Determinisme, Structures d’événements et le π-Calcul

Daniele Varacca

with Nobuko Yoshida

PPS

Sophia, Parsec - 2/2/2007
Determinism

What is determinism

- For functions: only one result
- For reactive systems: confluence

Only one maximal execution, up to order
Determinism

What is determinism

- For functions: only one result
- For reactive systems: confluence

Only one maximal execution, up to order
Some fairness assumptions may be necessary
What is probabilistic determinism

- For functions: only one probability distribution
- For reactive systems?
 Only one maximal execution, up to order??
Road Map

1. Typed π
 - Syntax

2. Event Structures
 - Conflict Freeness
 - Semantics
 - Correspondence

3. Probabilistic case
 - Syntax
 - Probabilistic event structures
Road Map

1. Typed π
 - Syntax

2. Event Structures
 - Conflict Freeness
 - Semantics
 - Correspondence

3. Probabilistic case
 - Syntax
 - Probabilistic event structures
We all know what the π-calculus is

$$x(\tilde{y}).P \mid \bar{x}\langle\tilde{z}\rangle.Q \longrightarrow P\{\tilde{z}/\tilde{y}\} \mid Q$$
We all know what the π-calculus is

$$x(\tilde{y}).P \mid \overline{x}\langle \tilde{z} \rangle .Q \rightarrow P\{\tilde{z}/\tilde{y}\} \mid Q$$

We consider a restricted version:
bound output only (“internal” mobility)
We all know what the π-calculus is

$$x(\tilde{y}).P \mid \overline{x}(\tilde{y}).Q \rightarrow (\nu \tilde{y})(P \mid Q)$$

We consider a restricted version:
bound output only (“internal” mobility)
The syntax

\(\pi \) processes

\[
P ::= x \&_{i \in I} \inp_i(\tilde{y}_i).P_i \quad \text{branching}
\]
\[
| \overline{x}\inp_j(\tilde{y}).P \quad \text{selection}
\]
\[
| !x(\tilde{y}).P \quad \text{server}
\]
\[
| \overline{x}(\tilde{y}).P \quad \text{client}
\]
\[
| P | Q \quad \text{parallel}
\]
\[
| (\nu x)P \quad \text{restriction}
\]
\[
| 0 \quad \text{inaction}
\]
Typed π-calculus

A linear type discipline:

(A) for each linear name there are a unique input and a unique output

(B) for each replicated name there is a unique stateless replicated input with zero or more dual outputs

This discipline guarantees confluence (determinism)
Examples

\overline{a}.b \mid \overline{a}.c \mid a

This is not typable as \(a \) appears twice as output
Examples

\[b.\bar{a} \mid c.\bar{b} \mid a.(\bar{c} \mid \bar{e}) \]

This is typable since each channel appears at most once as input and output
Examples

\[\mathbf{!} \ b \overline{a} \mid \mathbf{!} \ b \overline{c} \]

This is **not** typable as there are two different servers associated with \(b \).
Examples

\[!b.\overline{a} | \overline{b} | !c.\overline{b} \]

This is typable: the two clients on \(b \) are associated to a unique server
$P = \overline{a} \mathit{in}_1.b \mid a[\mathit{in}_1 \overline{d} \& \mathit{in}_2 \overline{e}]$

This process is typable, and performs a choice:

$P \rightarrow (b \mid \overline{d})$
Road Map

1. Typed π
 - Syntax

2. Event Structures
 - Conflict Freeness
 - Semantics
 - Correspondence

3. Probabilistic case
 - Syntax
 - Probabilistic event structures
True concurrency

Standard “interleaving” semantics
 - reduces parallelism to nondeterministic interleaving (“expansion law”)
 - Labelled transition systems, reduction semantics
True concurrency

Standard “interleaving” semantics
- reduces parallelism to nondeterministic interleaving (“expansion law”)
- Labelled transition systems, reduction semantics

“True concurrent” models
- Represent explicitly causality, conflict, independence
- Petri nets, Mazurkiewicz traces, event structures
Event structures

An event structure is a partial order \(\langle E, \leq \rangle \) together with a conflict relation \(\sim \)

- order represents causal dependency
- conflict is irreflexive and symmetric
- conflict is “hereditary”:

\[
e_1 \sim e \text{ and } e_1 \leq e_2 \text{ implies } e_2 \sim e
\]

A conflict is immediate if it is not inherited from another conflict
A notion of run

A **configuration** is a set x of events

- justified: $e \in x$, $e' \leq e \implies e' \in x$
- conflict-free: $e, e' \in x \implies \neg e \vdash e'$

Example:

$$[e] := \{e' \mid e' \leq e\}$$
Event structures

Example

\[\begin{array}{ccc}
 d & \sim & e \\
 b & \sim & c \\
 a & & \\
\end{array} \]
Event structures

Example

Events can also be labelled: $\lambda : E \rightarrow L$
Event structures

Example

Events can also be labelled: $\lambda : E \rightarrow L$
Operators on event structures

Prefixing $\alpha.\varepsilon$

\begin{align*}
\gamma_1 & \quad \gamma_2 \\
\big| & \quad \big| \\
\beta_1 \sim \cdots \sim & \quad \beta_2
\end{align*}
Operators on event structures

Prefixing $\alpha.\mathcal{E}$
Operators on event structures

Prefix sum $\sum_{i \in I} \alpha_i.\mathcal{E}_i$

\[
\begin{array}{c}
\gamma_1 \\
\beta_1 \\
\gamma_2 \\
\beta_2
\end{array}
\]
Operators on event structures

Prefix sum $\sum_{i \in I} \alpha_i.\mathcal{E}_i$

$\gamma_1 \rightarrow \beta_1 \rightarrow \alpha_1 \sim \alpha_2 \sim \beta_2 \rightarrow \gamma_2$
Operators on event structures

Parallel composition $\mathcal{E}_1 \parallel \mathcal{E}_2$

\[
\begin{array}{c}
\gamma_1 \\
\gamma_2 \\
\beta \\
\bar{\beta}
\end{array}
\]
Operators on event structures

Parallel composition $\mathcal{E}_1 \parallel \mathcal{E}_2$

A complex construction involving synchronisation
Consider

- $E = \langle E, \leq, \prec, \lambda \rangle$, a labelled event structure
- e, one of its minimal events

We define $E \setminus e$ as E minus event e, and minus all events that are in conflict with e

We can then generate a labelled transition system as follows: if $\lambda(e) = \beta$, then

$$E \xrightarrow{\beta} E \setminus e$$
Event structures and transition systems

Example

\[
\begin{array}{c}
\gamma_1 \\
\beta_1 \\
\end{array}
\quad
\begin{array}{c}
\gamma_2 \sim \gamma_3 \\
\beta_2 \\
\end{array}
\]

An event structure \(\mathcal{E} \)
Event structures and transition systems

Example

\[\gamma_1 \quad \gamma_2 \sim \sim \sim \gamma_3 \]
\[\beta_1 \sim \sim \sim \beta_2 \]

Eliminate a minimal event \(e \) (labelled by \(\beta_2 \))
Event structures and transition systems

Example

\[\gamma_1 \quad \gamma_2 \quad \gamma_3 \]

\[\beta_1 \quad \gamma_2 \sim \gamma_3 \]

 Eliminate a minimal event \(e \) (labelled by \(\beta_2 \))
Event structures and transition systems

Example

And every event in conflict with it
Event structures and transition systems

Example

\[\gamma_2 \sim \sim \sim \sim \gamma_3 \]

And every event in conflict with it
Event structures and transition systems

Example

\[\gamma_1 \xrightarrow{\beta_1} \gamma_2 \xrightarrow{\beta_2} \gamma_3 \]

\[\mathcal{E} \xrightarrow{\beta_2} \mathcal{E}|_e \]

\[\gamma_2 \xrightarrow{\sim} \gamma_3 \]
Conflict freeness

When the conflict relation is empty, the corresponding transition system is confluent
Conflict freeness

When the conflict relation is empty, the corresponding transition system is confluent.

Idea: give a conflict free event structure semantics to the linear π-calculus.
Conflict freeness

When the conflict relation is empty, the corresponding transition system is confluent

Idea: give a conflict free event structure semantics to the linear π-calculus

Issues:
- perform synchronisation without introducing conflict
- difficult to handle name generation
- hidden conflicts appear
Example:

- Stateless replicated resource: post office $!a.P$
- Clients: customers $\bar{a}.C$

Every customer wants to send a letter a
The process $\overline{a}.D | \overline{a}.N | !a.P$ is confluent

\[
\text{The post office}
\]

\[
\begin{align*}
D & | P | \overline{a}.N | !a.P \\
N & | P | \overline{a}.D | !a.P \\
N & | P | D | P | !a.P \\
\end{align*}
\]
The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not independent
The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not independent

Situation 2: two customers, infinitely many identical tills
if the two customers want to go to the same till, there is a conflict
The post office

Situation 1: two customers, one till
A conflict to resolve: who goes first?
Eventually, it does not matter, but the two events are not independent

Situation 2: two customers, infinitely many identical tills
if the two customers want to go to the same till, there is a conflict

Situation 3: one customer, infinitely many identical tills
the customer has to choose which till to go to
The post office

Solution: no conflict arises if every possible customer is assigned a specific till *in advance*
Event structure semantics of π

The semantics has the form $[P]^\Delta$, where Δ assigns each client a specific instance of its server.
Event structure semantics of π

The semantics has the form $[P]^\Delta$, where Δ assigns each client a specific instance of its server.

The interpretation functions are partial functions: for the wrong choice of Δ, a post office customer would not find her till.

It is always possible to find suitable Δ: we perform α-conversion “at compile time”.
The semantics has the form $\llbracket P \rrbracket^\Delta$, where Δ assigns each client a specific instance of its server.

The interpretation functions are partial functions: for the wrong choice of Δ, a post office customer would not find her till.

It is always possible to find suitable Δ: we perform α-conversion “at compile time.”

Theorem:
For every process P, there exists a choice Δ such that $\llbracket P \rrbracket^\Delta$ is defined.
Correspondence between transition system and event structure:

Theorem: [Operational correspondence]

If $P \xrightarrow{\beta} P'$, then $\llbracket P \rrbracket_\Delta \xrightarrow{\beta} \simeq \llbracket P' \rrbracket_\Delta'$
Correspondence between transition system and event structure:

Theorem: [Operational correspondence]

If \(P \xrightarrow{\beta} P' \), then \([P]^\Delta \xrightarrow{\beta} \cong [P']^\Delta' \)

If \([P]^\Delta \xrightarrow{\beta} \mathcal{E}' \), then there exists \(P' \) such that \(P \xrightarrow{\beta} P' \) and \([P']^\Delta' \cong \mathcal{E}' \)
Road Map

1. Typed π
 - Syntax

2. Event Structures
 - Conflict Freeness
 - Semantics
 - Correspondence

3. Probabilistic case
 - Syntax
 - Probabilistic event structures
The syntax

\[P ::= \begin{align*} & x \land_{i \in I} \text{in}_i(\tilde{y}_i).P_i \\
| & \overline{x}\text{in}_j(\tilde{y}).P \\
| & !x(\tilde{y}).P \\
| & \overline{x}(\tilde{y}).P \\
| & P \parallel Q \\
| & (\nu x)P \\
| & 0 \end{align*} \]

branching

selection

server

client

parallel

restriction

inaction
The syntax

π processes

\[
P ::= \begin{align*}
x \&\! \sum_{i \in I} \text{in}_i(\tilde{y}_i).P_i & \quad \text{branching} \\
\overline{x} \bigoplus_{i \in I} p_i \text{in}_i(\tilde{y}_i).P_i & \quad \text{selection} \\
!x(\tilde{y}).P & \quad \text{server} \\
\overline{x}(\tilde{y}).P & \quad \text{client} \\
| & \quad \text{parallel} \\
| & P \mid Q \\
| & (\nu x)P \\
| & 0 \quad \text{inaction}
\end{align*}
\]
Typed π-calculus

The same linear type discipline:

(A) for each linear name there are a unique input and a unique output

(B) for each replicated name there is a unique stateless replicated input with zero or more dual outputs

This discipline guarantees probabilistic confluence?
Example

\[P = \overline{a}[in_1.b \oplus_p in_2.c] | a[in_1.d \& in_2.e] \]

This process is typable, and performs a choice:

\[P \rightarrow_p (b \mid \overline{d}) \]

\[P \rightarrow_{1-p} (c \mid \overline{e}) \]
How to add probabilities to event structures?
Idea: resolve the immediate conflict by flipping a coin

Coins resolve local choices
What does \textit{local} mean?
Locality: Example

- take car
- take train
- wife comes home

Non local!
Locality: Example

\begin{itemize}
 \item \textbf{take car} \quad \cdots \quad \textbf{take train}
 \item \textit{wife comes home}
\end{itemize}

Local!
An event structure is **confusion-free** when

- “reflexive” immediate conflict is an equivalence
- any two events in immediate conflict have the same predecessors

The equivalence classes are the **cells**

Cells represent local choices
Examples

Confusion Free
Examples

Confusion!
Examples

Confusion!
Valuations on event structures

A local valuation on E associates to every cell a coin/die. It is a function $p : E \rightarrow [0, 1]$ such that for every cell c:

$$\sum_{e \in c} p(e) = 1$$

The weight $\nu_p(x)$ of a configuration x is the product of the probabilities of the events in x.
Probabilistic runs

An conflict free event structure has only one maximal configurations (only one maximal run up to order)

Theorem: [Varacca-Völzer-Winskel]

For every local valuation p there exists a unique probability measure m_p on the set of maximal configurations such that

$$m_p(\uparrow x) = v_p(x)$$

“A probabilistic event structure has only one maximal run up to order”

probabilistic determinism
Confusion arises from synchronisation
Consider $(\overline{a} \mid a)$
The event structure for this is

\[
\begin{array}{c}
\overline{a} \\
\tau \\
a
\end{array}
\]

Confusion - the choice is not local
Confusion arises from synchronisation
Consider \((\overline{a} \mid a)\)
The event structure for this is

\[
\overline{a} \sim \tau \sim a
\]

Confusion - the choice is not local

Issue: how to perform synchronisation without introducing confusion
Confusion arises from synchronisation

Consider \((\overline{a} \mid a)\)

The event structure for this is

\[
\overline{a} \sim \tau \sim a
\]

Confusion - the choice is not local

Issue: how to perform synchronisation without introducing confusion

Same machinery as for the conflict free case
The semantics of π extends to the probabilistic case.

Only one probability distributions over maximal runs: probabilistic determinism.

Relations with interleaving semantics (Segala automata)
Related Work

- Concurrent games (Melliès, Faggian, Curien)
- Untyped \(\pi \)-calculus (with Silvia Crafa)
- Termination
- Encodings
Dessert
Historical perspective

An unfair and myopic view of the last 40 years
An unfair and myopic view of the last 40 years

Petri ['60]

Petri nets
Historical perspective

An unfair and myopic view of the last 40 years

Petri [’60] Scott and Strachey [’70]

Denotational semantics - Domain theory
Historical perspective

An unfair and myopic view of the last 40 years

Petri ['60] → Scott and Strachey ['70] ↓ Nielsen, Plotkin and Winskel ['80]

Event structures
An unfair and myopic view of the last 40 years

Petri ['60] \rightarrow \righta
An unfair and myopic view of the last 40 years

- Petri ['60]
- Scott and Strachey ['70]
- Park and Milner ['80]
- Nielsen, Plotkin and Winskel ['80]
- Berry and Boudol ['90]

Reduction semantics
An unfair and myopic view of the last 40 years

- Petri ['60]
- Scott and Strachey ['70]
- Park and Milner ['80]
- Nielsen, Plotkin and Winskel ['80]
- Girard ['80]
- Berry and Boudol ['90]

Linear logic
An unfair and myopic view of the last 40 years

Petri ['60] → Scott and Strachey ['70]

Scott and Strachey ['70] ↓

Park and Milner ['80] ↓

Park and Milner ['80] ↓

Nielsen, Plotkin and Winskel ['80] ↓

Berry and Boudol ['90] ↓

Berry and Boudol ['90] ↓

Girard ['80] ↓

Girard ['80] ↓

Blass et al. ['90]

Game semantics
Historical perspective

An unfair and myopic view of the last 40 years

Linearly typed π calculus
Historical perspective

An unfair and myopic view of the last 40 years

- Petri ['60]
- Scott and Strachey ['70]
- Park and Milner ['80]
- Nielsen, Plotkin and Winskel ['80]
- Girard ['80]
- Berry and Boudol ['90]
- Blass et al. ['90]
- Honda, Berger and Yoshida ['00]
- Faggian, Curien, Mellèses ['00]

True concurrent games
Historical perspective

An unfair and myopic view of the last 40 years

Petri ['60]

Scott and Strachey ['70]

Nielsen, Plotkin and Winskel ['80]

Scott and Strachey ['70]

Park and Milner ['80]

Berry and Boudol ['90]

Honda, Berger and Yoshida ['00]

Park and Milner ['80]

Berry and Boudol ['90]

Girard ['80]

Blass et al. ['90]

Event structures for π

Varacca and Yoshida [Now]

Varacca and Yoshida [Now]

Varacca and Yoshida [Now]

Faggian, Curien, Mellès ['00]

Faggian, Curien, Mellès ['00]