
Convex Optimization

Newton’s method

ENSAE: Optimisation 1/44

Unconstrained minimization

minimize f(x)

� f convex, twice continuously differentiable (hence dom f open)

� we assume optimal value p? = infx f(x) is attained (and finite)

unconstrained minimization methods

� produce sequence of points x(k) ∈ dom f , k = 0, 1, . . . with

f(x(k))→ p?

� can be interpreted as iterative methods for solving optimality condition

∇f(x?) = 0

ENSAE: Optimisation 2/44

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

∇2f(x) � mI for all x ∈ S

implications

� for x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖22

hence, S is bounded

� p? > −∞, and for x ∈ S,

f(x)− p? ≤ 1

2m
‖∇f(x)‖22

useful as stopping criterion (if you know m)

ENSAE: Optimisation 3/44

Descent methods

x(k+1) = x(k) + t(k)∆x(k) with f(x(k+1)) < f(x(k))

� other notations: x+ = x+ t∆x, x := x+ t∆x

� ∆x is the step, or search direction; t is the step size, or step length

� from convexity, f(x+) < f(x) implies ∇f(x)T∆x < 0
(i.e., ∆x is a descent direction)

General descent method.

given a starting point x ∈ dom f .
repeat

1. Determine a descent direction ∆x.
2. Line search. Choose a step size t > 0.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

ENSAE: Optimisation 4/44

Line search types

exact line search: t = argmint>0 f(x+ t∆x)

backtracking line search (with parameters α ∈ (0, 1/2), β ∈ (0, 1))

� starting at t = 1, repeat t := βt until

f(x+ t∆x) < f(x) + αt∇f(x)T∆x

� graphical interpretation: backtrack until t ≤ t0

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T∆xf(x) + t∇f(x)T∆x

ENSAE: Optimisation 5/44

Gradient descent method

general descent method with ∆x = −∇f(x)

given a starting point x ∈ dom f .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x+ t∆x.

until stopping criterion is satisfied.

� stopping criterion usually of the form ‖∇f(x)‖2 ≤ ε

� convergence result: for strongly convex f ,

f(x(k))− p? ≤ ck(f(x(0))− p?)

c ∈ (0, 1) depends on m, x(0), line search type

� very simple, but often very slow; rarely used in practice

ENSAE: Optimisation 6/44

quadratic problem in R2

f(x) = (1/2)(x21 + γx22) (γ > 0)

with exact line search, starting at x(0) = (γ, 1):

x
(k)
1 = γ

(
γ − 1

γ + 1

)k

, x
(k)
2 =

(
−γ − 1

γ + 1

)k

� very slow if γ � 1 or γ � 1

� example for γ = 10:

x1

x
2

x(0)

x(1)

−10 0 10

−4

0

4

ENSAE: Optimisation 7/44

a problem in R100

f(x) = cTx−
500∑
i=1

log(bi − aTi x)

k

f
(x

(k
))

−
p
⋆

exact l.s.

backtracking l.s.

0 50 100 150 200
10−4

10−2

100

102

104

‘linear’ convergence, i.e., a straight line on a semilog plot

ENSAE: Optimisation 8/44

Steepest descent method

normalized steepest descent direction (at x, for norm ‖ · ‖):

∆xnsd = argmin{f(x) +∇f(x)Tv | ‖v‖ = 1}

interpretation: for small v, f(x+ v) ≈ f(x) +∇f(x)Tv;
direction ∆xnsd is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

∆xsd = ‖∇f(x)‖∗∆xnsd

satisfies ∇f(x)T∆sd = −‖∇f(x)‖2∗

steepest descent method

� general descent method with ∆x = ∆xsd

� convergence properties similar to gradient descent

ENSAE: Optimisation 9/44

examples

� Euclidean norm: ∆xsd = −∇f(x)

� quadratic norm ‖x‖P = (xTPx)1/2 (P ∈ Sn
++): ∆xsd = −P−1∇f(x)

� `1-norm: ∆xsd = −(∂f(x)/∂xi)ei, where |∂f(x)/∂xi| = ‖∇f(x)‖∞

unit balls and normalized steepest descent directions for a quadratic norm and the
`1-norm:

−∇f(x)

∆xnsd

−∇f(x)

∆xnsd

ENSAE: Optimisation 10/44

choice of norm for steepest descent

x(0)

x(1)
x(2)

x
(0)

x
(1)

x
(2)

� steepest descent with backtracking line search for two quadratic norms

� ellipses show {x | ‖x− x(k)‖P = 1}

� equivalent interpretation of steepest descent with quadratic norm ‖ · ‖P :
gradient descent after change of variables x̄ = P 1/2x

shows choice of P has strong effect on speed of convergence

ENSAE: Optimisation 11/44

Newton step

∆xnt = −∇2f(x)−1∇f(x)

interpretations

� x+ ∆xnt minimizes second order approximation

f̂(x+ v) = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v

� x+ ∆xnt solves linearized optimality condition

∇f(x+ v) ≈ ∇f̂(x+ v) = ∇f(x) +∇2f(x)v = 0

f

f̂

(x, f(x))

(x + ∆xnt, f(x + ∆xnt))

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

0

ENSAE: Optimisation 12/44

� ∆xnt is steepest descent direction at x in local Hessian norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

)1/2

x

x + ∆xnt

x + ∆xnsd

dashed lines are contour lines of f ; ellipse is {x+ v | vT∇2f(x)v = 1}, arrow
shows −∇f(x)

ENSAE: Optimisation 13/44

Newton decrement

λ(x) =
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2
a measure of the proximity of x to x?

properties

� gives an estimate of f(x)− p?, using quadratic approximation f̂ :

f(x)− inf
y
f̂(y) =

1

2
λ(x)2

� equal to the norm of the Newton step in the quadratic Hessian norm

λ(x) =
(
∆xnt∇2f(x)∆xnt

)1/2
� directional derivative in the Newton direction: ∇f(x)T∆xnt = −λ(x)2

� affine invariant (unlike ‖∇f(x)‖2)

ENSAE: Optimisation 14/44

Newton’s method

given a starting point x ∈ dom f , tolerance ε > 0.
repeat

1. Compute the Newton step and decrement.
∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).

2. Stopping criterion. quit if λ2/2 ≤ ε.
3. Line search. Choose step size t by backtracking line search.
4. Update. x := x+ t∆xnt.

affine invariant, i.e., independent of linear changes of coordinates:

Newton iterates for f̃(y) = f(Ty) with starting point y(0) = T−1x(0) are

y(k) = T−1x(k)

ENSAE: Optimisation 15/44

Classical convergence analysis

assumptions

� f strongly convex on S with constant m

� ∇2f is Lipschitz continuous on S, with constant L > 0:

‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants η ∈ (0,m2/L), γ > 0 such that

� if ‖∇f(x)‖2 ≥ η, then f(x(k+1))− f(x(k)) ≤ −γ

� if ‖∇f(x)‖2 < η, then

L

2m2
‖∇f(x(k+1))‖2 ≤

(
L

2m2
‖∇f(x(k))‖2

)2

ENSAE: Optimisation 16/44

damped Newton phase (‖∇f(x)‖2 ≥ η)

� most iterations require backtracking steps

� function value decreases by at least γ

� if p? > −∞, this phase ends after at most (f(x(0))− p?)/γ iterations

quadratically convergent phase (‖∇f(x)‖2 < η)

� all iterations use step size t = 1

� ‖∇f(x)‖2 converges to zero quadratically: if ‖∇f(x(k))‖2 < η, then

L

2m2
‖∇f(xl)‖2 ≤

(
L

2m2
‖∇f(xk)‖2

)2l−k

≤
(

1

2

)2l−k

, l ≥ k

ENSAE: Optimisation 17/44

Newton’s method: complexity

conclusion: number of iterations until f(x)− p? ≤ ε is bounded above by

f(x(0))− p?

γ
+ log2 log2(ε0/ε)

� γ, ε0 are constants that depend on m, L, x(0)

� second term is small (of the order of 6) and almost constant for practical
purposes

� in practice, constants m, L (hence γ, ε0) are usually unknown, but we can
show, under different assumptions that the number of iterations is bounded by

375(f(x(0))− p?) + 6

ENSAE: Optimisation 18/44

Examples

example in R2

x(0)

x(1)

k

f
(x

(k
))

−
p
⋆

0 1 2 3 4 5
10−15

10−10

10−5

100

105

� backtracking parameters α = 0.1, β = 0.7

� converges in only 5 steps

� quadratic local convergence

ENSAE: Optimisation 19/44

example in R100 (page 8)

k

f
(x

(k
))

−
p
⋆

exact line search

backtracking

0 2 4 6 8 10
10−15

10−10

10−5

100

105

k

st
ep

si
ze

t(
k
)

exact line search

backtracking

0 2 4 6 8
0

0.5

1

1.5

2

� backtracking parameters α = 0.01, β = 0.5

� backtracking line search almost as fast as exact l.s. (and much simpler)

� clearly shows two phases in algorithm

ENSAE: Optimisation 20/44

example in R10000 (with sparse ai)

f(x) = −
10000∑
i=1

log(1− x2i)−
100000∑
i=1

log(bi − aTi x)

k

f
(x

(k
))

−
p
⋆

0 5 10 15 20

10−5

100

105

� backtracking parameters α = 0.01, β = 0.5.

� performance similar as for small examples

ENSAE: Optimisation 21/44

numerical example: 150 randomly generated instances of

minimize f(x) = −
∑m

i=1 log(bi − aTi x)

◦: m = 100, n = 50
2: m = 1000, n = 500
3: m = 1000, n = 50

f(x(0)) − p⋆

it
er
a
ti
o
n
s

0 5 10 15 20 25 30 35
0

5

10

15

20

25

� number of iterations much smaller than 375(f(x(0))− p?) + 6

� bound of the form c(f(x(0))− p?) + 6 with smaller c (empirically) valid

ENSAE: Optimisation 22/44

Equality Constraints

ENSAE: Optimisation 23/44

Equality constrained minimization

minimize f(x)
subject to Ax = b

� f convex, twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

optimality conditions: x? is optimal iff there exists a ν? such that

∇f(x?) +ATν? = 0, Ax? = b

ENSAE: Optimisation 24/44

equality constrained quadratic minimization (with P ∈ Sn
+)

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

optimality condition: [
P AT

A 0

] [
x?

ν?

]
=

[
−q
b

]

� coefficient matrix is called KKT matrix

ENSAE: Optimisation 25/44

Eliminating equality constraints

represent solution of {x | Ax = b} as

{x | Ax = b} = {Fz + x̂ | z ∈ Rn−p}

� x̂ is (any) particular solution

� range of F ∈ Rn×(n−p) is nullspace of A (RankF = n− p and AF = 0)

reduced or eliminated problem

minimize f(Fz + x̂)

� an unconstrained problem with variable z ∈ Rn−p

� from solution z?, obtain x? and ν? as

x? = Fz? + x̂, ν? = −(AAT)−1A∇f(x?)

ENSAE: Optimisation 26/44

example: optimal allocation with resource constraint

minimize f1(x1) + f2(x2) + · · ·+ fn(xn)
subject to x1 + x2 + · · ·+ xn = b

eliminate xn = b− x1 − · · · − xn−1, i.e., choose

x̂ = ben, F =

[
I
−1T

]
∈ Rn×(n−1)

reduced problem:

minimize f1(x1) + · · ·+ fn−1(xn−1) + fn(b− x1 − · · · − xn−1)

(variables x1, . . . , xn−1)

ENSAE: Optimisation 27/44

Newton step

Newton step of f at feasible x is given by (1st block) of solution of[
∇2f(x) AT

A 0

] [
∆xnt
w

]
=

[
−∇f(x)

0

]

interpretations

� ∆xnt solves second order approximation (with variable v)

minimize f̂(x+ v) = f(x) +∇f(x)Tv + (1/2)vT∇2f(x)v
subject to A(x+ v) = b

� equations follow from linearizing optimality conditions

∇f(x+ ∆xnt) +ATw = 0, A(x+ ∆xnt) = b

ENSAE: Optimisation 28/44

Newton decrement

λ(x) =
(
∆xTnt∇2f(x)∆xnt

)1/2
=
(
−∇f(x)T∆xnt

)1/2
properties

� gives an estimate of f(x)− p? using quadratic approximation f̂ :

f(x)− inf
Ay=b

f̂(y) =
1

2
λ(x)2

� directional derivative in Newton direction:

d

dt
f(x+ t∆xnt)

∣∣∣∣
t=0

= −λ(x)2

� in general, λ(x) 6=
(
∇f(x)T∇2f(x)−1∇f(x)

)1/2

ENSAE: Optimisation 29/44

Newton’s method with equality constraints

given starting point x ∈ dom f with Ax = b, tolerance ε > 0.

repeat
1. Compute the Newton step and decrement ∆xnt, λ(x).

2. Stopping criterion. quit if λ2/2 ≤ ε.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x+ t∆xnt.

� a feasible descent method: x(k) feasible and f(x(k+1)) < f(x(k))

� affine invariant

ENSAE: Optimisation 30/44

Barrier Methods

ENSAE: Optimisation 31/44

Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

� fi convex, twice continuously differentiable

� A ∈ Rp×n with RankA = p

� we assume p? is finite and attained

� we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained

ENSAE: Optimisation 32/44

Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) =∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x)− (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

� an equality constrained problem

� for t > 0, −(1/t) log(−u) is a smooth
approximation of I−

� approximation improves as t→∞

u
−3 −2 −1 0 1

−5

0

5

10

ENSAE: Optimisation 33/44

logarithmic barrier function

φ(x) = −
m∑
i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

� convex (follows from composition rules)

� twice continuously differentiable, with derivatives

∇φ(x) =

m∑
i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m∑
i=1

1

fi(x)2
∇fi(x)∇fi(x)T +

m∑
i=1

1

−fi(x)
∇2fi(x)

ENSAE: Optimisation 34/44

Central path

� for t > 0, define x?(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x?(t) exists and is unique for each t > 0)

� central path is {x?(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx?(t) is tangent to level
curve of φ through x?(t)

c

x⋆ x⋆(10)

ENSAE: Optimisation 35/44

Interpretation via KKT conditions

x = x?(t), λ = 1/(−tfi(x?(t)), ν = w/t (with w dual variable from equality
constrained barrier problem) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m∑
i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0

ENSAE: Optimisation 36/44

Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ε > 0.

repeat

1. Centering step. Compute x?(t) by minimizing tf0 + φ, subject to Ax = b.
2. Update. x := x?(t).
3. Stopping criterion. quit if m/t < ε.
4. Increase t. t := µt.

� terminates with f0(x)− p? ≤ ε (stopping criterion follows from
f0(x

?(t))− p? ≤ m/t)

� centering usually done using Newton’s method, starting at current x

� choice of µ involves a trade-off: large µ means fewer outer iterations, more
inner (Newton) iterations; typical values: µ = 10–20

� several heuristics for choice of t(0)

ENSAE: Optimisation 37/44

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

Newton iterations

d
u
a
li
ty

g
a
p

µ = 2µ = 50 µ = 150

0 20 40 60 80

10−6

10−4

10−2

100

102

µ

N
ew

to
n
it
er
a
ti
o
n
s

0 40 80 120 160 200
0

20

40

60

80

100

120

140

� starts with x on central path (t(0) = 1, duality gap 100)

� terminates when t = 108 (gap 10−6)

� centering uses Newton’s method with backtracking

� total number of Newton iterations not very sensitive for µ ≥ 10

ENSAE: Optimisation 38/44

geometric program (m = 100 inequalities and n = 50 variables)

minimize log
(∑5

k=1 exp(aT0kx+ b0k)
)

subject to log
(∑5

k=1 exp(aTikx+ bik)
)
≤ 0, i = 1, . . . ,m

Newton iterations

d
u
a
li
ty

g
a
p

µ = 2µ = 50µ = 150

0 20 40 60 80 100 120

10−6

10−4

10−2

100

102

ENSAE: Optimisation 39/44

family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances

m

N
ew

to
n
it
er
a
ti
o
n
s

101 102 103
15

20

25

30

35

number of iterations grows very slowly as m ranges over a 100 : 1 ratio

ENSAE: Optimisation 40/44

Polynomial-time complexity of barrier method

� for µ = 1 + 1/
√
m:

N = O

(√
m log

(
m/t(0)

ε

))
� number of Newton iterations for fixed gap reduction is O(

√
m)

� multiply with cost of one Newton iteration (a polynomial function of problem
dimensions), to get bound on number of flops

this choice of µ optimizes worst-case complexity; in practice we choose µ fixed
(µ = 10, . . . , 20)

ENSAE: Optimisation 41/44

Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

� if x, s feasible, with s < 0, then x is strictly feasible for (2)

� if optimal value p̄? of (3) is positive, then problem (2) is infeasible

� if p̄? = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄? = 0 and not attained, then problem (2) is infeasible

ENSAE: Optimisation 42/44

sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more inequalities
than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax

n
u
m
b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

n
u
m
b
er

−1 −0.5 0 0.5 1 1.5
0

20

40

60

bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 inequalities

ENSAE: Optimisation 43/44

example: family of linear inequalities Ax � b+ γ∆b

� data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

� use basic phase I, terminate when s < 0 or dual objective is positive

γ

N
ew

to
n
it
er
a
ti
o
n
s

Infeasible Feasible

−1 −0.5 0 0.5 1
0

20

40

60

80

100

γ

N
ew

to
n
it
er
a
ti
o
n
s

−100 −10−2
−10−4

−10−6
0

20

40

60

80

100

γ

N
ew

to
n
it
er
a
ti
o
n
s

10−6 10−4 10−2 100
0

20

40

60

80

100

number of iterations roughly proportional to log(1/|γ|)

ENSAE: Optimisation 44/44

