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Challenges in Structured Prediction

In structured prediction:
e the number of possible labels is exponentially large w.r.t to the
natural dimension of the data.

e we generally have more possible outputs than training data.
Examples of typical structured prediction problems:

e Multilabel prediction: predict a subset of labels.
e Sequence prediction: predict a sequence over a fixed dictionary.

e Ranking: predict a permutation.

Q: When is learning statistically and computationally
feasible in structured prediction?

Supervised Learning Setting

e Spaces: input space X, discrete label space ) and discrete output
space Z.

e Data: n i.i.d observations (x;,y;) € X x ) from a distribution P.

e Structured loss: a loss between outputs and labels

L:Zx)Y —R
e Expected risk and Bayes risk: minimize the expected risk £( f):

E(f) = Exyyop LUF(X), Y) = /X 0(f(x), 2)dP(x).

where ((z, ) fy z,y)dP(y|z) is the Bayes risk.
e Bayes classifier: the Bayes classifier f*: X — Z has the form:

f*(x) =argmin f(z,x), f*=argmin E(f).

2€EZ f:X—=Z

Quadratic Surrogate (QS) Estimator

Given a kernel £ : X X X — R defined on the input space and A > 0, the
QS estimator introduced in [1] has the form

f — arg min Z a;(x)L(z,y;), (1)

2€EZ

where a(z) = (K+nAl) 'K, € R" with K, = (k(x, z1), . ..
R™ and K € R™" is defined by K;; = k(x;, z;).

Jk(x,x,)) €

General Analysis of the Estimator

It is known that the resulting estimator is consistent. Moreover, we have
the following generalization bound ([1]):

E(fa) —E(f) < C a7V

where (' is a constant. A priori, there is no control over the magnitude of
the constant C' (]2]).

olf C ~ |Y|,|Z]|, then the bound is generally non-informative.

Goal: Characterize (' for discrete losses.

Affine Decomposition of the Loss
We consider an affine decomposition of the loss matrix L € RIZ*VI:
L=FU"+cl. (2)

where F' € RIZX" [ & Rmxr, ceR 1€ RIZ1XY! is the matrix of ones
,
and r € N.

e \We will use it to characterize the statistical and computational complexity
of learning with loss L.

Statistical Complexity Analysis

Let n € N, 7 > 0 and A\, = n~ /2. Assume that the loss L decomposes as
Eq. (2). If g* € G, we have that with probability 1 — 8e™7,

e - () < AQ e
where A = /|| F'|| coUnnax, @ = max; ||g7/Unax|| and Unax = max g |Uy;.

The statistical complexity is characterized by the constant
A = /7| F||ccUmax-

¢ Provide generalization of low-noise conditions for general losses:
improved rates with conditions of the form Py(v(X) < &) = o(e?) for

p > 0, where y(z) = min,., ) £(2', z) — £(f* (), ).
e Tightness: Use calibration dimension introduced by [3] to analyze tight-
ness of statistical bounds.

Computational Complexity Analysis

Computational complexity of solving Eq. (1) is the same as the one of
solving the following minimization problem:

grélg F. 0, (3)

where F. € R" is the z-th row of F' and 0 € R".

The computational complexity is characterized
by the cost of solving problem (3).

Analysis of Multilabel and Ranking Losses

e The label space of the following losses / scoresis ) = {0, 1}".

Multilabel and Ranking measures

Measure Z  Definition r A INF -(m)
0-1 (}) Pm 1z #y) om om/2 O(n A 2M)
Block 0-1 (J) P 1(z € Bj,y ¢ Bj, j € [b]) b Vb O(b)
Hamming (1) P 75 271 1[z]5 # [W])) m 5 O(m)
F-score (1)  Pm 2‘52—% m*+1 2m O(m?)
Prec@k (1) Py, 24 m m O(mlog k)
NDCG (1) Gm ﬁZ?& G([r];) Do) m vm (3 D?)%Gmax O(mlogm).
m m(m—1) m
PO Gy e Mli<lio ot)>o) T MWFAS ()
MAP (1) G ﬁ D e % SV Yo-1(0) ) dma/log(m +1)  QAP(m).
Experiments

e Perform experiments on multilabel and ranking datasets: compare with

SSVM and threshold-based method.

Multilabel bibtex birds CALb500 corelbk enron  mediamill medical scene yeast Ranking Ohsumed
n 7395 645 502 5000 1702 43907 978 2407 2417 n 106
d 1836 260 68 499 1001 120 1449 294 103 d 25
m 159 19 174 374 53 101 45 6 14 m 150
THBM 0.82 0.57 1.0 0.99 0.92 0.93 0.31 0.49 093 SSVM 047
0-1 ({) SSVM  0.91 0.53 1.0 0.99 0.90 1.0 0.35 0.51  0.95 NDCG@3 (1) QS 0.51
QS 0.78 0.52 1.0 0.95 0.86 0.86 0.29 0.34 0.76
THBM 1.3e-2 7.9e-2 0.14 1.1e-2  5.9e-2 3.le-2 9.4e-3 0.11 0.26 SSVM  0.45
Ham ({) SSVM  1.3e-2 6.4e-2 0.13 1.0e-2  T7.le-2  8.7e-2 1.07e-2  0.11  0.40 NDCG@5 (1) QS 0.48
QS 1.3e-:2  4.9e-2 0.14 9.4e-3 8.6-2 3.1e-2 9.6e-3 0.11  0.42
THBM 0.44 0.25 0.46 0.25 0.51 0.56 0.80 0.63  0.48 SSVM  0.43
F-score (1) SSVM  0.19 0.16 0.33 0.11 0.49 0.40 0.74 0.57 0.48 NDCGQIO0 (1) QS 0.46
QS 0.47 0.28 0.47 0.26 0.52 0.56 0.83 0.68 0.47

e Take-away message: importance of being consistent and calibrated to
the measure of interest.
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