_{i}} K_{i}$-convex w.r.t. proper cone K_{i}

■ same properties as standard convex problem (convex feasible set, local optimum is global, etc.)
conic form problem: special case with affine objective and constraints

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F x+g \preceq_{K} 0 \\
& A x=b
\end{array}
$$

extends linear programming ($K=\mathbf{R}_{+}^{m}$) to nonpolyhedral cones

Semidefinite program (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} F_{1}+x_{2} F_{2}+\cdots+x_{n} F_{n}+G \preceq 0 \\
& A x=b
\end{array}
$$

with $F_{i}, G \in \mathbf{S}^{k}$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$
x_{1} \hat{F}_{1}+\cdots+x_{n} \hat{F}_{n}+\hat{G} \preceq 0, \quad x_{1} \tilde{F}_{1}+\cdots+x_{n} \tilde{F}_{n}+\tilde{G} \preceq 0
$$

is equivalent to single LMI

$$
x_{1}\left[\begin{array}{cc}
\hat{F}_{1} & 0 \\
0 & \tilde{F}_{1}
\end{array}\right]+x_{2}\left[\begin{array}{cc}
\hat{F}_{2} & 0 \\
0 & \tilde{F}_{2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{cc}
\hat{F}_{n} & 0 \\
0 & \tilde{F}_{n}
\end{array}\right]+\left[\begin{array}{cc}
\hat{G} & 0 \\
0 & \tilde{G}
\end{array}\right] \preceq 0
$$

LP and SOCP as SDP

LP and equivalent SDP

(note different interpretation of generalized inequality \preceq)

SOCP and equivalent SDP

SOCP: minimize $f^{T} x$
subject to $\quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m$
SDP: minimize $f^{T} x$
subject to $\left[\begin{array}{cc}\left(c_{i}^{T} x+d_{i}\right) I & A_{i} x+b_{i} \\ \left(A_{i} x+b_{i}\right)^{T} & c_{i}^{T} x+d_{i}\end{array}\right] \succeq 0, \quad i=1, \ldots, m$

Eigenvalue minimization

$$
\operatorname{minimize} \quad \lambda_{\max }(A(x))
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ (with given $A_{i} \in \mathbf{S}^{k}$)
equivalent SDP

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & A(x) \preceq t I
\end{array}
$$

- variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$
- follows from

$$
\lambda_{\max }(A) \leq t \quad \Longleftrightarrow \quad A \preceq t I
$$

Matrix norm minimization

$$
\operatorname{minimize} \quad\|A(x)\|_{2}=\left(\lambda_{\max }\left(A(x)^{T} A(x)\right)\right)^{1 / 2}
$$

where $A(x)=A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n}$ (with given $A_{i} \in \mathbf{S}^{p \times q}$) equivalent SDP

$$
\left.\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to }
\end{array} \begin{array}{cc}
t I & A(x) \\
A(x)^{T} & t I
\end{array}\right] \succeq 0
$$

- variables $x \in \mathbf{R}^{n}, t \in \mathbf{R}$
- constraint follows from

$$
\begin{aligned}
\|A\|_{2} \leq t & \Longleftrightarrow A^{T} A \preceq t^{2} I, \quad t \geq 0 \\
& \Longleftrightarrow\left[\begin{array}{cc}
t I & A \\
A^{T} & t I
\end{array}\right] \succeq 0
\end{aligned}
$$

Multicriterion optimization

vector optimization problem with $K=\mathbf{R}_{+}^{q}$

$$
f_{0}(x)=\left(F_{1}(x), \ldots, F_{q}(x)\right)
$$

- q different objectives F_{i}; roughly speaking we want all F_{i} 's to be small
- feasible x^{\star} is optimal if

$$
y \text { feasible } \quad \Longrightarrow \quad f_{0}\left(x^{\star}\right) \preceq f_{0}(y)
$$

if there exists an optimal point, the objectives are noncompeting

- feasible $x^{\text {po }}$ is Pareto optimal if

$$
y \text { feasible, } \quad f_{0}(y) \preceq f_{0}\left(x^{\mathrm{po}}\right) \quad \Longrightarrow \quad f_{0}\left(x^{\mathrm{po}}\right)=f_{0}(y)
$$

if there are multiple Pareto optimal values, there is a trade-off between the objectives

Regularized least-squares

multicriterion problem with two objectives

$$
F_{1}(x)=\|A x-b\|_{2}^{2}, \quad F_{2}(x)=\|x\|_{2}^{2}
$$

- example with $A \in \mathbf{R}^{100 \times 10}$
- shaded region is \mathcal{O}
- heavy line is formed by Pareto optimal points

Risk return trade-off in portfolio optimization

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { w.r.t. } \mathbf{R}_{+}^{2}\right) & \left(-\bar{p}^{T} x, x^{T} \Sigma x\right) \\
\text { subject to } & \mathbf{1}^{T} x=1, \quad x \succeq 0
\end{array}
$$

- $x \in \mathbf{R}^{n}$ is investment portfolio; x_{i} is fraction invested in asset i
- $p \in \mathbf{R}^{n}$ is vector of relative asset price changes; modeled as a random variable with mean \bar{p}, covariance Σ
- $\bar{p}^{T} x=\mathbf{E} r$ is expected return; $x^{T} \Sigma x=\operatorname{var} r$ is return variance

example

Scalarization

to find Pareto optimal points: choose $\lambda \succ_{K^{*}} 0$ and solve scalar problem

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda^{T} f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

if x is optimal for scalar problem, then it is Pareto-optimal for vector optimization problem

for convex vector optimization problems, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^{*}} 0$

