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Today

� Duality at work: network applications. . .
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Convex Optimization

� Most duals have a very natural interpretation

� Numerical software generally solve both at the same time (more later)

� Provide a lot of information beyond sensitivity

� Also give a definitive proof of convergence

� Many duals for one problem
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Duality: applications
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Duality: network flow problems

Let start with a simple network:
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Network flow problems

Network characteristics:

� Flow through each arc in one direction only

� Source s, sink in t.

� Each link has a fixed capacity

� No parallel edges, self-loops, etc

� No edges leading to s, no edges leaving t

Simple question: What is the maximum throughput in this network?
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Network flow problems

Model formulation:

� We can define the network’s incidence matrix:

Aij =

 1 if arc j starts at node i
−1 if arc j ends at node i
0 otherwise

� By construction, we have 1TA = 0.

� We note xi the flow through arc i. Could be negative if the flow is going
against the direction of the arc.
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Network flow problems

example (m = 6, n = 8)
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Network flow problems

We can compute the total flow leaving node i as:

n∑
j=1

Aijxj = (Ax)i
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Network flow problems

We define the supply vector b ∈ Rm:

� bi > 0: external flow entering the network at node i

� bi < 0: flow leaving the network at node i

� We have a balanced flow: 1T b = 0 (inflow = outflow)

cements

i

xj

Aij = −1

xk

Aik = 1

bi

The balance equations are written: Ax = b
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Network flow problems

We consider minimum cost network flow problems:

minimize cTx
subject to Ax = b

l ≤ x ≤ u

� ci is the cost of one unit of flow going through node i

� lj and uj are upper and lower bounds on thee flow through arc j

This problem class includes maximum flow problems, and many others. . .

ENSAE: Optimisation 11/26



Network flow problems

We introduce an artificial arc in the network, from the sink to the source:

1 m

artificial arc n + 1

[ ]

[ ]

To maximize the flow from 1 to m, we simply attach a negative cost to this
artificial arc, and solve the following minimum cost network flow problem:

minimize cTx

subject to [A ,−e]
[

x
t

]
= 0

0 ≤ x ≤ u

with e = (1, 0, . . . , 0,−1). This is a maximum flow problem.
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Network flow problems

We can also define cuts in the network:

� An (s, t) cut of the network is a partition of the nodes in two sets U and V
such that s ∈ U and t ∈ V .

� The capacity of a cut (U, V ) is computed as:

cap(U, V ) =
∑

{arc j leaves U}
uj
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Network flow problems

In this problem, an admissible flow satisfies:

� Capacity constraints: 0 ≤ xj ≤ uj

� Conservation constraints: (Ax)i = 0, when i 6= s, t

The value of a flow x is the total flow coming out of the source node s:

val(x) =
∑

{arc j leaves s}
xj

We write cut(U, V ) the net flow coming out of a cut (U, V ):

cut(U, V ) =
∑

{arc j leaves U}
xj −

∑
{arc j enters U}

xj
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Network flow problems

We have the following flow value lemma. If s ∈ U and t ∈ V then

val(x) = cut(U, V )

which means that the net flow across the cut is equal to the flow leaving s
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Network flow problems

Proof is easy. . . By conservation (only the terms below with i = s are nonzero)
we have:

val(x) =
∑

{arc j leaves s}
xj

=
∑

{node i in U}

 ∑
{arc j leaves i}

xj −
∑

{arc j enters i}
xj


Which is, after simplification:

=
∑

{arc j leaves U}
xj −

∑
{arc j enters U}

xj

= cut(U, V )
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Network flow problems

We can get another result: val(x) ≤ cap(U, V ) which says that the value of the
flow x cannot exceed the capacity of the cut

Proof also simple:

val(x) =
∑

{arc j leaves U}
xj −

∑
{arc j enters U}

xj

≤
∑

{arc j leaves U}
xj

≤
∑

{arc j leaves U}
uj

= cap(U, V )
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Network flow problems

Illustration:

Cut capacity = 30   !    Flow value " 30 
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Network flow problems

Theorem (Max Flow - Min Cut): The value of the maximum flow is equal to
the capacity of the minimum cut.

Value of flow = 28
Cut capacity  = 28   !    Flow value " 28
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Network flow problems

Intuition:

� Each cut (U, V ) such that s ∈ U and t ∈ V gives an upper bound on the
maximum flow through the network

� Similarly, each flow through the network gives a lower bound on the capacity of
such cuts (U, V )

� If we find a flow x and a cut (U, V ) such that val(x) = cap(U, V ) we know
that both are necessarily optimal
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Network flow problems

This means that the two following problems are closely related:

Maximum Flow:
maximize val(x)
subject to Ax = 0

0 ≤ x ≤ u

Minimum Cut:
minimize cap(U, V )
subject to s ∈ U, t ∈ V

U + V = [1,m]

In particular, both problems have the same optimal value
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Network flow problems

Can we write the minimum cut as a linear program? Consider:

minimize
∑

(i,j)∈V

yijuij

subject to yij + zj − zi ≥ 0 (i, j) ∈ V
yij ≥ 0

in the variables y and z, where (i, j) ∈ V means that there is a link going from i
to j, with capacity given by uij.

Using y and z we define the following cut (U, V ) with s ∈ U and t ∈ V :{
node i in U if zi > 0
node i in V if zi = 0

We have of course zs = 1 and zt = 0.
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Network flow problems

� By construction zs = 1 so the first constraints are:

ysj + zj ≥ 1, (s, j) ∈ V

� Then, two things can happen at a solution:

◦ ysj = 1 with zj = 0 and all the following yjk and zk can be zero

◦ ysj = 0 with zj = 1 and we get the same equation for the next node:

yjk + zk ≥ 1, (j, k) ∈ V

� This means that the set of nodes such that zj = 1 defines a cut.

� Because of the objective, it will be the minimum cut.
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Max flow - min cut

The maximum flow problem was:

minimize cTx

subject to [A ,−e]
[

x
t

]
= 0

0 ≤ x ≤ u

with e = (1, 0, . . . , 0,−1). Its Lagrangian was:

L(x, y, z) = cTx+ zT [A − e]

[
x
t

]
+ yT (x− u)

for x ≥ 0. The Lagrange dual function is then defined as

g(y, z) = inf
x≥0

L(x, y, z)

= inf
x≥0

xT

(
c+ y +

[
AT

−e

]
z

)
− uTy

ENSAE: Optimisation 24/26



This minimization yields either −∞ or −uTy, so:

g(y, z) =

 −uTy if

(
c+ y +

[
AT

−e

]
z

)
≥ 0

−∞ otherwise

This means that the dual of the maximum flow problem is written:

− minimize uTy

subject to c+ y +

[
AT

−e

]
z ≥ 0

Compare to the minimum cut problem:

minimize
∑

(i,j)∈V

yijuij

subject to yij + zj − zi ≥ 0, (i, j) ∈ V
yij ≥ 0

The two problems are identical. . .
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Duality: examples

� The max flow - min cut result is a particular case of linear programming
duality

� Both primal and dual solutions have direct interpretations
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