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Abstract. We present a new unifying framework for constructing non-interactive
threshold encryption and signature schemes, as well as broadcast encryption
schemes, and in particular, derive several new cryptosystems based on hardness
of factoring, including:

– a threshold signature scheme (in the random oracle model) that supports
ad-hoc groups (i.e., exponential number of identities and the set-up is
independent of the total number of parties) and implements the standard
Rabin signature;

– a threshold encryption scheme that supports ad-hoc groups, where encryp-
tion is the same as that in the Blum-Goldwasser cryptosystem and therefore
more efficient than RSA-based implementations;

– a CCA-secure threshold encryption scheme in the random oracle model;

– a broadcast encryption scheme (more precisely, a revocation cryptosystem)
that supports ad-hoc groups, whose complexity is comparable to that of the
Naor-Pinkas scheme; moreover, we provide a variant of the construction that
is CCA-secure in the random oracle model.

Our framework rests on a new notion of threshold extractable hash proofs. The
latter can be viewed as a generalization of the extractable hash proofs, which are
a special kind of non-interactive zero-knowledge proof of knowledge.

1 Introduction

As the old saying goes, “Do not put all your eggs in one basket”. Indeed, this
is the basic principle underlying threshold cryptography, which distributes some
cryptographic functionality amongst many users in such a way that: (1) any t + 1
parties can collectively compute the functionality; and (2) no colluding subset of t
parties can compromise the security of the functionality. The two canonical applications
of threshold cryptography are in public-key encryption and signature schemes, where
the functionalities in consideration correspond to decryption and signing respectively.
The approach was initiated in [19, 20, 21], and there is now a large body of work on
threshold signature schemes [18, 27, 40, 26, 28, 29, 8, 34, 30] and threshold encryption
schemes [41, 11, 24, 34, 9, 10].
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If we are willing to settle solely for pairings-based schemes, then the main questions
of practical threshold encryption and signature schemes are essentially solved. The
threshold signature schemes of Boneh, Lynn, Shacham [8] and threshold encryption
schemes of Boyen, Mei and Waters [10, 9] are non-interactive (each party locally
computes a signature/decryption share without any interaction with the other parties),
guarantees robustness against corrupted parties (given a verification key, each party can
check that the signature/decryption shares are well-formed) and are well-suited for use
in ad-hoc groups such as MANETs (“mobile ad-hoc networks”, which arise in many
wireless and military settings). The latter requirement, articulated in the recent work of
Gennaro et al. [30], means that the cryptographic protocol supports an identity space of
exponential size and does not have any dependency on the total number of parties.

Given that the underlying principle of threshold cryptography is to avoid any single
point of failure, it would be quite ironic of course to base all of threshold cryptography
on pairings and discrete-log assumptions. A natural class of alternative assumptions
would be that related to factoring, where many problems remain open. Here, virtually
all threshold signature schemes are based on the RSA assumption; the only exception
is the factoring-based scheme of Katz and Yung [34], which does not support ad-hoc
groups. We also do not know of any threshold encryption schemes based on hardness of
factoring which supports ad-hoc groups. More notably, we do not know of any practical
CCA-secure threshold encryption scheme based on hardness of factoring, even in the
random oracle model; this was posed as an open problem in [41]. Similarly, very little is
known about factoring-based revocation cryptosystems, a primitive seemingly unrelated
to threshold cryptosystems. These are a special kind of broadcast encryption schemes
[23] where a sender broadcasts encrypted messages created in such a way that all but a
small subset of recipients (the “revoked” users) can decrypt the message.

This work. We present a new unifying framework for constructing non-interactive
threshold encryption and signature schemes, as well as revocation schemes, and in
particular, derive several new cryptosystems based on hardness of factoring, including:

– a threshold signature scheme (in the random oracle model) that supports ad-hoc
groups and implements the standard Rabin signature (namely, the end-result of
running the protocol is a Rabin signature and anyone can verify that signature as if
it were generated by a standard centralized signer);

– a threshold encryption scheme (in the standard model) that supports ad-hoc groups,
where encryption is the same as that in the Blum-Goldwasser cryptosystem [5] and
therefore more efficient than RSA-based implementations;

– a CCA-secure threshold encryption scheme (in the random oracle model), whose
computation and communication complexity is roughly that of Shoup’s threshold
signature scheme [40] plus that of the Hofheinz-Kiltz CCA-secure encryption
scheme [32].

– a revocation cryptosystem (in the standard model) that also supports ad-hoc groups,
whose complexity is comparable to that of the Naor-Pinkas scheme [36]; moreover,
we provide a variant of the construction that is CCA-secure in the random oracle
model.



reference assumption security ad-hoc
[18, 28] RSA CPA ×
[25, 24] DCR CPA, CCA (RO) ×
[34, 24] QR CPA, CCA (RO) ×
[34] factoring CPA ×
this work factoring CPA X
this work factoring CCA (RO) ×

Fig. 1. Summary of threshold PKEs from assumptions related to factoring

We refer to Figure 1 for a comparison with previous factoring-based threshold
cryptosystems. We also note here that our framework also captures many of the afore-
mentioned threshold and revocation cryptosystems based on pairings and discrete-log
assumptions [8, 10, 36] (see Figure 2).

2 Overview of our constructions

We proceed to provide an overview of our framework and the constructions.

Threshold extractable hash proofs. We introduce the notion of a threshold ex-
tractable hash proof system, which generalizes our recent work [42]. Informally, these
hash proof systems are like the Cramer-Shoup universal hash proofs [15] in that they
are a special kind of non-interactive zero-knowledge proofs [6], except we replace the
soundness requirement (corresponding to smoothness) with a “proof of knowledge
property” [38, 17]. Specifically, the proofs are specified by a family of functions
HHK(·, ·) indexed by a public key HK and takes two inputs, a tag and an instance u.
We will require that HHK(·, ·) be efficiently computable either given the coin tosses
used to sample the instance u, or a secret key for the corresponding tag. In addition, the
family of functions is parametrized by a “threshold” value 1t which plays the following
role:

– (t+1)-EXTRACTABILITY: given any t+1 proofs for the same instance u on t+1
different tags, we may efficiently “extract” a witness s for the instance (this is
mostly meaningful when computing the witness given only u is hard-on-average);

– t-SIMULATABILITY: on the other hand, any t proofs reveal no “useful” information
about the witness, that is, there exists a simulator that can efficiently generate proofs
for t different tags for an instance u without knowing the witness. The formal
requirement is stronger, namely that the simulator can generate a random HK along
with the secret keys for any t different tags.

We point out here that the case t = 1 corresponds to the “all-but-one” extractable hash
proofs in [42]; that is, threshold extractable hash proofs may be regarded as a “all-but-t”
analogue of extractable hash proofs.



From hash proofs to cryptosystems. With this informal overview of threshold
extractable hash proofs, we can now outline how we derive threshold and revocation
cryptosystems (see Figure 3 for the parameters). We note here that we are working in
the model with a trusted dealer that generates HK and issues each party with identity ID

with the secret key corresponding to the tag ID. This is well-suited for dynamic ad-hoc
networks where any user can join the network at any time and register with the trusted
dealer to obtain a secret key; however, in this work, we only address the setting where
the threshold t is fixed once and for all.

– THRESHOLD ENCRYPTION: To encrypt a bit, we generate a random instance-
witness pair (u, s), mask the bit using the hard-core bit of s, and publish u along
with the masked bit. The decryption share from a party ID is simply a proof
HHK(ID, u). The functionality requirement follows from (t + 1)-extractability –
anyone can decrypt upon receiving the shares from any t + 1 parties; moreover,
t-simulatability prevents any t colluding parties from decrypting the message.

– THRESHOLD SIGNATURES: The signature for a message M is a witness s for the
instance H(M) where H(·) is a hash function modeled as a random oracle (a “full
domain hash”). The signature share from a user ID is again a proofHHK(ID,H(M));
functionality and security is exactly analogous to that for threshold encryption.

– REVOCATION CRYPTOSYSTEM: Here, we want to encrypt messages in such a
way that any party outside a revoked set of t users ID1, . . . , IDt can decrypt. (To
revoke fewer than t users, we may simply add “dummy” identities.) Again, to
encrypt a bit, we generate a random instance-witness pair (u, s), mask the bit
using the hard-core bit of s, and publish u along with the masked bit and t proofs
HHK(ID1, u), . . . ,HHK(IDt, u). Any party ID outside the revoked set can compute a
t+ 1’th proof using the secret key for the tag ID and then derive s to decrypt.

We also show how to realize robustness for signatures following [28], and CCA
security for threshold encryption and revocation schemes (with instantiations in the
random oracle model). Our techniques for achieving CCA security follow the “all-but-
one extractable hash proof” paradigm in [42, 12, 32], whereas most of the previous
constructions [11, 22, 24] rely on the Cramer-Shoup [14, 15] or the Naor-Yung
paradigm [37] which seem to be inherently limited to decisional assumptions.

Realizing threshold extractable hash proofs. We begin with an informal description
of our approach for constructing threshold extractable hash proofs. The approach
generalizes the direct constructions of all-but-one extractable hash proofs in [42] and
provide a different perspective into those constructions. The basic idea is to exploit
Shamir secret sharing in the exponent. More precisely, we sample a random degree t
polynomial f subject to the constraint f(0) is a special trapdoor such that s = uf(0).
The master secret key is given by f and the public key HK is some “commitment”
to the coefficients of f . The secret key corresponding to TAG is given by f(TAG)
and HHK(TAG, u) := uf(TAG). Computing HHK(TAG, u) given the coin tosses for
generating u corresponds to evaluating f in the exponent. Given the hash proofs for u



primitive CDH/DDH BDDH factoring
threshold PKE folklore folkore new
threshold signatures [27] (RO) [8] new (RO)
broadcast PKE [36] [36] new
CCA threshold PKE [41, 24] (RO) [10, 9] new (RO)
CCA broadcast PKE [22] new new (RO)

Fig. 2. Summary of previous and present constructions from CDH/DDH, BDDH and
hardness of factoring. For most primitives and assumptions, our constructions match
and improve upon existing constructions. We underline the references for the two
settings where existing work achieve better parameters than our work. We note that
the [22] scheme only achieves a relaxed notion of CCA security.

primitive public key secret key ciphertext/signaturedecryption/signing share
threshold PKE O(1) O(1) O(1) O(1)

threshold signatures O(1) O(1) O(1) O(1)

broadcast PKE O(t) O(1) O(t) O(1)

CCA threshold PKE O(1) O(1) O(1) O(1)

CCA broadcast PKE O(t) O(1) O(t) O(1)

Fig. 3. Complexity of our BDDH and factoring-based schemes, as measured by number
of group elements. For broadcast PKE, t denotes the revocation threshold. Here, secret
key refers to the user/server’s secret key; the dealer’s secret key has size O(t).

corresponding to t+1 distinct tags, we may recover uf(0) via Lagrangian interpolation
in the exponent. This is easy for discrete-log type settings since we know the order of the
group. Generating simulated proofs or secret keys for any t distinct tags is easy since
the evaluation of f at any t locations look random; the main technical complication
comes in having to simulate a consistent HK (though that is again easy for discrete-log
type settings).

The factoring-based construction is based on Rabin’s trapdoor permutation. We
begin with the simple observation that we may compute a square root of u by
exponentiation to the secret value (ϕ(N) + 1)/2 = 2−1 (mod ϕ(N)). Here, we use
secret sharing over the ring Zϕ(N), whereas the previous factoring-based scheme in
[34] applies secret sharing to the factorization of the modulus N . In order to perform
Lagrangian interpolation over the ring Zϕ(N) of unknown order, we build on ideas
developed in the context of RSA-based schemes [40, 30] and the factoring-based
cryptosystem in [32]. Informally, we set f(0) to be 2−(t+1)⌈logN⌉ (mod ϕ(N)). Given
the hash proofs uf(TAG) corresponding to t + 1 distinct tags, we may recover uDf(0),
whereD denotes an integer used to “clear the denominator” in the fractional Lagrangian
coefficients and it depends on the tags used in the t + 1 proofs. In order to support an
identity space of exponential size, we bound the highest power of 2 that divides D by



2−t⌈logN⌉, following [30]. Given both u and uDf(0), we may then recover s = u1/2

using Shamir’s algorithm for “GCD in the exponent” [39].
In our constructions, we “commit” to the coefficients of f instead of the evaluations

of f in HK, evaluating uf(TAG) given the coin tosses used to sample u does not
require interpolation; this appears to be the first time this property is exploited for
RSA/factoring-based schemes and is important for handling ad-hoc networks in our
revocation scheme.

Towards lattice-based instantiations. Looking forward, we plan to look into lattice-
based instantiations of threshold extractable hash proofs, extending the ideas and
results in [2, 3]. One possible starting point is the following construction: HK :=
(A0, . . . ,At) ←R Zm×n

q where m = poly(n) and f(TAG) := A0 +A1TAG + · · · +
AtTAGt for TAG ∈ Zn ⊂ Zq . The instance u is a perturbed lattice point A · s+η where
s ∈ Zn

q andHHK(TAG, u) is of the form f(TAG)s+η. Due to the interaction between the
Lagrangian coefficients and the noise vectors, we will need to work with field sizes and
approximation factors much larger than nt (c.f. [3]). However, under sub-exponential
hardness assumptions for lattice problems, we could still potentially get meaningful
results for parameters such as t =

√
n, say.

3 Preliminaries and Definitions

A key encapsulation mechanism (KEM) (Gen,Enc,Dec) with key-space {0, 1}k
consists three polynomial-time algorithms.Via (PK, SK) ← Gen(1k) the randomized
key-generation algorithm produces public/secret keys for security parameter 1k; via
(C,K) ← Enc(PK), the randomized encapsulation algorithm creates a uniformly
distributed symmetric key K ∈ {0, 1}k, together with a ciphertext C; via K ←
Dec(SK, C), the possessor of secret key SK decrypts ciphertext C to get back a key
K which is an element in {0, 1}k or a special reject symbol ⊥. For consistency, we
require that for all k and all (C,K)← Enc(PK), we have Pr[Dec(SK, C) = K] = 1.

3.1 Binary Relations for Search Problems

Fix a family of (binary) relations RPP indexed by a public parameter PP. We require that
PP be efficiently samplable given a security parameter 1k, and assume that all algorithms
are given PP as part of its input. We omit PP henceforth whenever the context is clear.
We will also require that RPP be efficiently samplable, where the sampling algorithm is
denoted by SampR. Intuitively, the relation RPP corresponds to a hard search problem,
that is, given a random u, it is hard to find s such (u, s) ∈ RPP. More formally, we say
that a binary relation RPP is one-way if:

– with overwhelming probability over PP, for all u, there exists at most one s such
that (u, s) ∈ RPP; and

– there is an efficiently computable generator G such that GPP(s) is pseudorandom
even against an adversary that gets PP, u, where (u, s) ←R SampR(PP). (We will



also refer to G as extracting hard-core bits from s.) That is, the following quantity
is negligible for all PPT A:

AdvPRGA(k) := Pr

b = b′ :

(u, s)← SampR(PP);

K0 ← G(s);K1 ←R {0, 1}k; b←R {0, 1};
b′ ← A(PP, u,Kb)


For relations where computing s given u is hard on average, we may derive a generator
GPP with a one-bit output via the Goldreich-Levin hard-core bit GL(·) [31] (with the
randomness in PP). In many cases as we shall see shortly, we may derive a linear number
of hard-core bits by either iterating a one-way permutation or relying on decisional
assumptions.

3.2 Threshold Extractable Hash Proofs.

We consider a family of hash functions HHK(·, ·) indexed by a public key HK, that
takes as input a tag and an instance. More formally, an threshold extractable hash
proof system is a tuple of algorithms (Setup,Pub,Ext,Priv) satisfying the following
properties with overwhelming probability over (PP, SP):

(KEY GENERATION.) The set-up algorithm Setup(PP, SP, 1t) generates public keys HK

and a master secret key MSK. Given a tag TAG, the share generation algorithm
computes an associated key ShareGen(MSK, TAG) = SKTAG.

(PUBLIC EVALUATION.) For all HK, TAG and (u, s) = SampR(r): Pub(HK, TAG, r) =
HHK(TAG, u).

(PRIVATE EVALUATION.) For all HK, TAG and u: Priv(SKTAG, u) = HHK(TAG, u)

((t+ 1)-EXTRACTION.) For all HK, u and all t+ 1 distinct tags TAG1, . . . , TAGt+1:

(u,Ext(u,HHK(TAG1, u), . . . ,HHK(TAGt+1, u))) ∈ RPP

We note here that Ext also receives as input the tags TAG1, . . . , TAGt+1 (omitted
for notational simplicity) but does not require as input HK.

(t-SIMULATION.) For all (PP, SP), 1t and all TAG1, . . . , TAGt, the distribution of
(HK, SKTAG1

, . . . , SKTAGt
) in the following experiments are statistically indistin-

guishable:

– the first is that obtained via key generation: (HK,MSK) ←R Setup(PP, SP, 1t)
and SKTAGi := ShareGen(MSK, TAGi) for i = 1, . . . , t;

– the second is that given by SetupSim(PP, TAG1, . . . , TAGt)

Finally, we say that a threshold extractable hash proof system is publicly verifiable if
there is an efficient algorithm Ver that on input (HK, TAG, u, τ) outputs true iff τ =
HHK(TAG, u).



4 Threshold Encryption Schemes

We define a threshold KEM (from which we can readily build a threshold encryption
scheme):

(SHARING PHASE.) The set-up algorithm Setup(PP, SP, 1t) generates a public key PK

and a master secret key MSK. Given an identity ID, the share generation algorithm
computes an associated key ShareGen(MSK, ID) = SKID.

(ENCRYPTION.) The encapsulation algorithm Enc(PK) generates (C,K), namely a
random key K along with a ciphertext C.

(DECRYPTION.) The share decryption algorithm ShareDec(ID, C) takes an identity
ID and computes the decryption share for that identity using its secret key SKID.
Moreover, there’s a combining algorithm that takes any t+1 decryption shares and
outputs K.

Semantic Security. We define the advantage AdvThEncA(k) to be:

Pr

b = b′ :

(ID∗
1, . . . , ID∗

t )← A1(1
k);

(PK,MSK)← Gen(1k, 1t);

SKID∗
i
← ShareGen(MSK, ID∗

i ), i = 1, . . . , t;

(C,K0)← Enc(PK);K1 ←R {0, 1}k; b←R {0, 1};
b′ ← AShareDec(·,Enc(PK))

2 (PK, SKID∗
1
, . . . , SKID∗

t
,Kb, C)


Here, ShareDec(·,Enc(PK)) denotes an oracle that given an input ID, computes a
fresh ciphertext C using Enc(PK) and returns ShareDec(ID, C) along with C. This
captures the fact that the adversary may obtain decryption shares of fresh encryptions
of known messages, and captures the security notion used in [16] with applications to
secure voting. In the CCA setting, we provide A2 with oracle access to ShareDec(·, ·),
with the restriction that A2 is only allowed to query ShareDec(·, ·) on ciphertexts
different from the challenge ciphertext C. A threshold encryption scheme is said to be
indistinguishable against chosen plaintext attacks (IND-CPA) if for all PPT adversaries
A, the advantage AdvThEncA(k) is a negligible function in k.

Decryption Consistency. We consider a notion of decryption consistency that for all
ciphertexts C, there exists a unique value K such that for all (possibly malformed)
t+ 1 decryption shares, the combining algorithm returns a value in {K,⊥}.

Theorem 1. If RPP is a one-way relation admitting a threshold extractable hash proof,
then the threshold KEM shown in Figure 4 is IND-CPA secure.

Proof. Given a PPT A = (A1,A2) that breaks the threshold encryption scheme, we
construct a B that breaks the pseudorandomness of G as follows: on input (PP, u,K):

– Run (ID∗
1, . . . , ID∗

t )← A1(1
k)



Threshold PKE

(SHARING PHASE.) On input the security parameter 1k and a threshold t, the
dealer generates (PP, SP), runs Setup(PP, SP, 1t) → (HK,MSK) and sets PK to
be PP. A user with identity ID is given the share SKID := ShareGen(MSK, ID).

(ENCRYPTION.) Enc(PK): sample (u, s) := SampR(r), and return (C,K) :=
(u,G(s)).

(DECRYPTION.) On input a ciphertext u, a user ID computes the decryption share
σID := Priv(SKID, u). Given t + 1 decryption shares σID1 , . . . , σIDt+1 , the
combining algorithm computes s := Ext(u, σID1

, . . . , σIDt+1
) and returns G(s).

Fig. 4. Threshold encryption scheme from threshold hash proofs

– Run SetupSim(PP, ID∗
1, . . . , ID∗

t ) to get (HK, SKID∗
1
, . . . , SKID∗

t
)

– OutputA2((PP, PK), SKID∗
1
, . . . , SKID∗

t
,K, u), simulating ShareDec(·,Enc(PK)) us-

ing Pub.

It is easy to see that AdvPRGB(k) ≈ AdvThEncA(k). ⊓⊔

5 Threshold Signature Schemes

A threshold signature scheme proceeds in two phases:

(SHARING PHASE.) The set-up algorithm Setup(PP, SP, 1t) generates a verification VK

and a master secret key MSK. Given an identity ID, the share generation algorithm
computes an associated key SKID.

(SIGNATURE COMPUTATION PHASE.) The signature computation ShareSign(·, ·) al-
gorithm takes an identity ID and a message and computes the signature share for
that identity using its secret key SKID. Moreover, there’s a combining algorithm that
takes any t+ 1 signature shares and outputs the actual signature σ.

Unforgeability. We define the advantage AdvThSignA(k) to be:

Pr

Ver(PK, VK,M∗, σ∗) = 1 :

(ID∗
1, . . . , ID∗

t )← A1(1
k);

(VK,MSK)← Gen(1k, 1t);

SKID∗
i
← ShareGen(MSK, ID∗

i ), i = 1, . . . , t;

(M∗, σ∗)← AShareSign(·,·)
2 (VK, SKID∗

1
, . . . , SKID∗

t
)


with the restriction that A2 never made a query to ShareSign(·, ·) on the message M∗.
A threshold signature scheme is said to be existentially unforgeable if for all PPT
adversaries A, the advantage AdvThSignA(k) is a negligible function in k.



Construction. We assume that RPP is efficiently verifiable and that there is a hash
function H that maps the message space into instances of RPP. The signature on a
message M is a witness s such that (H(M), s) ∈ RPP.

Threshold Signature Scheme

(SHARING PHASE.) On input the security parameter 1k and a threshold t, the
dealer generates (PP, SP), runs Setup(PP, SP, 1t)→ (HK,MSK) and sets VK to
be PP. A user with identity ID is given the share SKID := ShareGen(MSK, ID).

(SHARING PHASE.) On input the security parameter 1k and a threshold t, the
dealer generates (PP, SP), runs Setup(PP, SP, 1t)→ (HK,MSK) and sets VK to
be PP. A user with identity ID is given the share SKID := ShareGen(MSK, ID).

(SIGNATURE COMPUTATION PHASE.) On input a message M , the user ID
computes u := H(M) and publishes the signature fragment σID :=
Priv(SKID, u). Given t+ 1 signatures fragments σID1 , . . . , σIDt+1 , the signature
is given by Ext(u, σID1 , . . . , σIDt+1).

(SIGNATURE VERIFICATION.) On input a key VK, a message M and a signature
σ, the verification accepts iff (H(M), σ) ∈ RVK.

Fig. 5. Threshold signatures from threshold hash proofs

Theorem 2. If RPP is a one-way relation admitting a threshold extractable hash proof,
then the threshold signature shown in Figure 5 is existentially unforgeable in the
random oracle model. Moreover, if the hash proof is publicly verifiable, then the
signature scheme is robust.

Proof. Given a PPT A = (A1,A2) that breaks the threshold signature scheme, we
construct a B that breaks the one-wayness of R as follows: on input (PP, u):

– Run (ID∗
1, . . . , ID∗

t )← A1(1
k)

– Run SetupSim(PP, ID∗
1, . . . , ID∗

t ) to get (HK, SKID∗
1
, . . . , SKID∗

t
)

– Output A2(VK, SKID∗
1
, . . . , SKID∗

t
)

Suppose A2 requests for signatures on M1, . . . ,Mq and outputs a forgery on M∗. For
each i, we sample SampR(ri) := (ui, si) and map H(Mi) to ui for which we can
compute any signature fragment using Pub. Finally, we map H(M∗) to u and thus a
valid signature on M∗ is a valid witness for u. It is easy to see that AdvPRGB(k) ≈
AdvThSigA(k)−q2/2k (where q2/2k is an upper bound on the probability of a collision
in the output of the random oracle). ⊓⊔



6 Revocation Schemes

We define a revocation KEM:

(SHARING PHASE.) The set-up algorithm Setup(PP, SP, 1t) generates public keys HK

and a master secret key MSK. Given an identity ID, the share generation algorithm
computes an associated key ShareGen(MSK, ID) = SKID.

(ENCRYPTION.) The encapsulation algorithm Enc takes PK and a set of t revoked users
ID1, . . . , IDt generates (C,K), namely a random key K along with a ciphertext C.

(DECRYPTION.) The decapsulation algorithm Dec takes SKID for any ID ̸= ID1, . . . , IDt

and outputs K.

Semantic Security. We define the advantage AdvBrEncA(k) to be:

Pr

b = b′ :

S = (ID∗
1, . . . , ID∗

t )← A1(1
k);

(PK,MSK)← Gen(1k, 1t);

SKID∗
i
← ShareGen(MSK, ID∗

i ), i = 1, . . . , t;

(C,K0)← Enc(PK, S);K1 ←R {0, 1}k; b←R {0, 1};
b′ ← A2(PK, SKID∗

1
, . . . , SKID∗

t
,Kb, C)


In the CCA setting, we provide A2 with oracle access to Dec(·, ·), with the restriction
that A2 is only allowed to query Dec(·, ·) on ciphertexts different from the challenge
ciphertext. A revocation scheme is said to be indistinguishable against chosen plaintext
attacks (IND-CPA) if for all PPT adversaries A, the advantage AdvBrEncA(k) is a
negligible function in k.

Theorem 3. If RPP is a one-way relation admitting a threshold extractable hash proof,
then the broadcast KEM shown in Figure 6 is IND-CPA secure.

Proof. Given a PPT A = (A1,A2) that breaks the broadcast KEM, we construct a B
that breaks the pseudorandomness of G as follows: on input (PP, u,K):

– Run (ID∗
1, . . . , ID∗

t )← A1(1
k)

– Run SetupSim(PP, ID∗
1, . . . , ID∗

t ) to get (HK, SKID∗
1
, . . . , SKID∗

t
)

– Set C := (u,Priv(SKID∗
1
, u), . . . ,Priv(SKID∗

t
, u)).

– Output A2((PP, PK), SKID∗
1
, . . . , SKID∗

t
,K,C).

It is easy to see that AdvPRGB(k) ≈ AdvBrEncA(k). ⊓⊔

7 Instantiations for the Diffie-Hellman Relation

We consider a family of groups G of prime order q that admits a bilinear map. The
secret parameter is a random α←R Zq and the public parameter PP is given by (g, gα)



Revocation PKE

(SHARING PHASE.) On input the security parameter 1k and a revocation threshold
t, the dealer generates (PP, SP), runs Setup(PP, SP, 1t) → (HK,MSK) and sets
the public key PK to be (PP, HK). A user with identity ID is given the key
SKID := ShareGen(MSK, ID).

(ENCRYPTION.) In order to revoke users ID1, . . . , IDt, Enc(PK): sample (u, s) :=
SampR(r), compute τi := Pub(HK, IDi, u, r) for i = 1, . . . , t and return
(C,K) := ((u, τ1, . . . , τt),G(s)).

(DECRYPTION.) Any user ID not in the revoked set {ID1, . . . , IDt} may
decrypt a ciphertext C := (u, τ1, . . . , τt) as follows: compute s :=
Ext(u, τ1, . . . , τt,Priv(SKID, u)) and output G(s).

Fig. 6. Revocation scheme from threshold hash proofs

for a random g ←R G and a random α←R Zq . We consider the Diffie-Hellman relation

Rdh
PP =

{
(u, s) ∈ G×G : s = uα

}
Note that Rdh

PP is efficiently verifiable by computing a pairing. The associated sampling
algorithm SampR picks a r ←R Zq and outputs (gr, gαr).

Hard-core bits. Next, we explain how to obtain hard-core bits for Rdh
PP under various

assumptions.

– The CDH assumption [1] asserts that computing gab given (g, ga, gb) is hard on
average; here, we may extract a single hard-core bit from s using GL(s).

– The Bilinear DDH (BDDH) assumption [7] asserts that e(g, g)abc is pseudorandom
given g, ga, gb, gc where g, ga, gb, gc are random elements of a bilinear group.
Under BDDH, we may extract a linear number of hard-core bits from s using:

Gbddh
PP (s) := e(s, gγ)

(
⇒ Gbddh

PP (gαr) = e(g, g)αγr
)

where PP is now given by (g, gα, gγ). In addition, we may improve efficiency by
pre-computing the pairing and setting PP to be (g, gα, e(g, gγ)) and computing
Gbddh

PP (gr) := e(g, gγ)r. This construction extends naturally to the Gap Hashed
DH assumption [35].

Threshold hash proof system. Fix the parameters (PP, SP) = ((g, gα), α); this also
fixes a group G of prime order q. The tag space is given by Fq \ {0}.



(KEY GENERATION.) Pick a1, . . . , at ←R Zq and set f(x) := α+ a1x+ · · · at.

– Setup(PP, SP, 1t) returns HK := (ga1 , . . . , gat) and MSK := f(x)

– ShareGen(MSK, TAG) returns SKTAG := f(TAG) ∈ Zq .

(PUBLIC/PRIVATE EVALUATION.) HHK(TAG, u) is given by uf(TAG) = (gf(TAG))r

where u := gr

– Pub(HK, u, r) returns
(
gα ·

∏t
i=1(g

ai)TAGi)r.

– Priv(SKTAG, u) returns uSKTAG .

((t+ 1)-EXTRACTION.) Given u, TAG1, . . . , TAGt+1, we have (u, uf(0)) ∈ RPP. In
addition, we may write f(0) =

∑t+1
i=1 Li · f(TAGi) where Li ∈ Fq are the La-

grangian coefficients which may be efficiently computed given TAG1, . . . , TAGt+1.
This means uf(0) =

∏t+1
i=1 u

Li·f(TAGi).

– Ext(u, τ1, . . . , τt+1) returns
∏t+1

i=1 τ
Li
i .

(t-SIMULATION.) Pick γ1, . . . , γt ←R Zq . This uniquely determines a degree t
polynomial f(x) = α+ a1x+ · · ·+ atx

t such that f(TAGi) = γi for i = 1, . . . , t.
Moreover, a1, . . . , at are given by the solution to the following linear system:

1 0 · · · 0

1 TAG1 · · · TAGt
1

...
...

...
1 TAGt · · · TAGt

t



α

a1
...
at

 =


α

γ1
...
γt


In particular, each of a1, . . . , at may be written as a linear combination of
α, γ1, . . . , γt (where the coefficients are efficiently computable given TAG1, . . . , TAGt)
and therefore each of ga1 , . . . , gat may be written as a product of gα, gγ1 , . . . , gγt

raised to the appropriate powers.

– SetupSim(PP, 1t) returns HK := (ga1 , . . . , gat) as computed above and
(SKTAG1 , . . . , SKTAGt) := (γ1, . . . , γt)

Remark 1. Instead of setting HK := (ga1 , . . . , gat), we may also set HK := (gf(1), . . . , gf(t)).
Public evaluation and t-simulation then proceed via Lagrange interpolation in the
exponent.

Public verifiability. Given (HK, u, TAG, τ), checking that τ = HHK(TAG, u) corre-
sponds exactly to verifying that (g, gf(TAG), u, τ) is a valid DDH tuple. Given HK

and TAG, we may compute gf(TAG) using
(
gα ·

∏t
i=1(g

ai)TAGi)
. This implies public

verifiability in bilinear groups.
For general groups that do not admit a bilinear pairing, we may realize public veri-

fiability in the random oracle model following [41, Section 4.3] (also [28]). That is, we
append toHHK(TAG, u) non-interactive zero-knowledge proof that (g, gf(TAG), u, uf(TAG))



is a valid DDH tuple. Such a proof is derived by applying the Fiat-Shamir heuristic
to Chaum-Pedersen Σ-protocol for the langugage comprising valid DDH tuples [13];
soundness of the verification algorithm follows immediately from soundness of the Σ-
protocol. Handling public and private evaluation requires more care, and we proceed
differently depending on the application:

– In the application to threshold cryptosystems, we instantiate the Chaum-Pedersen
protocol so that there is an efficient prover given f(TAG) as a witness. This
guarantees efficient private evaluation. For public evaluation, we rely on the zero-
knowledge simulator, which in turn requires programming the random oracle. This
is not an issue since we only rely on public evaluation in the proof of security.

– In the application to revocation cryptosystems, we instantiate the Chaum-Pedersen
protocol so that there is an efficient prover given r such that u = gr as a witness.
This guarantees efficient public evaluation. For private evaluation, we rely on the
zero-knowledge simulator, which again requires programming the random oracle.
This is not an issue since in the decryption algorithm, Ext ignores non-interactive
zero-knowledge proof.

8 Instantiations from Hardness of Factoring

Fix a Blum integer N = PQ for safe primes P,Q ≡ 3 (mod 4) (such that P = 2p+1
and Q = 2q + 1 for primes p, q). Following [33], we work over the cyclic group of
signed quadratic residues, given by the quotient group QR+

N := QRN/ ± 1. QR+
N is

a cyclic group of order pq and is efficiently recognizable (by verifying that the Jacobi
symbol is +1). In addition, the map x 7→ x2 is a permutation over QR+

N . Furthermore,
assuming that factoring is hard on average and that safe primes are dense, the family of
permutations x 7→ x2 (indexed by N ) acting on the groups QR+

N is one-way.
In our constructions, the public parameter PP comprises (N, g), where N is a

random 2k-bit Blum integer and g is chosen uniformly from QR+
N . We will henceforth

assume that g is a generator for QR+
N , which happens with probability 1−O(1/

√
N).

For signatures, we consider the relation

Rsqr
PP =

{
(u, s) ∈ QR+

N ×QR+
N : u = s2

}
For encryption, we consider the relation:

Risqr
PP =

{
(u, s) ∈ QR+

N ×QR+
N : u = s2

k
}

Here, we focus on the latter relation. The associated sampling algorithm SampR picks
a random r ∈ [(N − 1)/4] and outputs (g2

kr, gr). Note that the output distribution
is statistically close to the uniform distribution over QR+

N whenever g is a generator.
Using the Blum-Blum-Shub (BBS) pseudorandom generator [4], we may extract k
hard-core bits from s that are pseudorandom even given u, that is:

Gbbs
PP (s) := (lsbN (s), lsbN (s2), . . . , lsbN (s2

k−1

))



Basic idea. The next claim shows that we can do Shamir secret sharing over a
composite modulus:

Claim (implicit in [40]). Fix two primes p < q. For any t < p and any t +
1 distinct values v1, . . . , vt+1 in {1, 2, . . . , p}, the map ψ : (a0, a1, . . . , at) 7→
(f(v1), f(v2), . . . , f(vt+1)) where f(x) := a0 + a1x + · · · + atx

t defines a bijection
from Zt+1

pq to Zt+1
pq .

Proof (sketch). That ψ is injective follows from the fact that any polynomial of degree
t over Zpq that vanishes at the t + 1 distinct values v1, . . . , vt+1 must be identically 0
modulo p and modulo q and thus identically 0 modulo pq (by the Chinese remainder
theorem). That ψ is surjective follows via Lagrange polynomial interpolation (since the
pairwise differences vi − vj are all coprime with pq). ⊓⊔

Threshold hash proof system. Fix the parameters (PP, SP) = (N,ϕ(N)). The tag
space is given by Z√

N/4. Note that
√
N/4 ≤ min{p, q} so every valid tag is coprime

with ϕ(N)/4. SampR takes an additional g ∈ QR+
N which is provided as part of HK,

and SampR(r) := (u, s) where s = g2
tkr, u = s2

k

= g2
(t+1)kr.

(KEY GENERATION.) Pick a1, . . . , at ←R Zϕ(N)/4 and set f(x) := 2−(t+1)k + a1x+

· · · atxt. In addition, pick g ←R QR+
N .

– Setup(PP, SP, 1t) returns HK := (g, g2
(t+1)ka1 , . . . , g2

(t+1)kat) and MSK :=
(f(x), ϕ(N)).

– ShareGen(MSK, TAG) returns SKTAG := f(TAG) (mod ϕ(N)/4).

(PUBLIC/PRIVATE EVALUATION.) HHK(TAG, u) is given by uf(TAG) = (g2
(t+1)kf(TAG))r

where u := g2
(t+1)kr

– Pub(HK, u, r) returns
(
g ·

∏t
i=1(g

2(t+1)kai)TAGi)r
.

– Priv(SKTAG, u) returns uSKTAG .

((t+ 1)-EXTRACTION.) Given TAG1, . . . , TAGt+1, we may efficiently compute the
fractional Lagrangian coefficients L1, . . . , Lt+1 such that f(0) =

∑t+1
i=1 Li ·

f(TAGi) (mod ϕ(N)/4). In addition, we may compute

D := lcm
{∏

j ̸=i
(TAGi − TAGj) : i ∈ [t+ 1]

}
.

We make the following observations: (1) DL1, . . . , DLt+1 are all integers, so we
may compute uD·f(0) =

∏t+1
i=1 τ

DLi
i ; (2) let 2c be the highest power of 2 that

divides D, and we have c ≤ kt (since |TAGi − TAGj | ≤ 2k); and (3) given u = s2
k

and u2
kt−cD·f(0) = s2

−cD, we may efficiently recover s using Shamir’s “GCD in
the exponent” algorithm [39], since gcd(2k, 2−cD) = 1.

– Ext(u, τ1, . . . , τt+1) returns s as computed above.



(t-SIMULATION.) Pick γ1, . . . , γt ←R ZN/4.1 This uniquely determines a degree t
polynomial f(x) = 2−(t+1)k + a1x + · · · + atx

t such that f(TAGi) = γi
(mod ϕ(N)/4) for i = 1, . . . , t. Moreover, we a1, . . . , at are given by the solution
to the following linear system:

1 0 · · · 0

1 TAG1 · · · TAGt
1

...
...

...
1 TAGt · · · TAGt

t




1

2(t+1)ka1
...

2(t+1)kat

 =


1

2(t+1)kγ1
...

2(t+1)kγt


LetD :=

∏
1≤i<j≤t(TAGi−TAGj) (the determinant of the Vandermonde matrix on

the left). Then, we may efficiently compute the integer valuesD ·2(t+1)ka1, . . . , D ·
2(t+1)kat (given γ1, . . . , γt and TAG1, . . . , TAGt) without computing any modular
inverse.

– SetupSim(PP, 1t) picks g̃ ←R QR+
N and returns (SKTAG1 , . . . , SKTAGt) :=

(γ1, . . . , γt) and HK := (g̃D, g̃D·2(t+1)ka1 , . . . , g̃D·2(t+1)kat).

Public verifiability. Following [28, Section 4], it suffices to construct a Σ-protocol for
DDH-tuples over QR+

N , that is, (g, gB , u, uB). The honest sender is given the witness
r such that u = gr, picks s ∈ [N3] and sends (g0, g1) := (gs, gBs). Upon receiving a
challenge e ∈ [N/4], it responds with z := s + re. The analysis is entirely analogous
to that in [28].

9 Chosen-Ciphertext Security

9.1 Broadcast CCA

In this section, we construct revocation schemes secure against CCA attacks.

Public verifiability, signatures and random oracles. As stated, the construction
also requires public verifiability and a one-time signature scheme. For factoring-based
instantiations and Diffie-Hellman in general groups, we already rely on a random oracle
to implement public verifiability, so we may as well also rely on the random oracle to
instantiate an efficient signature scheme.2 For Diffie-Hellman in bilinear groups (which
satisfy public verifiability without random oracles), we can avoid the use of signatures
and instead use a TCR – the ciphertext is given by (u, τ) where τ := Pub(PK, TAG, u, r)
and TAG := TCR(u), and as such, we obtain efficient constructions without random
oracles.

1 This yields a distribution that is statistically close to picking γ1, . . . , γt ←R Zϕ(N)/4.
2 The reason we need a signature scheme is that the addition of the non-interactive proof of

membership in the random oracle to provide public verifiability means that (TAG, u) no longer
uniquely determines an accepting proof.



Revocation PKE

(SHARING PHASE.) On input the security parameter 1k and a revocation threshold
t, the dealer generates (PP, SP), runs Setup(PP, SP, 1t+1) → (HK,MSK) and
sets the public key PK to be (PP, HK). A user with identity ID is given the key
SKID := ShareGen(MSK, ID).

(ENCRYPTION.) In order to revoke users ID1, . . . , IDt, Enc(PK):
1. generate a verification VKSIG for a one-time signature scheme;
2. sample (u, s) := SampR(r);
3. compute τ := Pub(PK, VKSIG, u, r) and τi := Pub(HK, IDi, u, r) for i =

1, . . . , t;
4. compute the signature σ on (u, τ, τ1, . . . , τt);
5. return (C,K) := ((VKSIG, u, τ, τ1, . . . , τt, σ),G(s)).

(DECRYPTION.) Any user ID not in the revoked set {ID1, . . . , IDt} may decrypt a
ciphertext C := (VKSIG, u, τ, τ1, . . . , τt, σ) as follows:
1. verify proofs τ, τ1, . . . , τt and signature σ; output ⊥ if any of these tests

fails;
2. compute s := Ext(u, τ, τ1, . . . , τt,Priv(SKID, u)) and output G(s).

Fig. 7. CCA-secure revocation scheme from threshold hash proofs

Theorem 4. If RPP is a one-way relation admitting a threshold extractable hash proof
with public verifiability, then the above revocation scheme is IND-CCA secure.

Proof (sketch). In the following, we write (u∗, s∗) = SampR(r), C∗ = (u∗, τ∗),K∗
0 ,K

∗
1

to denote the challenge ciphertext and keys chosen by the IND-CCA experiment, and
we set VKSIG∗ to denote the verification key used in computing C∗. We proceed via
a sequence of games. We start with Game 0, where the challenger proceeds like in the
standard IND-CCA game (i.e, K∗

0 is a real key and K∗
1 is a random key) and end up

with a game where both K∗
0 and K∗

1 are chosen uniformly at random. Then, we show
that all games are indistinguishable under the assumption that G(s) is pseudorandom
even given u.

GAME 1: ELIMINATING COLLISIONS. We replace the decapsulation mechanism Dec
with Dec′ that outputs ⊥ on inputs (VKSIG, u, τ, σ) such that VKSIG = VKSIG∗

but otherwise proceeds like Dec. We show that Games 0 and 1 are computationally
indistinguishable, by arguing that Dec and Dec′ essentially agree on all inputs. This
follows readily from the security of the one-time signature.

GAME 2: DECAPSULATION WITH SetupSim. We modify the IND-CCA experiment
from Game 1, we generate the keys using SetupSim(PP, ID∗

1, . . . , ID∗
t , VKSIG∗),

and we replace Dec′(ID, ·) with Dec∗(ID, ·):



On input (VKSIG, u, τ, τ1, . . . , τt, σ):
– if VKSIG = VKSIG∗, return ⊥.
– if σ or any of τ, τ1, . . . , τt fails to verify, return ⊥.
– compute s := Ext(u, τ, τ1, . . . , τt,Priv(SKVK∗ , u)) and output G(s).

Here, we use the fact that in both Dec′ and Dec∗, we run Ext with t+2 valid proofs
and therefore it outputs the correct witness s.

GAME 3: ENCAPSULATION WITH Priv. We compute all t + 1 proofs τ, τ1, . . . , τt in
C∗ using Priv instead of Pub and sign using the secret key corresponding to VK∗.

GAME 4: REPLACING G(s∗) WITH RANDOM. We generateK∗
0 at random from {0, 1}k

instead of using G(s∗) (recall here that (u∗, s∗) = SampR(r)). Observe that in
Game 3, we never use knowledge of the witness s∗ or randomness r associated
with u∗. It follows from the pseudorandomness of G that Games 3 and 4 are com-
putationally indistinguishable. Specifically, we may transform any distinguisher for
Games 3 and 4 into a distinguisher K∗

0 and G(s∗).

We conclude by observing that in Game 4, both K∗
0 and K∗

1 are identically distributed,
so the probability that b′ = b is exactly 1/2. ⊓⊔

9.2 Threshold CCA

In this section, we construct threshold encryption schemes secure against CCA attacks.
The main technical difficulty is as follows: the simulator knows f(TAG∗

1), . . . , f(TAG∗
t ),

and needs to be able to compute HHK(TAG, u) = uf(TAG) given any TAG, u. This is in
order to simulate the ShareDec(TAG, ·), the decryption share for some user TAG. To
handle this, we modify our basic threshold encryption scheme in three ways:

– The first modification is to add to the ciphertext which contains the instance u,
a publicly-verifiable 1-threshold extractable hash proof —or, an all-but-one ex-
tractable hash proof following the terminology in [42]— for the relation (u, uf(0)).
For this, we need to turn to either pairings or the random oracle model. (Similar is-
sues arise even in previous discrete-log based schemes not based on pairings.) This
way, simulator will be able to recover the t+1 values uf(0), uf(TAG∗

1), . . . , uf(TAG∗
t )

for any well-formed ciphertext.
– Next, using interpolation, we can recover uDf(TAG), where D is some factor we

use to clear out the fractional Lagrangian coefficients. In the discrete-log based
instantiations, we may compute D−1 and thus recover uf(TAG). In the factoring-
based instantation, we will modify the hash function HHK(TAG, u) to be uDf(TAG);
as such, we can only support a fixed identity space of polynomial size, since we
need to compute D in advance. Similarly, we will need to modify Ext so that it
computes uD

2f(0) via Lagrange interpolation and s from both uD
2f(0) and u via

Shamir’s “GCD in the exponent” algorithm.
– Finally, we modify ShareDec(·) so that it will only output the decryption share if

the 1-threshold extractable hash proof verifies properly.

The details are deferred to the full version of this paper.
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