Convex Optimization

First order methods

Today

- Large scale problems: complexity
- First-order methods

Large scale problems

- Some problems coming from statistics, biology scheduling etc may have more than 10^{6} variables
- A matrix of dimension 10^{4} requires 800 Mb of memory in double precision
- Also: a high target precision is not always necessary

First-order methods

Subgradient Methods

Subgradient

- Suppose that f is a convex function with $\operatorname{dom} f=\mathbf{R}^{n}$, and that there is a vector $g \in \mathbf{R}^{n}$ such that:

$$
f(y) \geq f(x)+g^{T}(y-x), \quad \text { for all } y \in \mathbf{R}^{n}
$$

- The vector g is called a subgradient of f at x
- Of course, if f is differentiable, the gradient of f at x satisfies this condition
- The subgradient defines a supporting hyperplane for f at the point x

Subgradient Methods

Subgradient method:

- Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is convex
- We update the current point x_{k} according to:

$$
x_{k+1}=x_{k}+\alpha_{k} g_{k}
$$

where g_{k} is a subgradient of f at x_{k}

- α_{k} is the step size sequence
- Similar to gradient descent but, not a descent method . . .
- Instead: use the best point and the minimum function value found so far

Subgradient Methods

Step size strategies:

- Constant step size: $\alpha_{k}=h$ for all $k \geq 0$
- Constant step length: $\alpha_{k} /\left\|g_{k}\right\|=h$ for all $k \geq 0$
- Square summable but not summable:

$$
\sum_{k=0}^{\infty} \alpha_{k}=\infty \quad \text { and } \quad \sum_{k=0}^{\infty} \alpha_{k}^{2}<\infty
$$

- Nonsummable diminishing:

$$
\sum_{k=0}^{\infty} \alpha_{k}=\infty \quad \text { and } \quad \lim _{k \rightarrow \infty} \alpha_{k}=0
$$

Subgradient Methods

Convergence:

Assuming $\|g\|_{2} \leq G$, for all $g \in \partial f$, we can show

$$
f_{\text {best }}-f^{\star} \leq \frac{\operatorname{dist}\left(x_{1}, x^{*}\right)+G^{2} \sum_{i=1}^{k} \alpha_{i}^{2}}{2 \sum_{i=1}^{k} \alpha_{i}}
$$

For constant step $\alpha_{i}=h$, this becomes

$$
f_{\text {best }}-f^{\star} \leq \frac{\operatorname{dist}\left(x_{1}, x^{*}\right)}{2 h k}+G^{2} h / 2
$$

to get an ϵ solution, we set $h=2 \epsilon / G^{2}$ and

$$
\frac{\operatorname{dist}\left(x_{1}, x^{*}\right)}{2 h k} \leq \epsilon
$$

hence

$$
k \geq \frac{\operatorname{dist}\left(x_{1}, x^{*}\right) G^{2}}{4 \epsilon^{2}}
$$

Subgradient Methods

- If the problem has constraints:

$$
\begin{array}{ll}
\text { minimize } & f(x) \\
\text { subject to } & x \in C
\end{array}
$$

where $C \subset \mathbf{R}^{n}$ is a convex set

- Use the Euclidean projection $p_{C}\left(g_{k}\right)$ of the subgradient g_{k} on C

$$
x_{k+1}=x_{k}+\alpha_{k} p_{C}\left(g_{k}\right)
$$

- Some numerical examples on piecewise linear minimization. . . Problem instance with $n=10$ variables, $m=100$ terms

Subgradient Methods: Numerical Examples

Constant step length, $h=0.05,0.02,0.005$

Constant step size $h=0.05,0.02,0.005$

Diminishing step rule $\alpha=0.1 / \sqrt{k}$ and square summable step size rule $\alpha=0.1 / k$.

Constant step length $h=0.02$, diminishing step size rule $\alpha=0.1 / \sqrt{k}$, and square summable step rule $\alpha=0.1 / k$

Localization methods

Localization methods

$$
\operatorname{minimize} f(x)
$$

- Function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ convex (and for now, differentiable)
- oracle model: for any x we can evaluate f and $\nabla f(x)$ (at some cost)
f convex means $f(x) \geq f\left(x_{0}\right)+\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right)$ and

$$
\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \geq 0 \quad \Longrightarrow \quad f(x) \geq f\left(x_{0}\right)
$$

i.e., all points in halfspace $\nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \geq 0$ are worse than x_{0}

- by evaluating ∇f we rule out a halfspace in our search for x^{\star} :

$$
x^{\star} \in\left\{x \mid \nabla f\left(x_{0}\right)^{T}\left(x-x_{0}\right) \leq 0\right\}
$$

- idea: get one bit of info (on location of x^{\star}) by evaluating ∇f
- for nondifferentiable f, can replace $\nabla f\left(x_{0}\right)$ with any subgradient $g \in \partial f\left(x_{0}\right)$

Suppose we have evaluated $\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{k}\right)$ then we know $x^{\star} \in\left\{x \mid \nabla f\left(x_{i}\right)^{T}\left(x-x_{i}\right) \leq 0\right\}$

on the basis of $\nabla f\left(x_{1}\right), \ldots, \nabla f\left(x_{k}\right)$, we have localized x^{\star} to a polyhedron
question: what is a 'good' point x_{k+1} at which to evaluate ∇f ?

Localization algorithm

Basic localization (or cutting-plane) algorithm:

1. after iteration $k-1$ we know $x^{\star} \in \mathcal{P}_{k-1}$:

$$
\mathcal{P}_{k-1}=\left\{x \mid \nabla f\left(x^{(i)}\right)^{T}\left(x-x^{(i)}\right) \leq 0, i=1, \ldots, k-1\right\}
$$

2. evaluate $\nabla f\left(x^{(k)}\right)$ (or $g \in \partial f\left(x^{(k)}\right)$) for some $x^{(k)} \in \mathcal{P}_{k-1}$
3. $\mathcal{P}_{k}:=\mathcal{P}_{k-1} \cap\left\{x \mid \nabla f\left(x^{(k)}\right)^{T}\left(x-x^{(k)}\right) \leq 0\right\}$

- \mathcal{P}_{k} gives our uncertainty of x^{\star} at iteration k
- want to pick $x^{(k)}$ so that \mathcal{P}_{k+1} is as small as possible
- clearly want $x^{(k)}$ near center of $C^{(k)}$

Example: bisection on R

- $f: \mathbf{R} \rightarrow \mathbf{R}$
- \mathcal{P}_{k} is interval
- obvious choice: $x^{(k+1)}:=\operatorname{midpoint}\left(\mathcal{P}_{k}\right)$

bisection algorithm

given interval $C=[l, u]$ containing x^{\star}
repeat

1. $x:=(l+u) / 2$
2. evaluate $f^{\prime}(x)$
3. if $f^{\prime}(x)<0, l:=x$; else $u:=x$

$\operatorname{length}\left(\mathcal{P}_{k+1}\right)=u_{k+1}-l_{k+1}=\frac{u_{k}-l_{k}}{2}=(1 / 2) \operatorname{length}\left(\mathcal{P}_{k}\right)$ and so length $\left(\mathcal{P}_{k}\right)=2^{-k} \operatorname{length}\left(\mathcal{P}_{0}\right)$

interpretation:

- length $\left(\mathcal{P}_{k}\right)$ measures our uncertainty in x^{\star}
- uncertainty is halved at each iteration; get exactly one bit of info about x^{\star} per iteration
- \# steps required for uncertainty (in x^{\star}) $\leq \epsilon$:

$$
\log _{2} \frac{\text { length }\left(\mathcal{P}_{0}\right)}{\epsilon}=\log _{2} \frac{\text { initial uncertainty }}{\text { final uncertainty }}
$$

question:

- can bisection be extended to \mathbf{R}^{n} ?
- or is it special since \mathbf{R} is linear ordering?

Center of gravity algorithm

Take $x^{(k+1)}=\mathrm{CG}\left(\mathcal{P}_{k}\right)$ (center of gravity)

$$
\mathrm{CG}\left(\mathcal{P}_{k}\right)=\int_{\mathcal{P}_{k}} x d x / \int_{\mathcal{P}_{k}} d x
$$

theorem. if $C \subseteq \mathbf{R}^{n}$ convex, $x_{\mathrm{cg}}=\mathrm{CG}(C), g \neq 0$,

$$
\operatorname{vol}\left(C \cap\left\{x \mid g^{T}\left(x-x_{\mathrm{cg}}\right) \leq 0\right\}\right) \leq(1-1 / e) \operatorname{vol}(C) \approx 0.63 \operatorname{vol}(C)
$$

(independent of dimension n)
hence in CG algorithm, $\operatorname{vol}\left(\mathcal{P}_{k}\right) \leq 0.63^{k} \operatorname{vol}\left(\mathcal{P}_{0}\right)$

- $\operatorname{vol}\left(\mathcal{P}_{k}\right)^{1 / n}$ measures uncertainty (in x^{\star}) at iteration k
- uncertainty reduced at least by $0.63^{1 / n}$ each iteration
- from this can prove $f\left(x^{(k)}\right) \rightarrow f\left(x^{\star}\right)$ (later)
- max. \# steps required for uncertainty $\leq \epsilon$:

$$
1.51 n \log _{2} \frac{\text { initial uncertainty }}{\text { final uncertainty }}
$$

(cf. bisection on \mathbf{R})

advantages of CG-method

- guaranteed convergence
- number of steps proportional to dimension n, \log of uncertainty reduction

disadvantages

- finding $x^{(k+1)}=\mathrm{CG}\left(\mathcal{P}_{k}\right)$ is harder than original problem
- \mathcal{P}_{k} becomes more complex as k increases (removing redundant constraints is harder than solving original problem)
(but, can modify CG-method to work)

Analytic center cutting-plane method

analytic center of polyhedron $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$ is

$$
\mathrm{AC}(\mathcal{P})=\underset{z}{\operatorname{argmin}}-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)
$$

ACCPM is localization method with next query point $x^{(k+1)}=\mathrm{AC}\left(\mathcal{P}_{k}\right)$ (found by Newton's method)

Outer ellipsoid from analytic center

- let x^{*} be analytic center of $\mathcal{P}=\left\{z \mid a_{i}^{T} z \preceq b_{i}, i=1, \ldots, m\right\}$
- let H^{*} be Hessian of barrier at x^{*},

$$
H^{*}=-\left.\nabla^{2} \sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} z\right)\right|_{z=x^{*}}=\sum_{i=1}^{m} \frac{a_{i} a_{i}^{T}}{\left(b_{i}-a_{i}^{T} x^{*}\right)^{2}}
$$

- then, $\mathcal{P} \subseteq \mathcal{E}=\left\{z \mid\left(z-x^{*}\right)^{T} H^{*}\left(z-x^{*}\right) \leq m^{2}\right\}$ (not hard to show)

Lower bound in ACCPM

let $\mathcal{E}^{(k)}$ be outer ellipsoid associated with $x^{(k)}$
a lower bound on optimal value p^{\star} is

$$
\begin{aligned}
p^{\star} & \geq \inf _{z \in \mathcal{E}^{(k)}}\left(f\left(x^{(k)}\right)+g^{(k) T}\left(z-x^{(k)}\right)\right) \\
& =f\left(x^{(k)}\right)-m_{k} \sqrt{g^{(k) T} H^{(k)-1} g^{(k)}}
\end{aligned}
$$

(m_{k} is number of inequalities in \mathcal{P}_{k})
gives simple stopping criterion $\sqrt{g^{(k) T} H^{(k)-1} g^{(k)}} \leq \epsilon / m_{k}$

Best objective and lower bound

since ACCPM isn't a descent a method, we keep track of best point found, and best lower bound
best function value so far: $u_{k}=\min _{i=1, \ldots, k} f\left(x^{(k)}\right)$
best lower bound so far: $l_{k}=\max _{i=1, \ldots, k} f\left(x^{(k)}\right)-m_{k} \sqrt{g^{(k) T} H^{(k)-1} g^{(k)}}$
can stop when $u_{k}-l_{k} \leq \epsilon$

Basic ACCPM

given polyhedron \mathcal{P} containing x^{\star}

repeat

1. compute x^{*}, the analytic center of \mathcal{P}, and H^{*}
2. compute $f\left(x^{*}\right)$ and $g \in \partial f\left(x^{*}\right)$
3. $u:=\min \left\{u, f\left(x^{*}\right)\right\}$
$l:=\max \left\{l, f\left(x^{*}\right)-m \sqrt{g^{T} H^{*-1} g}\right\}$
4. add inequality $g^{T}\left(z-x^{*}\right) \leq 0$ to \mathcal{P}
until $u-l<\epsilon$
here m is number of inequalities in \mathcal{P}

Dropping constraints

add an inequality to \mathcal{P} each iteration, so centering gets harder, more storage as algorithm progresses
schemes for dropping constraints from $\mathcal{P}^{(k)}$:

- remove all redundant constraints (expensive)
- remove some constraints known to be redundant
- remove constraints based on some relevance ranking

Dropping constraints in ACCPM

x^{*} is AC of $\mathcal{P}=\left\{x \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\}, H^{*}$ is barrier Hessian at x^{*}
define (ir)relevance measure $\eta_{i}=\frac{b_{i}-a_{i}^{T} x^{*}}{\sqrt{a_{i}^{T} H^{*-1} a_{i}}}$

- η_{i} / m is normalized distance from hyperplane $a_{i}^{T} x=b_{i}$ to outer ellipsoid
- if $\eta_{i} \geq m$, then constraint $a_{i}^{T} x \leq b_{i}$ is redundant

Example

PWL objective, $n=10$ variables, $m=100$ terms
simple ACCPM: $f\left(x^{(k)}\right)$ and lower bound $f\left(x^{(k)}\right)-m \sqrt{g^{(k) T} H^{(k)-1} g^{(k)}}$

simple ACCPM: u_{k} (best objective value) and l_{k} (best lower bound)

ACCPM with constraint dropping

... constraint dropping actually improves convergence (!)

ACCPM with constraint dropping

number of inequalities in \mathcal{P} :

