Convex Optimization

Newton's method

Unconstrained minimization

$$
\operatorname{minimize} \quad f(x)
$$

- f convex, twice continuously differentiable (hence $\operatorname{dom} f$ open)
- we assume optimal value $p^{\star}=\inf _{x} f(x)$ is attained (and finite)
unconstrained minimization methods
- produce sequence of points $x^{(k)} \in \operatorname{dom} f, k=0,1, \ldots$ with

$$
f\left(x^{(k)}\right) \rightarrow p^{\star}
$$

- can be interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(x^{\star}\right)=0
$$

Strong convexity and implications

f is strongly convex on S if there exists an $m>0$ such that

$$
\nabla^{2} f(x) \succeq m I \quad \text { for all } x \in S
$$

implications

- for $x, y \in S$,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|x-y\|_{2}^{2}
$$

hence, S is bounded

- $p^{\star}>-\infty$, and for $x \in S$,

$$
f(x)-p^{\star} \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2}
$$

useful as stopping criterion (if you know m)

Descent methods

$$
x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)} \quad \text { with } f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)
$$

- other notations: $x^{+}=x+t \Delta x, x:=x+t \Delta x$
- Δx is the step, or search direction; t is the step size, or step length
- from convexity, $f\left(x^{+}\right)<f(x)$ implies $\nabla f(x)^{T} \Delta x<0$ (i.e., Δx is a descent direction)

General descent method.
given a starting point $x \in \operatorname{dom} f$. repeat

1. Determine a descent direction Δx.
2. Line search. Choose a step size $t>0$.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

Line search types

exact line search: $t=\operatorname{argmin}_{t>0} f(x+t \Delta x)$
backtracking line search (with parameters $\alpha \in(0,1 / 2), \beta \in(0,1)$)

- starting at $t=1$, repeat $t:=\beta t$ until

$$
f(x+t \Delta x)<f(x)+\alpha t \nabla f(x)^{T} \Delta x
$$

- graphical interpretation: backtrack until $t \leq t_{0}$

Gradient descent method

general descent method with $\Delta x=-\nabla f(x)$
given a starting point $x \in \operatorname{dom} f$.
repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. $x:=x+t \Delta x$.
until stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_{2} \leq \epsilon$
- convergence result: for strongly convex f,

$$
f\left(x^{(k)}\right)-p^{\star} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{\star}\right)
$$

$c \in(0,1)$ depends on $m, x^{(0)}$, line search type

- very simple, but often very slow; rarely used in practice
quadratic problem in \mathbf{R}^{2}

$$
f(x)=(1 / 2)\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>0)
$$

with exact line search, starting at $x^{(0)}=(\gamma, 1)$:

$$
x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, \quad x_{2}^{(k)}=\left(-\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma=10$:

a problem in \mathbf{R}^{100}

$$
f(x)=c^{T} x-\sum_{i=1}^{500} \log \left(b_{i}-a_{i}^{T} x\right)
$$

'linear' convergence, i.e., a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x, for norm $\|\cdot\|$):

$$
\Delta x_{\mathrm{nsd}}=\operatorname{argmin}\left\{f(x)+\nabla f(x)^{T} v \mid\|v\|=1\right\}
$$

interpretation: for small $v, f(x+v) \approx f(x)+\nabla f(x)^{T} v$; direction Δx_{nsd} is unit-norm step with most negative directional derivative
(unnormalized) steepest descent direction

$$
\Delta x_{\mathrm{sd}}=\|\nabla f(x)\|_{*} \Delta x_{\mathrm{nsd}}
$$

satisfies $\nabla f(x)^{T} \Delta_{\text {sd }}=-\|\nabla f(x)\|_{*}^{2}$
steepest descent method

- general descent method with $\Delta x=\Delta x_{\text {sd }}$
- convergence properties similar to gradient descent

examples

- Euclidean norm: $\Delta x_{\mathrm{sd}}=-\nabla f(x)$
- quadratic norm $\|x\|_{P}=\left(x^{T} P x\right)^{1 / 2}\left(P \in \mathbf{S}_{++}^{n}\right): \Delta x_{\mathrm{sd}}=-P^{-1} \nabla f(x)$
- ℓ_{1}-norm: $\Delta x_{\text {sd }}=-\left(\partial f(x) / \partial x_{i}\right) e_{i}$, where $\left|\partial f(x) / \partial x_{i}\right|=\|\nabla f(x)\|_{\infty}$ unit balls and normalized steepest descent directions for a quadratic norm and the ℓ_{1}-norm:

choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\left\{x \mid\left\|x-x^{(k)}\right\|_{P}=1\right\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_{P}$: gradient descent after change of variables $\bar{x}=P^{1 / 2} x$
shows choice of P has strong effect on speed of convergence

Newton step

$$
\Delta x_{\mathrm{nt}}=-\nabla^{2} f(x)^{-1} \nabla f(x)
$$

interpretations

- $x+\Delta x_{\mathrm{nt}}$ minimizes second order approximation

$$
\widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(x) v
$$

- $x+\Delta x_{\mathrm{nt}}$ solves linearized optimality condition

$$
\nabla f(x+v) \approx \nabla \widehat{f}(x+v)=\nabla f(x)+\nabla^{2} f(x) v=0
$$

- Δx_{nt} is steepest descent direction at x in local Hessian norm

$$
\|u\|_{\nabla^{2} f(x)}=\left(u^{T} \nabla^{2} f(x) u\right)^{1 / 2}
$$

dashed lines are contour lines of f; ellipse is $\left\{x+v \mid v^{T} \nabla^{2} f(x) v=1\right\}$, arrow shows $-\nabla f(x)$

Newton decrement

$$
\lambda(x)=\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}
$$

a measure of the proximity of x to x^{\star}

properties

- gives an estimate of $f(x)-p^{\star}$, using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{y} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- equal to the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

- directional derivative in the Newton direction: $\nabla f(x)^{T} \Delta x_{\mathrm{nt}}=-\lambda(x)^{2}$
- affine invariant (unlike $\|\nabla f(x)\|_{2}$)

Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement.

$$
\Delta x_{\mathrm{nt}}:=-\nabla^{2} f(x)^{-1} \nabla f(x) ; \quad \lambda^{2}:=\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x) .
$$

2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.
affine invariant, i.e., independent of linear changes of coordinates:
Newton iterates for $\tilde{f}(y)=f(T y)$ with starting point $y^{(0)}=T^{-1} x^{(0)}$ are

$$
y^{(k)}=T^{-1} x^{(k)}
$$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- $\nabla^{2} f$ is Lipschitz continuous on S, with constant $L>0$:

$$
\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\|_{2} \leq L\|x-y\|_{2}
$$

(L measures how well f can be approximated by a quadratic function)
outline: there exist constants $\eta \in\left(0, m^{2} / L\right), \gamma>0$ such that

- if $\|\nabla f(x)\|_{2} \geq \eta$, then $f\left(x^{(k+1)}\right)-f\left(x^{(k)}\right) \leq-\gamma$
- if $\|\nabla f(x)\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k+1)}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}\right)^{2}
$$

damped Newton phase $\left(\|\nabla f(x)\|_{2} \geq \eta\right)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^{\star}>-\infty$, this phase ends after at most $\left(f\left(x^{(0)}\right)-p^{\star}\right) / \gamma$ iterations

quadratically convergent phase $\left(\|\nabla f(x)\|_{2}<\eta\right)$

- all iterations use step size $t=1$
- $\|\nabla f(x)\|_{2}$ converges to zero quadratically: if $\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}<\eta$, then

$$
\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{l}\right)\right\|_{2} \leq\left(\frac{L}{2 m^{2}}\left\|\nabla f\left(x^{k}\right)\right\|_{2}\right)^{2^{l-k}} \leq\left(\frac{1}{2}\right)^{2^{l-k}}, \quad l \geq k
$$

Newton's method: complexity

conclusion: number of iterations until $f(x)-p^{\star} \leq \epsilon$ is bounded above by

$$
\frac{f\left(x^{(0)}\right)-p^{\star}}{\gamma}+\log _{2} \log _{2}\left(\epsilon_{0} / \epsilon\right)
$$

- γ, ϵ_{0} are constants that depend on $m, L, x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- in practice, constants m, L (hence γ, ϵ_{0}) are usually unknown, but we can show, under different assumptions that the number of iterations is bounded by

$$
375\left(f\left(x^{(0)}\right)-p^{\star}\right)+6
$$

Examples

example in \mathbf{R}^{2}

- backtracking parameters $\alpha=0.1, \beta=0.7$
- converges in only 5 steps
- quadratic local convergence
example in \mathbf{R}^{100} (page 8)

- backtracking parameters $\alpha=0.01, \beta=0.5$
- backtracking line search almost as fast as exact I.s. (and much simpler)
- clearly shows two phases in algorithm
example in \mathbf{R}^{10000} (with sparse a_{i})

$$
f(x)=-\sum_{i=1}^{10000} \log \left(1-x_{i}^{2}\right)-\sum_{i=1}^{100000} \log \left(b_{i}-a_{i}^{T} x\right)
$$

- backtracking parameters $\alpha=0.01, \beta=0.5$.
- performance similar as for small examples
numerical example: 150 randomly generated instances of

$$
\text { minimize } f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

○: $m=100, n=50$
$\square: m=1000, n=500$
$\diamond: m=1000, n=50$

- number of iterations much smaller than $375\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$
- bound of the form $c\left(f\left(x^{(0)}\right)-p^{\star}\right)+6$ with smaller c (empirically) valid

Equality Constraints

Equality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & A x=b
\end{array}
$$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{Rank} A=p$
- we assume p^{\star} is finite and attained
optimality conditions: x^{\star} is optimal iff there exists a ν^{\star} such that

$$
\nabla f\left(x^{\star}\right)+A^{T} \nu^{\star}=0, \quad A x^{\star}=b
$$

equality constrained quadratic minimization (with $P \in \mathbf{S}_{+}^{n}$)

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} P x+q^{T} x+r \\
\text { subject to } & A x=b
\end{array}
$$

optimality condition:

$$
\left[\begin{array}{cc}
P & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
x^{\star} \\
\nu^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
$$

- coefficient matrix is called KKT matrix

Eliminating equality constraints

represent solution of $\{x \mid A x=b\}$ as

$$
\{x \mid A x=b\}=\left\{F z+\hat{x} \mid z \in \mathbf{R}^{n-p}\right\}
$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbf{R}^{n \times(n-p)}$ is nullspace of $A(\mathbf{R a n k} F=n-p$ and $A F=0)$ reduced or eliminated problem

$$
\text { minimize } f(F z+\hat{x})
$$

- an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution z^{\star}, obtain x^{\star} and ν^{\star} as

$$
x^{\star}=F z^{\star}+\hat{x}, \quad \nu^{\star}=-\left(A A^{T}\right)^{-1} A \nabla f\left(x^{\star}\right)
$$

example: optimal allocation with resource constraint

$$
\begin{array}{ll}
\operatorname{minimize} & f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\cdots+f_{n}\left(x_{n}\right) \\
\text { subject to } & x_{1}+x_{2}+\cdots+x_{n}=b
\end{array}
$$

eliminate $x_{n}=b-x_{1}-\cdots-x_{n-1}$, i.e., choose

$$
\hat{x}=b e_{n}, \quad F=\left[\begin{array}{c}
I \\
-\mathbf{1}^{T}
\end{array}\right] \in \mathbf{R}^{n \times(n-1)}
$$

reduced problem:
$\operatorname{minimize} \quad f_{1}\left(x_{1}\right)+\cdots+f_{n-1}\left(x_{n-1}\right)+f_{n}\left(b-x_{1}-\cdots-x_{n-1}\right)$
(variables x_{1}, \ldots, x_{n-1})

Newton step

Newton step of f at feasible x is given by (1st block) of solution of

$$
\left[\begin{array}{cc}
\nabla^{2} f(x) & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{c}
\Delta x_{\mathrm{nt}} \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f(x) \\
0
\end{array}\right]
$$

interpretations

- Δx_{nt} solves second order approximation (with variable v)

$$
\begin{array}{ll}
\operatorname{minimize} & \widehat{f}(x+v)=f(x)+\nabla f(x)^{T} v+(1 / 2) v^{T} \nabla^{2} f(x) v \\
\text { subject to } & A(x+v)=b
\end{array}
$$

- equations follow from linearizing optimality conditions

$$
\nabla f\left(x+\Delta x_{\mathrm{nt}}\right)+A^{T} w=0, \quad A\left(x+\Delta x_{\mathrm{nt}}\right)=b
$$

Newton decrement

$$
\lambda(x)=\left(\Delta x_{\mathrm{nt}}^{T} \nabla^{2} f(x) \Delta x_{\mathrm{nt}}\right)^{1 / 2}=\left(-\nabla f(x)^{T} \Delta x_{\mathrm{nt}}\right)^{1 / 2}
$$

properties

- gives an estimate of $f(x)-p^{\star}$ using quadratic approximation \widehat{f} :

$$
f(x)-\inf _{A y=b} \widehat{f}(y)=\frac{1}{2} \lambda(x)^{2}
$$

- directional derivative in Newton direction:

$$
\left.\frac{d}{d t} f\left(x+t \Delta x_{\mathrm{nt}}\right)\right|_{t=0}=-\lambda(x)^{2}
$$

■ in general, $\lambda(x) \neq\left(\nabla f(x)^{T} \nabla^{2} f(x)^{-1} \nabla f(x)\right)^{1 / 2}$

Newton's method with equality constraints

given starting point $x \in \operatorname{dom} f$ with $A x=b$, tolerance $\epsilon>0$. repeat

1. Compute the Newton step and decrement $\Delta x_{\mathrm{nt}}, \lambda(x)$.
2. Stopping criterion. quit if $\lambda^{2} / 2 \leq \epsilon$.
3. Line search. Choose step size t by backtracking line search.
4. Update. $x:=x+t \Delta x_{\mathrm{nt}}$.

- a feasible descent method: $x^{(k)}$ feasible and $f\left(x^{(k+1)}\right)<f\left(x^{(k)}\right)$
- affine invariant

Barrier Methods

Inequality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& A x=b
\end{array}
$$

- f_{i} convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{Rank} A=p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

$$
\tilde{x} \in \operatorname{dom} f_{0}, \quad f_{i}(\tilde{x})<0, \quad i=1, \ldots, m, \quad A \tilde{x}=b
$$

hence, strong duality holds and dual optimum is attained

Logarithmic barrier

reformulation of (1) via indicator function:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

where $I_{-}(u)=0$ if $u \leq 0, I_{-}(u)=\infty$ otherwise (indicator function of \mathbf{R}_{-}) approximation via logarithmic barrier

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)-(1 / t) \sum_{i=1}^{m} \log \left(-f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

- an equality constrained problem
- for $t>0,-(1 / t) \log (-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \rightarrow \infty$

logarithmic barrier function

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}
$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Central path

- for $t>0$, define $x^{\star}(t)$ as the solution of

$$
\begin{array}{ll}
\operatorname{minimize} & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{array}
$$

(for now, assume $x^{\star}(t)$ exists and is unique for each $t>0$)

- central path is $\left\{x^{\star}(t) \mid t>0\right\}$
example: central path for an LP

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6
\end{array}
$$

hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Interpretation via KKT conditions

$x=x^{\star}(t), \lambda=1 /\left(-t f_{i}\left(x^{\star}(t)\right), \nu=w / t\right.$ (with w dual variable from equality constrained barrier problem) satisfy

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, A x=b$
2. dual constraints: $\lambda \succeq 0$
3. approximate complementary slackness: $-\lambda_{i} f_{i}(x)=1 / t, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+A^{T} \nu=0
$$

difference with KKT is that condition 3 replaces $\lambda_{i} f_{i}(x)=0$

Barrier method

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$. repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $m / t<\epsilon$.
4. Increase t. $t:=\mu t$.

- terminates with $f_{0}(x)-p^{\star} \leq \epsilon$ (stopping criterion follows from $\left.f_{0}\left(x^{\star}(t)\right)-p^{\star} \leq m / t\right)$
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu=10-20$
- several heuristics for choice of $t^{(0)}$

Examples

inequality form LP ($m=100$ inequalities, $n=50$ variables)

- starts with x on central path $\left(t^{(0)}=1\right.$, duality gap 100)
- terminates when $t=10^{8}\left(\right.$ gap $\left.10^{-6}\right)$
- centering uses Newton's method with backtracking
- total number of Newton iterations not very sensitive for $\mu \geq 10$
geometric program ($m=100$ inequalities and $n=50$ variables)

$$
\begin{array}{ll}
\operatorname{minimize} & \log \left(\sum_{k=1}^{5} \exp \left(a_{0 k}^{T} x+b_{0 k}\right)\right) \\
\text { subject to } & \log \left(\sum_{k=1}^{5} \exp \left(a_{i k}^{T} x+b_{i k}\right)\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

family of standard LPs $\left(A \in \mathbf{R}^{m \times 2 m}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

$m=10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a $100: 1$ ratio

Polynomial-time complexity of barrier method

- for $\mu=1+1 / \sqrt{m}$:

$$
N=O\left(\sqrt{m} \log \left(\frac{m / t^{(0)}}{\epsilon}\right)\right)
$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops
this choice of μ optimizes worst-case complexity; in practice we choose μ fixed ($\mu=10, \ldots, 20$)

Feasibility and phase I methods

feasibility problem: find x such that

$$
\begin{equation*}
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{2}
\end{equation*}
$$

phase I: computes strictly feasible starting point for barrier method

basic phase I method

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & s \\
\text { subject to } & f_{i}(x) \leq s, \quad i=1, \ldots, m \tag{3}\\
& A x=b
\end{array}
$$

- if x, s feasible, with $s<0$, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star}=0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star}=0$ and not attained, then problem (2) is infeasible

sum of infeasibilities phase I method

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} s \\
\text { subject to } & s \succeq 0, \quad f_{i}(x) \leq s_{i}, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method
example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 inequalities
example: family of linear inequalities $A x \preceq b+\gamma \Delta b$

- data chosen to be strictly feasible for $\gamma>0$, infeasible for $\gamma \leq 0$
- use basic phase I, terminate when $s<0$ or dual objective is positive

number of iterations roughly proportional to $\log (1 /|\gamma|)$

