Convex Optimization

Newton's method

minimize f(x)

- f convex, twice continuously differentiable (hence dom f open)
- we assume optimal value $p^* = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \operatorname{\mathbf{dom}} f$, $k = 0, 1, \ldots$ with

$$f(x^{(k)}) \to p^{\star}$$

can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^\star) = 0$$

Strong convexity and implications

f is strongly convex on S if there exists an m > 0 such that

 $\nabla^2 f(x) \succeq mI$ for all $x \in S$

implications

• for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

200

hence, S is bounded

• $p^{\star} > -\infty$, and for $x \in S$,

$$f(x) - p^{\star} \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m)

ENSAE: Optimisation

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)} \quad \text{with } f(x^{(k+1)}) < f(x^{(k)})$$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ (*i.e.*, Δx is a *descent direction*)

General descent method.

given a starting point $x \in \operatorname{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. *Line search.* Choose a step size t > 0.
- 3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

```
• starting at t = 1, repeat t := \beta t until
```

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

• graphical interpretation: backtrack until $t \leq t_0$

Gradient descent method

general descent method with $\Delta x = -\nabla f(x)$

given a starting point $x \in \operatorname{dom} f$. repeat

1. $\Delta x := -\nabla f(x)$.

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. $x := x + t\Delta x$.

until stopping criterion is satisfied.

• stopping criterion usually of the form $\|\nabla f(x)\|_2 \leq \epsilon$

• convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on m, $x^{(0)}$, line search type

very simple, but often very slow; rarely used in practice

quadratic problem in ${\rm I\!R}^2$

$$f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)$$

with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

• very slow if
$$\gamma \gg 1$$
 or $\gamma \ll 1$

• example for $\gamma = 10$:

a problem in $\boldsymbol{\mathsf{R}}^{100}$

'linear' convergence, *i.e.*, a straight line on a semilog plot

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$\Delta x_{\text{nsd}} = \operatorname{argmin}\{f(x) + \nabla f(x)^T v \mid ||v|| = 1\}$$

interpretation: for small v, $f(x+v) \approx f(x) + \nabla f(x)^T v$; direction Δx_{nsd} is unit-norm step with most negative directional derivative

(unnormalized) steepest descent direction

$$\Delta x_{\rm sd} = \|\nabla f(x)\|_* \Delta x_{\rm nsd}$$

satisfies $\nabla f(x)^T \Delta_{\mathrm{sd}} = - \| \nabla f(x) \|_*^2$

steepest descent method

- general descent method with $\Delta x = \Delta x_{\rm sd}$
- convergence properties similar to gradient descent

examples

- Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2}$ $(P \in \mathbf{S}_{++}^n)$: $\Delta x_{sd} = -P^{-1} \nabla f(x)$
- ℓ_1 -norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = \|\nabla f(x)\|_{\infty}$

unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_1 -norm:

choice of norm for steepest descent

steepest descent with backtracking line search for two quadratic norms

ellipses show
$$\{x \mid ||x - x^{(k)}||_P = 1\}$$

• equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$

shows choice of ${\cal P}$ has strong effect on speed of convergence

$$\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretations

• $x + \Delta x_{nt}$ minimizes second order approximation

$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

• $\Delta x_{\rm nt}$ is steepest descent direction at x in local Hessian norm

$$|u||_{\nabla^2 f(x)} = \left(u^T \nabla^2 f(x)u\right)^{1/2}$$

dashed lines are contour lines of f; ellipse is $\{x + v \mid v^T \nabla^2 f(x)v = 1\}$, arrow shows $-\nabla f(x)$

Newton decrement

$$\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

a measure of the proximity of x to x^\star

properties

• gives an estimate of $f(x) - p^*$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

ENSAE: Optimisation

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

 $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \quad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$ 2. Stopping criterion. quit if $\lambda^2/2 \le \epsilon$.

3. Line search. Choose step size t by backtracking line search.

4. Update.
$$x := x + t\Delta x_{nt}$$
.

affine invariant, *i.e.*, independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^2 f$ is Lipschitz continuous on S, with constant L > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0,m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

damped Newton phase $(\|\nabla f(x)\|_2 \ge \eta)$

- most iterations require backtracking steps
- $\hfill\blacksquare$ function value decreases by at least γ
- if $p^{\star} > -\infty$, this phase ends after at most $(f(x^{(0)}) p^{\star})/\gamma$ iterations

quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

- all iterations use step size t = 1
- $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$

Newton's method: complexity

conclusion: number of iterations until $f(x) - p^* \leq \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ , ϵ_0 are constants that depend on m, L, $x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ , ϵ_0) are usually unknown, but we can show, under different assumptions that the number of iterations is bounded by

$$375(f(x^{(0)}) - p^{\star}) + 6$$

Examples

example in \mathbf{R}^2

 \bullet backtracking parameters $\alpha=0.1,~\beta=0.7$

- converges in only 5 steps
- quadratic local convergence

example in \mathbf{R}^{100} (page 8)

• backtracking parameters $\alpha = 0.01$, $\beta = 0.5$

- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

example in \mathbf{R}^{10000} (with sparse a_i)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples

numerical example: 150 randomly generated instances of

minimize
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

○:
$$m = 100$$
, $n = 50$
□: $m = 1000$, $n = 500$
◇: $m = 1000$, $n = 50$

• number of iterations much smaller than $375(f(x^{(0)}) - p^*) + 6$

• bound of the form $c(f(x^{(0)}) - p^*) + 6$ with smaller c (empirically) valid

ENSAE: Optimisation

Equality Constraints

Equality constrained minimization

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{Rank}} A = p$
- we assume p^{\star} is finite and attained

optimality conditions: x^* is optimal iff there exists a ν^* such that

$$\nabla f(x^{\star}) + A^T \nu^{\star} = 0, \qquad Ax^{\star} = b$$

equality constrained quadratic minimization (with $P \in S^n_+$)

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Ax = b$

optimality condition:

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ \nu^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

coefficient matrix is called KKT matrix

Eliminating equality constraints

represent solution of $\{x \mid Ax = b\}$ as

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbf{R}^{n \times (n-p)}$ is nullspace of A (Rank F = n p and AF = 0)

reduced or eliminated problem

minimize $f(Fz + \hat{x})$

- an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution z^{\star} , obtain x^{\star} and ν^{\star} as

$$x^{\star} = F z^{\star} + \hat{x}, \qquad \nu^{\star} = -(AA^T)^{-1}A\nabla f(x^{\star})$$

ENSAE: Optimisation

example: optimal allocation with resource constraint

minimize
$$f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$$

subject to $x_1 + x_2 + \dots + x_n = b$

eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, *i.e.*, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$$

reduced problem:

minimize
$$f_1(x_1) + \dots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \dots - x_{n-1})$$

(variables x_1, \dots, x_{n-1})

ENSAE: Optimisation

Newton step of f at feasible x is given by (1st block) of solution of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\rm nt} \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

interpretations

• $\Delta x_{\rm nt}$ solves second order approximation (with variable v)

$$\begin{array}{ll} \mbox{minimize} & \widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v \\ \mbox{subject to} & A(x+v) = b \end{array}$$

equations follow from linearizing optimality conditions

$$\nabla f(x + \Delta x_{\rm nt}) + A^T w = 0, \qquad A(x + \Delta x_{\rm nt}) = b$$

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{\rm nt}\right)^{1/2}$$

properties

• gives an estimate of $f(x) - p^*$ using quadratic approximation \widehat{f} :

$$f(x) - \inf_{Ay=b} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

directional derivative in Newton direction:

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

• in general,
$$\lambda(x) \neq \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x) \right)^{1/2}$$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with Ax = b, tolerance $\epsilon > 0$. repeat

- 1. Compute the Newton step and decrement $\Delta x_{\rm nt}$, $\lambda(x)$.
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.

4. Update.
$$x := x + t\Delta x_{nt}$$
.

- a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Barrier Methods

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$ (1)
 $Ax = b$

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{\mathbf{Rank}} A = p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$\tilde{x} \in \operatorname{\mathbf{dom}} f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$$

hence, strong duality holds and dual optimum is attained

Logarithmic barrier

reformulation of (1) via indicator function:

minimize
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$

subject to $Ax = b$

where $I_{-}(u) = 0$ if $u \leq 0$, $I_{-}(u) = \infty$ otherwise (indicator function of **R**₋)

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of I_{-}
- \blacksquare approximation improves as $t \to \infty$

logarithmic barrier function

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \,\phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

$$\nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x)$$

Central path

• for t > 0, define $x^{\star}(t)$ as the solution of

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

(for now, assume $x^{\star}(t)$ exists and is unique for each t > 0)

• central path is $\{x^{\star}(t) \mid t > 0\}$

example: central path for an LP

minimize $c^T x$ subject to $a_i^T x \leq b_i, \quad i = 1, \dots, 6$

hyperplane $c^T x = c^T x^\star(t)$ is tangent to level curve of ϕ through $x^\star(t)$

Interpretation via KKT conditions

 $x = x^{\star}(t)$, $\lambda = 1/(-tf_i(x^{\star}(t)))$, $\nu = w/t$ (with w dual variable from equality constrained barrier problem) satisfy

- 1. primal constraints: $f_i(x) \leq 0$, $i = 1, \ldots, m$, Ax = b
- 2. dual constraints: $\lambda \succeq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, $i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update.* $x := x^{\star}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase t. $t := \mu t$.

- terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- \blacksquare centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu = 10-20$
- several heuristics for choice of $t^{(0)}$

Examples

inequality form LP (m = 100 inequalities, n = 50 variables)

- starts with x on central path ($t^{(0)} = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$

geometric program (m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$

family of standard LPs ($A \in \mathbb{R}^{m \times 2m}$)

minimize
$$c^T x$$

subject to $Ax = b$, $x \succeq 0$

 $m = 10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a 100:1 ratio

• for
$$\mu = 1 + 1/\sqrt{m}$$
:
$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops

this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu = 10, \ldots, 20$)

Feasibility and phase I methods

feasibility problem: find x such that

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$$
 (2)

phase I: computes strictly feasible starting point for barrier method
basic phase I method

minimize (over
$$x, s$$
) s
subject to $f_i(x) \le s, \quad i = 1, \dots, m$ (3)
 $Ax = b$

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star} = 0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star} = 0$ and not attained, then problem (2) is infeasible

sum of infeasibilities phase I method

minimize
$$\mathbf{1}^T s$$

subject to $s \succeq 0$, $f_i(x) \leq s_i$, $i = 1, \dots, m$
 $Ax = b$

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities right: sum of infeasibilities phase I solution; satisfies 79 inequalities

ENSAE: Optimisation

example: family of linear inequalities $Ax \preceq b + \gamma \Delta b$

- data chosen to be strictly feasible for $\gamma > 0$, infeasible for $\gamma \le 0$
- use basic phase I, terminate when s < 0 or dual objective is positive

number of iterations roughly proportional to $\log(1/|\gamma|)$