Convex Optimization

First order methods

- Large scale problems: complexity
- First-order methods

- Some problems coming from statistics, biology scheduling etc may have more than 10^6 variables
- A matrix of dimension 10^4 requires 800Mb of memory in double precision
- Also: a high target precision is not always necessary

First-order methods

Subgradient

Suppose that f is a convex function with $\mathbf{dom} f = \mathbf{R}^n$, and that there is a vector $g \in \mathbf{R}^n$ such that:

$$f(y) \ge f(x) + g^T(y - x), \text{ for all } y \in \mathbf{R}^n$$

- The vector g is called a **subgradient** of f at x
- Of course, if f is differentiable, the gradient of f at x satisfies this condition
- The subgradient defines a supporting hyperplane for f at the point x

Subgradient method:

- Suppose $f : \mathbf{R}^n \to \mathbf{R}$ is convex
- We update the current point x_k according to:

 $x_{k+1} = x_k + \alpha_k g_k$

```
where g_k is a subgradient of f at x_k
```

- α_k is the step size sequence
- Similar to gradient descent but, not a descent method . . .
- Instead: use the best point and the minimum function value found so far

Step size strategies:

- Constant step size: $\alpha_k = h$ for all $k \ge 0$
- Constant step length: $\alpha_k / \|g_k\| = h$ for all $k \ge 0$
- Square summable but not summable:

$$\sum_{k=0}^{\infty} \alpha_k = \infty \quad \text{and} \quad \sum_{k=0}^{\infty} \alpha_k^2 < \infty$$

Nonsummable diminishing:

$$\sum_{k=0}^{\infty} \alpha_k = \infty \quad \text{and} \quad \lim_{k \to \infty} \alpha_k = 0$$

Subgradient Methods

Convergence:

Assuming $||g||_2 \leq G$, for all $g \in \partial f$, we can show

$$f_{\text{best}} - f^* \le \frac{\operatorname{dist}(x_1, x^*) + G^2 \sum_{i=1}^k \alpha_i^2}{2 \sum_{i=1}^k \alpha_i}$$

For constant step $\alpha_i = h$, this becomes

$$f_{\text{best}} - f^* \le \frac{\operatorname{dist}(x_1, x^*)}{2hk} + \frac{G^2h}{2}h/2$$

to get an ϵ solution, we set $h=2\epsilon/G^2$ and

$$\frac{\operatorname{dist}(x_1, x^*)}{2hk} \le \epsilon$$

hence

$$k \ge \frac{\operatorname{dist}(x_1, x^*)G^2}{4\epsilon^2}.$$

If the problem has constraints:

 $\begin{array}{ll} \mbox{minimize} & f(x) \\ \mbox{subject to} & x \in C \end{array}$

where $C \subset \mathbf{R}^n$ is a convex set

• Use the Euclidean projection $p_C(g_k)$ of the subgradient g_k on C

$$x_{k+1} = x_k + \alpha_k p_C(g_k)$$

Some numerical examples on piecewise linear minimization. . . Problem instance with n = 10 variables, m = 100 terms

Subgradient Methods: Numerical Examples

Constant step length, h = 0.05, 0.02, 0.005

Constant step size h = 0.05, 0.02, 0.005

Diminishing step rule $\alpha = 0.1/\sqrt{k}$ and square summable step size rule $\alpha = 0.1/k$.

Constant step length h=0.02, diminishing step size rule $\alpha=0.1/\sqrt{k},$ and square summable step rule $\alpha=0.1/k$

Localization methods

minimize f(x)

- Function $f : \mathbf{R}^n \to \mathbf{R}$ convex (and for now, differentiable)
- oracle model: for any x we can evaluate f and $\nabla f(x)$ (at some cost)

$$f$$
 convex means $f(x) \ge f(x_0) + \nabla f(x_0)^T (x - x_0)$ and

$$\nabla f(x_0)^T(x-x_0) \ge 0 \implies f(x) \ge f(x_0)$$

i.e., all points in halfspace $\nabla f(x_0)^T(x-x_0) \ge 0$ are **worse** than x_0

• by evaluating ∇f we rule out a halfspace in our search for x^* :

$$x^{\star} \in \{x \mid \nabla f(x_0)^T (x - x_0) \le 0\}$$

- **idea:** get one bit of info (on location of x^*) by evaluating ∇f
- for nondifferentiable f, can replace $\nabla f(x_0)$ with any subgradient $g \in \partial f(x_0)$

Suppose we have evaluated $\nabla f(x_1), \dots, \nabla f(x_k)$ then we know $x^* \in \{x \mid \nabla f(x_i)^T (x - x_i) \le 0\}$

on the basis of $\nabla f(x_1), \ldots, \nabla f(x_k)$, we have **localized** x^* to a polyhedron

question: what is a 'good' point x_{k+1} at which to evaluate ∇f ?

Basic **localization** (or cutting-plane) algorithm:

1. after iteration k-1 we know $x^* \in \mathcal{P}_{k-1}$:

$$\mathcal{P}_{k-1} = \{ x \mid \nabla f(x^{(i)})^T (x - x^{(i)}) \le 0, \ i = 1, \dots, k-1 \}$$

2. evaluate $\nabla f(x^{(k)})$ (or $g \in \partial f(x^{(k)})$) for some $x^{(k)} \in \mathcal{P}_{k-1}$

3.
$$\mathcal{P}_k := \mathcal{P}_{k-1} \cap \{ x \mid \nabla f(x^{(k)})^T (x - x^{(k)}) \le 0 \}$$

- \mathcal{P}_k gives our uncertainty of x^\star at iteration k
- want to pick $x^{(k)}$ so that \mathcal{P}_{k+1} is as small as possible
- clearly want $x^{(k)}$ near center of $C^{(k)}$

Example: bisection on R

- $f: \mathbf{R} \to \mathbf{R}$
- \mathcal{P}_k is interval
- obvious choice: $x^{(k+1)} := \operatorname{midpoint}(\mathcal{P}_k)$

bisection algorithm

given interval C = [l, u] containing x^*

repeat

- 1. x := (l+u)/2
- 2. evaluate f'(x)
- 3. if f'(x) < 0, l := x; else u := x

$$\mathsf{length}(\mathcal{P}_{k+1}) = u_{k+1} - l_{k+1} = \frac{u_k - l_k}{2} = (1/2)\mathsf{length}(\mathcal{P}_k)$$

and so $\text{length}(\mathcal{P}_k) = 2^{-k} \text{length}(\mathcal{P}_0)$

interpretation:

- length(\mathcal{P}_k) measures our uncertainty in x^{\star}
- uncertainty is halved at each iteration; get exactly one bit of info about x^{\star} per iteration
- # steps required for uncertainty (in x^*) $\leq \epsilon$:

$$\log_2 \frac{\mathsf{length}(\mathcal{P}_0)}{\epsilon} = \log_2 \frac{\mathsf{initial uncertainty}}{\mathsf{final uncertainty}}$$

question:

- can bisection be extended to \mathbf{R}^n ?
- or is it special since **R** is linear ordering?

Center of gravity algorithm

Take $x^{(k+1)} = CG(\mathcal{P}_k)$ (center of gravity)

$$\mathsf{CG}(\mathcal{P}_k) = \int_{\mathcal{P}_k} x \, dx \, \bigg/ \int_{\mathcal{P}_k} dx$$

theorem. if $C \subseteq \mathbf{R}^n$ convex, $x_{cg} = CG(C)$, $g \neq 0$,

$$\operatorname{vol}(C \cap \{x \mid g^T(x - x_{cg}) \le 0\}) \le (1 - 1/e) \operatorname{vol}(C) \approx 0.63 \operatorname{vol}(C)$$

(independent of dimension n)

hence in CG algorithm, $\mathbf{vol}(\mathcal{P}_k) \leq 0.63^k \mathbf{vol}(\mathcal{P}_0)$

ENSAE: Optimisation

- $\mathbf{vol}(\mathcal{P}_k)^{1/n}$ measures uncertainty (in x^*) at iteration k
- uncertainty reduced at least by $0.63^{1/n}$ each iteration
- from this can prove $f(x^{(k)}) \to f(x^{\star})$ (later)
- **•** max. # steps required for uncertainty $\leq \epsilon$:

 $1.51n \log_2 \frac{\text{initial uncertainty}}{\text{final uncertainty}}$

(cf. bisection on \mathbf{R})

advantages of CG-method

- guaranteed convergence
- number of steps proportional to dimension n, log of uncertainty reduction

disadvantages

- finding $x^{(k+1)} = CG(\mathcal{P}_k)$ is harder than original problem
- \mathcal{P}_k becomes more complex as k increases (removing redundant constraints is harder than solving original problem)

(but, can modify CG-method to work)

analytic center of polyhedron $\mathcal{P} = \{z \mid a_i^T z \leq b_i, i = 1, \dots, m\}$ is

$$\mathsf{AC}(\mathcal{P}) = \underset{z}{\operatorname{argmin}} - \sum_{i=1}^{m} \log(b_i - a_i^T z)$$

ACCPM is localization method with next query point $x^{(k+1)} = AC(\mathcal{P}_k)$ (found by Newton's method)

• let x^* be analytic center of $\mathcal{P} = \{z \mid a_i^T z \leq b_i, i = 1, \dots, m\}$

• let H^* be Hessian of barrier at x^* ,

$$H^* = -\nabla^2 \sum_{i=1}^m \log(b_i - a_i^T z) \bigg|_{z=x^*} = \sum_{i=1}^m \frac{a_i a_i^T}{(b_i - a_i^T x^*)^2}$$

• then, $\mathcal{P} \subseteq \mathcal{E} = \{ z \mid (z - x^*)^T H^*(z - x^*) \leq m^2 \}$ (not hard to show)

Lower bound in ACCPM

let $\mathcal{E}^{(k)}$ be outer ellipsoid associated with $x^{(k)}$

a lower bound on optimal value p^{\star} is

$$p^{\star} \geq \inf_{z \in \mathcal{E}^{(k)}} \left(f(x^{(k)}) + g^{(k)T}(z - x^{(k)}) \right)$$
$$= f(x^{(k)}) - m_k \sqrt{g^{(k)T} H^{(k)-1} g^{(k)}}$$

 $(m_k \text{ is number of inequalities in } \mathcal{P}_k)$

gives simple stopping criterion $\sqrt{g^{(k)T}H^{(k)-1}g^{(k)}} \leq \epsilon/m_k$

Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and best lower bound

best function value so far: $u_k = \min_{i=1,...,k} f(x^{(k)})$

best lower bound so far: $l_k = \max_{i=1,...,k} f(x^{(k)}) - m_k \sqrt{g^{(k)T} H^{(k)-1} g^{(k)}}$

can stop when $u_k - l_k \leq \epsilon$

Basic ACCPM

here m is number of inequalities in $\ensuremath{\mathcal{P}}$

add an inequality to ${\mathcal P}$ each iteration, so centering gets harder, more storage as algorithm progresses

schemes for dropping constraints from $\mathcal{P}^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking

$$x^*$$
 is AC of $\mathcal{P} = \{x \mid a_i^T x \leq b_i, i = 1, \dots, m\}$, H^* is barrier Hessian at x^*

define (ir)relevance measure
$$\eta_i = \frac{b_i - a_i^T x^*}{\sqrt{a_i^T H^{*-1} a_i}}$$

• η_i/m is normalized distance from hyperplane $a_i^T x = b_i$ to outer ellipsoid • if $\eta_i \ge m$, then constraint $a_i^T x \le b_i$ is redundant

Example

PWL objective, n = 10 variables, m = 100 terms

simple ACCPM: $f(x^{(k)})$ and lower bound $f(x^{(k)}) - m\sqrt{g^{(k)T}H^{(k)-1}g^{(k)}}$

simple ACCPM: u_k (best objective value) and l_k (best lower bound)

ACCPM with constraint dropping

... constraint dropping actually **improves** convergence (!)

ACCPM with constraint dropping

number of inequalities in \mathcal{P} :

