
A NOTE ON LEARNING ALGORITHMS FOR QUADRATIC ASSIGNMENT WITH
GRAPH NEURAL NETWORKS

{ ALEX NOWAK, SOLEDAD VILLAR, AFONSO S. BANDEIRA, JOAN BRUNA} CENTER FOR DATA SCIENCE, CIMS, NYU

OBJECTIVES
• Automatically learn algorithms for

quadratic assignment from solved in-
stances using neural networks.
• Give an approach to check whether there

exists any statistical to computational gap
for the quadratic assignment problem.

QUADRATIC ASSIGNMENT
Graph matching:
For A,B n× n adjacency matrices,

minimizeX ‖AX −XB‖2F , subject to X ∈ Π.

Π is the set of all permutation matrices.

Traveling salesman:
Graph matching between A pairwise distance
matrix, and B, adjacency matrix of the cycle.

QAP is a very interesting problem:

• NP-hard and hard to approximate.
• Natural statistical models for the inputs.
• Recovery thresholds not fully understood.

MATCHING RANDOM GRAPHS WITH SIAMESE GNNS
Feed G1, G2 into a Siamese GNN and train the model to recover the identity.

minimizeΘDKL(softmax(ET
AEB) ‖ In)

We compare the Siamese GNN O(n2) with the SDP O(n4) [1] and LowRankAlign O(n3) [2].

Matching Erdos-Renyi Graphs
G1 is a random ER graph with edge density pe. G2

is a small perturbation of G1 according to:

G2 = G1 � (1−Q) + (1−G1)�Q′

where Q and Q′ are binary random matrices
whose entries are drawn from i.i.d. Bernoulli dis-
tributions such that P(Qij = 1) = pe and P(Q′ij =
1) = pe2 with pe2 = pe

p
p−1 .

Matching Regular Graphs
G1 is a random regular graph and G2 is a per-
turbation of G1 according to the previous noise
model. Although G2 is in general not a regular
graph, the “signal" to be matched to, G1, is a reg-
ular graph.
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GRAPH NEURAL NETWORKS
- GNN [3]
Given a signal v0 ∈ Rn×d0 on the vertices of a
graph G, a Graph Neural Network computes

vk+1
l = ρ

( ∑
M∈M

θkM
(
Mvk

)
l

)
, l = 1 . . . dk+1

M = {In, D,A,A2, . . . , A2J

, U} : Rn×d → Rn×d

generator family,
Θ = {θk1 , . . . , θk|M|}, θ

k
M ∈ Rdk×dk+1 trainable pa-

rameters.
The output of the GNN is E = vK ∈ Rn×dK

where K is the number of layers.
- Simaese GNN
Apply the GNN to G1, G2 graphs and outputs a
squared matrix resulting from the outer product
of the embeddings: ET

1 E2 ∈ Rn×n

• Neural Net naturally adapted to graphs.
• Number of parameters independent of in-

put size.
• Scalability for sparse graphs.
• Choice of graph generators encodes prior

information of the task.

TSP WITH GNNS
Learning TSP from solved instances
Feed G into a GNN and try to find the cycle with
minimum cost:

minimizeΘDKL(softmax(ETE − ηIn) ‖1

2
AC)

The predicted cycle is computed from the matrix
softmax(ETE−ηIn) using a beam search strategy.
The approximation ratio over the test set is 1.027.
We perform still worse than Christofides (1.010).
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DISCUSSION AND OPEN PROBLEMS
Results
We show how under natural graph statistical models, the data-driven approach with GNNs outperforms
the other state-of-the-art baselines with significantly fewer complexity.
Open Problems

1. Is it possible to outperform advanced heuristic methods for TSP with data-driven models? What
about optimizing directly the cost?

2. Can a GNN express an efficient algorithm when lying above the computational threshold? And if
it does, can it be learned by SGD from examples?

3. The Stochastic Block Model (SBM) is a very good example; precise predictions of statistical and
computational thresholds. Can we detect large number of communities with GNNs where the
information and computational thresholds suspect to differ?

4. The performance of this algorithm depends on which operators are used in the GNN. Does it exist
a principled way of choosing the generator family from the task?

5. Understand the limits of the QAP, both statistically and computationally. Understand the limits of
the GNN approach.
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