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In structured prediction:
• the number of possible labels is exponentially large w.r.t to the

natural dimension of the data.
•we generally have more possible outputs than training data.
Examples of typical structured prediction problems:
•Multilabel prediction: predict a subset of labels.
•Sequence prediction: predict a sequence over a fixed dictionary.
•Ranking: predict a permutation.

Q: When is learning statistically and computationally
feasible in structured prediction?

Challenges in Structured Prediction

•Spaces: input space X , discrete label space Y and discrete output
space Z .

•Data: n i.i.d observations (xi, yi) ∈ X × Y from a distribution P .
•Structured loss: a loss between outputs and labels

L : Z × Y −→ R.
•Expected risk and Bayes risk: minimize the expected risk E(f ):

E(f ) = E(X,Y )∼P L(f (X), Y ) =
∫

X
`(f (x), x)dP (x),

where `(z, x) =
∫
Y L(z, y)dP (y|x) is the Bayes risk.

•Bayes classifier: the Bayes classifier f ? : X → Z has the form:

f ?(x) = arg min
z∈Z

`(z, x), f ? = arg min
f :X→Z

E(f ).

Supervised Learning Setting

Given a kernel k : X ×X → R defined on the input space and λ > 0, the
QS estimator introduced in [1] has the form

f̂n(x) = arg min
z∈Z

n∑

i=1
αi(x)L(z, yi), (1)

where α(x) = (K+nλI)−1Kx ∈ Rn with Kx = (k(x, x1), . . . , k(x, xn)) ∈
Rn and K ∈ Rn×n is defined by Kij = k(xi, xj).

Quadratic Surrogate (QS) Estimator

It is known that the resulting estimator is consistent. Moreover, we have
the following generalization bound ([1]):

E(f̂n)− E(f ?) ≤ C n−1/4,

where C is a constant. A priori, there is no control over the magnitude of
the constant C ([2]).

• If C ∼ |Y|, |Z|, then the bound is generally non-informative.

Goal: Characterize C for discrete losses.

General Analysis of the Estimator

We consider an affine decomposition of the loss matrix L ∈ R|Z|×|Y|:

L = FU> + c1. (2)

where F ∈ R|Z|×r, U ∈ R|Y|×r, c ∈ R, 1 ∈ R|Z|×|Y| is the matrix of ones
and r ∈ N.
•We will use it to characterize the statistical and computational complexity

of learning with loss L.

Affine Decomposition of the Loss

Let n ∈ N, τ > 0 and λn = n−1/2. Assume that the loss L decomposes as
Eq. (2). If g∗ ∈ G, we have that with probability 1− 8e−τ ,

E(f̂n)− E(f ?) ≤ AQ cτ 2 n−1/4,

where A =
√
r‖F‖∞Umax, Q = maxj ‖g∗j/Umax‖ and Umax = maxj,k |Ukj|.

The statistical complexity is characterized by the constant

A =
√

r‖F‖∞Umax.

•Provide generalization of low-noise conditions for general losses:
improved rates with conditions of the form PX (γ(X) ≤ ε) = o(εp) for
p > 0, where γ(x) = minz′ 6=f ?(x) `(z′, x)− `(f ?(x), x).

•Tightness: Use calibration dimension introduced by [3] to analyze tight-
ness of statistical bounds.

Statistical Complexity Analysis

Computational complexity of solving Eq. (1) is the same as the one of
solving the following minimization problem:

min
z∈Z

Fz θ, (3)

where Fz ∈ Rr is the z-th row of F and θ ∈ Rr.
The computational complexity is characterized

by the cost of solving problem (3).

Computational Complexity Analysis

•The label space of the following losses / scores is Y = {0, 1}m.
Multilabel and Ranking measures

Measure Z Definition r A INFF (m)

0-1 (↓) Pm 1(z 6= y) 2m 2m/2 O(n ∧ 2m)
Block 0-1 (↓) Pm 1(z ∈ Bj, y /∈ Bj, j ∈ [b]) b

√
b O(b)

Hamming (↓) Pm 1
m

∑m
j=1 1([z]j 6= [y]j) m 1

2 O(m)

F-score (↑) Pm 2 |z∩y||z|+|y| m2 + 1
√

2m O(m2)

Prec@k (↑) Pm,k
|z∩y|
k m

√
m
k O(m log k)

NDCG (↑) Sm
1

N(r)
∑m
j=1G([r]j)Dσ(j) m

√
m (
∑
jD

2
j)

1
2Gmax O(m logm).

PD (↓) Sm
1

N(y)
∑m
j,`=1 1([y]j<[y]`)1(σ(j)>σ(`))

m(m−1)
2

m
4 MWFAS(m).

MAP (↑) Sm
1
|y|
∑m
j=1

[y]j
σ(j)

∑σ(j)
`=1 yσ−1(`)

m(m+1)
2

1
2m
√

log(m + 1) QAP(m).

Analysis of Multilabel and Ranking Losses

•Perform experiments on multilabel and ranking datasets: compare with
SSVM and threshold-based method.Sharp Analysis of Learning with Discrete Losses

Multilabel bibtex birds CAL500 corel5k enron mediamill medical scene yeast

n 7395 645 502 5000 1702 43907 978 2407 2417
d 1836 260 68 499 1001 120 1449 294 103
m 159 19 174 374 53 101 45 6 14

0-1 (↓)
THBM 0.82 0.57 1.0 0.99 0.92 0.93 0.31 0.49 0.93
SSVM 0.91 0.53 1.0 0.99 0.90 1.0 0.35 0.51 0.95
QS 0.78 0.52 1.0 0.95 0.86 0.86 0.29 0.34 0.76

Ham (↓)
THBM 1.3e-2 7.9e-2 0.14 1.1e-2 5.9e-2 3.1e-2 9.4e-3 0.11 0.26
SSVM 1.3e-2 6.4e-2 0.13 1.0e-2 7.1e-2 8.7e-2 1.07e-2 0.11 0.40
QS 1.3e-2 4.9e-2 0.14 9.4e-3 8.6-2 3.1e-2 9.6e-3 0.11 0.42

F-score (↑)
THBM 0.44 0.25 0.46 0.25 0.51 0.56 0.80 0.63 0.48
SSVM 0.19 0.16 0.33 0.11 0.49 0.40 0.74 0.57 0.48
QS 0.47 0.28 0.47 0.26 0.52 0.56 0.83 0.68 0.47

Ranking Ohsumed

n 106
d 25
m 150

NDCG@3 (↑)
SSVM 0.47

QS 0.51

NDCG@5 (↑)
SSVM 0.45

QS 0.48

NDCG@10 (↑)
SSVM 0.43

QS 0.46

Table 2: Numerical results on real-world multilabeling and ranking datasets comparing our QS estimator, THBM
[23] and SSVM [9]. n is the size of the full dataset, d the dimensionality of the data and m the number of classes
(multilabel), or the avg. number of query-document pairs (ranking). See Sec. 5 for more details.

corresponds to the one in [17] for this measure, out-
performs the SSVM. This highlights the importance of
consistency in learning, and the importance of making
the algorithm dependent on the measure willing to use
for evaluation.

6 RELATED WORKS &
DISCUSSION

While the QS for structured prediction generalizes
the QS for binary classification, Structural SVMs
(SSVMs) [8, 2] and Conditional Random Fields
(CRFs) [5, 6, 31] generalize the binary SVM and lo-
gistic regression to the structured case. All of them
are surrogate methods based on minimizing the ex-
pected risk of a certain surrogate loss S(v, y) : C ×
Y → R in a convex surrogate space C. The cor-
responding surrogates are SQS(v, y) = ‖v − Uy‖2Rr ,
SSSVM(v, y) = maxy′∈Y(vy′ + L(y′, y)) − vy and
SCRF(v, y) = log(

∑
y′∈Y exp vy′) − vy (See Examples

in Appendix A.1) for QS, SSVM and CRF, respec-
tively. SSVMs and CRFs exploit the structure of
the problem by decomposing each output element into
cliques and considering only the features on this parts.
This is necessary for the tractability of the methods.
Moreover, for SSVMs, the loss L must decompose into
these cliques to make possible the maximization in-
side the surrogate, often called augmented inference.
The clique decomposability of the loss, can be seen
as a low rank decomposition, analogous to our SELF-
decomposition. While the QS has attractive statistical
properties, it is generally not the case for the other sur-
rogate methods. CRFs are only consistent for the 0-1
loss in the case that the model is well-specified [31].
This lack of calibration to a given loss is an important
drawback of this method [7]. SSVMs are in general
not Fisher consistent, even for the 0-1 loss, for which
is only consistent if the problem is deterministic, i.e,
there always exists a majority label y with probability

larger than 1/2 [32].

QS for structured prediction. [21] proposed the
QS through an affine decomposition of the loss and
derived Fisher consistency of the corresponding surro-
gate method. They analyzed the inference algorithms
for Prec@k, ERU (NDCG-type measure that we study
in Appendix B), PD and MAP. As Fisher consistency
is a property only at the optimum, their analysis is not
able to provide any statistical guarantees. [17] analy-
ses consistency and calibration properties for the QS
specialized for NDCG-type losses. In particular, they
highlight the fact that estimating the normalized rele-
vance scores is key to be consistent, which is a property
that follows directly from our framework.

As far as we know, [12] is the only work that addresses
the learning complexity of general discrete losses for
structured prediction. They consider a different QS
surrogate than ours, which could be potentially in-
tractable to compute since it is defined on the space
of labels (even when the loss is low-rank) E ‖Fg(X)−
L(·, Y )‖2R|Z| , and not in the low dimensional space of
the decomposition E ‖g(X)−UY ‖2Rr . They also obtain
rates of the form ∝ An−1/4, however, their constants
are always larger than ours and computed explicitly
only for a small number of loss functions. In partic-
ular, for A, they obtain O(2m),O(b),O(m2), while we
obtain O(2m/2),O(

√
b),O(1) for the 0-1, block 0-1 and

Hamming, respectively. In addition, our constants are
interpretable and most of them can be proven to be
optimal (in the sense explained in Remark 3.3). Fi-
nally we provide a refined bound adaptive to the noise
of the problem as in Cor. 3.6.

To conclude, [16] introduces and studies the concept
of convex calibration dimension. We use their lower
bound on this quantity to study the optimality of the
dimension of the QS as reported in Remark 3.3.

•Take-away message: importance of being consistent and calibrated to
the measure of interest.

Experiments
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