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Abstract. We consider the problem of constructing round-efficient
public-coin argument systems, that is, interactive proof systems that are
only computationally sound with a constant number of rounds. We focus
on argument systems for NTime(T (n)) where either the communication
complexity or the verifier’s running time is subpolynomial in T (n), such
as Kilian’s argument system for NP [Kil92] and universal arguments
[BG02,Mic00]. We begin with the observation that under standard
complexity assumptions, such argument systems require at least 2
rounds. Next, we relate the existence of non-trivial 2-round argument
systems to that of hard-on-average search problems in NP and that of
efficient public-coin zero-knowledge arguments for NP. Finally, we show
that the Fiat-Shamir paradigm [FS86] and Babai-Moran round reduction
[BM88] fails to preserve computational soundness for some 3-round and
4-round argument systems.

1 Introduction

1.1 Background and Motivation

Argument systems are like interactive proof systems, except we only require
computational soundness, namely that it is computationally infeasible (and not
impossible) for a prover to convince the verifier to accept inputs not in the
language. The relaxation in the soundness requirement was used to obtain
protocols for NP that are perfect zero-knowledge [BCC88], or constant-round
with low communication complexity [Kil92], and in both cases, seems to also be
necessary [For89,GH98].

In this paper, we focus on the study of round-efficient argument systems for
NTime(T (n)) that do not necessarily satisfy any notion of secrecy, such as witness
indistinguishability (WI), or zero-knowledge (although we do indulge in the
occasional digression). We will however require that either the communication
complexity or the verifier’s running time be subpolynomial in T (n) which is
necessary in some applications, and to rule out the trivial one-round proof
system. Argument systems of the latter type with bounded verifier’s running time
are a crucial component in the use of non-black-box techniques in cryptography
[CGH98,Bar01,Bar04,GK03].
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The study of round-efficient argument systems was initiated by Kilian [Kil92],
who constructed a 4-round public-coin argument system for NP with poly-
logarithmic communication complexity based on a probabilistically checkable
proof (PCP) system for NP. Micali [Mic00] introduced CS Proofs, an argument
system for NEXP satisfying a relatively efficient prover condition and wherein
the verifier runs in polynomial time (much less than the time needed to verify
an NEXP relation). In addition, he provided a non-interactive construction in
the random oracle model, which is essentially derived from scaling up and
then applying the Fiat-Shamir transformation to Kilian’s argument system.
Barak and Goldreich [BG02] adapted Kilian’s construction to obtain universal
arguments (of knowledge), which is a single argument system for any language
in NP, and in addition, satisfies a weak proof-of-knowledge property. We stress
that in a universal argument, the communication complexity and the verifier’s
running time is bounded by an a-priori fixed polynomial in the input length,
whereas the length of the witness may be any arbitrary polynomial in the length
of the input. Both of the constructions in [Kil92] and in [BG02] rely on the
existence of collision-resistant function ensembles.

In this work, we initiate a systematic study of round-efficient argument
systems.

– What is the minimal round complexity of argument systems with bounded
communication complexity or verifier’s running time?

– What are the minimal assumptions and cryptographic primitives needed
for the existence of such argument systems? Are collision-resistant function
ensembles really necessary? What kind of security parameters do we require
from these primitives (possibly as a function of communication complexity)?

– How useful is improving the round efficiency of argument systems for the
construction of round-efficient cryptographic protocols?

– Is there an efficient function ensemble with which we could securely realize
the Fiat-Shamir transformation for the 4-round argument systems in [Kil92]
and [BG02] (as conjectured by Micali in [Mic00])? More generally, is
there some generic round reduction technique that preserves computational
soundness?

We provide partial answers for all of these questions in this paper.

1.2 Our Results

We begin with the observations (possibly known in “folklore”) that under
standard complexity assumptions, the argument systems we are interested in
require at least 2 rounds, and anything provable with such an argument system
can be proven in 4 rounds. Refer to Sec 3 for the precise statements.

Necessity of hardness assumptions. We show that under standard
complexity assumptions, the existence of 2-round argument systems for NP
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with subpolynomial communication complexity implies the existence of hard-
on-average search problems in NP, that is, there is samplable distribution over
CSAT instances (circuit satisfiability, namely given a circuit, decide whether
the circuit has a satisfying assignment) with the property that most instances
(say a constant fraction) are satisfiable, but any nonuniform polynomial-time
algorithm on input a random instance from the distribution succeeds in finding
a satisfying assignment for that instance with only negligible probability. Note
that the existence of hard-on-average search problems in NP is possibly weaker
than that of one-way functions and collision-resistant function ensembles.

Zero-knowledge and 2-round argument systems. We note that the
existence of a 2-round public-coin universal argument of knowledge secure
against subexponential-sized circuits yields a 4-round public-coin zero-knowledge
argument for NP with negligible soundness error; this follows readily from the
work of Barak et al. [Bar01,BLV04]. Such an argument system is almost round-
optimal, as there is no 2-round zero-knowledge argument system for languages
outside of BPP [GO94]. We also relate the existence of non-interactive zero-
knowledge arguments to that 2-round witness-indistinguishable arguments for
NP where the length of the common reference string, messages and proofs
are subpolynomial in the input length. This follows readily from a similar
characterization in [DN00].

Insecurity of the Fiat-Shamir transformation. We observe that the
constructions of Goldwasser and Kalai [GK03] demonstrating the insecurity of
the Fiat-Shamir transformation as applied to identification schemes also yield
a 4-round argument system such that the instantiation of the Fiat-Shamir
transformation with any efficiently computable function results in a 2-round
protocol that is no longer computationally sound. Note that Barak’s zero-
knowledge argument system [Bar01] already yields a 6-round argument system
for which the Fiat-Shamir transformation is insecure [DNRS03]. We also prove
that there exists a 4-round universal argument of knowledge for which the Fiat-
Shamir transformation fails to preserve the weak proof-of-knowledge property.

Insecurity of Babai-Moran round reduction. Babai and Moran [BM88]
used a round reduction procedure to prove that any language having a constant-
round public-coin interactive proof system also has a 2-round public-coin proof
system. In particular, the round reduction procedure preserves soundness of
proof systems. Here, we construct 3-round and 4-round argument systems for
which the round reduction procedure fails to preserve computational soundness.

A note on presentation: We state our results for argument systems with
either bounded communication complexity or bounded verifier’s running time,
depending on which of the two leads to a cleaner statement. In most cases,
an analogous statement can be deduced for the other set-up. Note that a
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subpolynomial bound on verifier’s running time must necessarily imply a
subpolynomial bound on the communication complexity.

1.3 Additional Related Work

Dwork et al. [DLN+04] investigated the possibility of constructing 2-round
argument systems for NP with poly-logarithmic communication complexity
based on a suggestion of Aiello, Bhatt, Ostrovsky and Rajagopalan, namely,
to compose a PCP system for NP with computational private information
retrieval scheme; their results are mostly negative. Goldreich and H̊astad
[GH98] proved that NP does not have constant-round public-coin proof systems
with subpolynomial communication complexity, unless NP has probabilistic
subexponential time algorithms. Barak et al. [BLV04] proved that the Fiat-
Shamir transformation is in fact secure for proof systems under a non-standard
but very plausible and concrete assumption.

2 Definitions and Setup

Due to space limitations, we refer the reader to [Gol01] to definitions of
interactive protocols, zero-knowledge and witness-indistinguishability.

2.1 Interactive proofs and argument systems

For a relation R ⊆ {0, 1}∗×{0, 1}∗, the language associated with R is LR = {x :
∃y (x, y) ∈ R}.

Definition 1 (interactive proof system). An interactive protocol (P, V ) is
an interactive proof system for a language L if there is a relation R such that
L = LR, and functions c, s : IN → [0, 1] such that 1 − c(n) > s(n) + 1/poly(n)
and the following holds:

– (efficiency): the length of all the messages are polynomially-bounded, and V
is computable in probabilistic polynomial time.

– (completeness): If (x,w) ∈ R, then V accepts in (P (w), V )(x) with
probability at least 1− c(|x|),

– (soundness): If x /∈ L, then for every P ∗, V accepts in (P ∗, V )(x) with
probability at most s(|x|).

We call c(·) the completeness error and s(·) the soundness error. We say
that (P, V ) has negligible error if both c and s are negligible. We say that it
has perfect completeness if c = 0. P is an efficient prover if P (w) is computable
by a probabilistic polynomial-time algorithm when w ∈ Rx. The communication
complexity of the proof system is the total length of all the messages exchanged by
both parties. For a public-coin protocol (P, V ), view(V (x)) is the set of accepting
transcripts on common input x. We also use AMc,s(m(n)) to denote constant-
round public-coin interactive proof systems with completeness error c, soundness
s and communication complexity bounded by m(n).
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Definition 2 (argument system). An argument system (P, V ) is defined in
the same way as an interactive proof system, with the following modification:

– The soundness condition is replaced with computational soundness: For
every nonuniform PPT P ∗ and for all sufficiently long x /∈ L, the verifier V
accepts in (P ∗, V )(x) with probability at most s(|x|).

2.2 Universal arguments

We begin with the universal language LU : the tuple (M,x, t) (where t is specified
in binary) is in LU is M is a non-deterministic Turing machine that accepts x
within t steps. We use RU to denote the associated relation.

Definition 3 (universal argument). A universal argument for NTime(T (n))
is an argument system (P, V ) for LU ∩ NTime(T (n)) that satisfies the following
properties:

– (completeness by a relatively-efficient prover) For every ((M,x, t), w) ∈ Ru

with (M,x, t) ∈ NTime(T (n)),

Pr[V accepts (P (w), V )(M,x, t)] = 1

Furthermore, there exists a polynomial p such that the total time spent by
P (w), on common input (M,x, t), is at most p(TM (x, w)) ≤ p(t).

– (computational soundness) For every nonuniform PPT P ∗, there exists a
negligible function ε(n) such that for every n and every (M,x, t) ∈ {0, 1}n \
LU , the verifier V accepts in (P ∗, V )(M,x, t) with probability at most ε(n).

In addition, we call (P, V ) a universal argument of knowledge if it satisfies the
weak proof-of-knowledge property [BG02]. Informally, this means that there is
an efficient oracle machine (the knowledge extractor) that given oracle access to a
cheating prover that convinces the verifier with inverse polynomial probability,
outputs an implicit description of a witness. Both the running time and the
success probability of the knowledge extractor are allowed to depend on the
success probability of the cheating verifier.

Theorem 1 ([BG02]). The existence of (standard) collision-resistant function
ensembles implies the existence of a 4-round public-coin universal argument
of knowledge (Pua, Vua) for NTime(nlog n). In addition, if the collision-resistant
function ensemble is secure against circuits of size 2nε

for some ε > 0, then
(Pua, Vua) is a universal argument of knowledge against circuits of size 2O(nε).

3 Simple bounds on round complexity

The results in this section are probably known in “folklore”. As pointed out in
[BP04], non-interactive (one-round) arguments are equivalent to non-interactive
(one-round) proof systems, since if there exists a prover message that can
convince the verifier of a false statement, the non-uniform prover that has this
message “hard-wired into it”. This essentially rules out non-interactive argument
systems for NP with subpolynomial communication complexity.
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Proposition 1. Unless NP ⊆ BPTime(2no(1)
), non-interactive argument

systems with subpolynomial communication complexity for NP do not exist.

In the context of efficient-prover argument systems, we have a collapse to 4
rounds (as pointed out to us by Salil Vadhan).

Proposition 2. Suppose there exists collision-resistant function ensembles
secure against 2nε

-sized circuits for some ε > 0 and a language in E
with 2Ω(n) circuit complexity. Then, any language L with an efficient-prover
argument system has a 4-round, public-coin, efficient-prover argument system
with subpolynomial (in fact, poly-logarithmic) communication complexity.

This follows from the observation in [BLV04] that any language with an
efficient-prover argument system is contained in MA, which collapses to NP
under the given derandomization assumption. The proposition then follows from
Kilian’s protocol [Kil92].

4 Necessity of hardness assumptions

We present hardness assumptions that are necessary for 2-round argument sys-
tems for NP with subpolynomial communication complexity. Under complexity
assumptions, such a protocol cannot be a proof system [GH98]. Hence, there
exists infinitely many no instances that are merely “computationally sound”,
from which we may construct hard-on-average search problems in NP.

Note that we may assume the 2-round argument system has negligible
soundness error, which can be achieved with ω(log n) parallel repetitions [BIN97].
Parallel repetition blows up the communication complexity by a ω(log n)
multiplicative factor, but preserves prover’s complexity, perfect completeness
and public-coin property.

Lemma 1. Suppose a promise problem Π = (ΠY ,ΠN ) has a 2-round public-
coin argument system (P, V ) with communication complexity m(n), perfect
completeness and negligible soundness error. Then, there exists a subset I ⊂ ΠN

such that:

– Ignoring inputs in I, Π has a AM1,1/2(m(n)) proof system. Formally,
(ΠY ,ΠN \ I) ∈ AM1,1/2(m(n)).

– When x ∈ I, the predicate V (x, ·, ·) induces a hard-on-average search
instances in NP. That is, for every x ∈ I:

Pr
r

[∃ y : V (x, r, y) = 1] ≥ 1/2,

but for every n, every x ∈ I ∩ {0, 1}n and every nonuniform PPT A, there
exists a negligible function ε(n) such that ,

Pr
r

[V (x, r, A(r)) = 1] < ε(n)
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Remark 1. Note that we may boost the probability of generating a satisfying
assignment for the hard-on-average search instance to 1 − 1/ poly(n) while
maintaining the same hardness parameters by taking the or of O(log n)
independent copies of V (x, ·, ·).

Theorem 2. Suppose NP has a 2-round public-coin argument system (P, V )
with communication complexity no(1), perfect completeness and negligible
soundness error. Then, at least one of the following is true:

– NP ⊆ AM1,1/2(no(1))
– There exists an infinite set I such that for all x ∈ I, the predicate V (x, ·, ·)

induces a hard-on-average search instance in NP (as formalized in Lemma 1).
This yields an auxiliary-input samplable distribution over search instances in
NP that is infinitely-often hard on average.

Remark 2. The first statement is unlikely to be true as it would imply that
NP ⊆ BPTime(2no(1)

) [GH98]. On the other hand, the latter is possibly weaker
than the existence of (auxiliary input, i.o.) one-way functions. However, it does
imply that there is no probabilistic polynomial-time algorithm for the circuit
satisfiability problem where the number of variables is bounded by no(1).

Remark 3. Salil Vadhan pointed out that if there exists a hard-on-average
decision problem in NP where the instances and witnesses have length
bounded by m(n), then every language has a 2-round argument system with
communication complexity m(n). However, the argument system does not satisfy
the efficient prover constraint, though the constraint is (trivially) satisfied if we
consider the empty language. This shows that the conclusion in Theorem 2 is
essentially the strongest we can hope for without making additional assumptions
about the argument system, for instance, that it has an efficient prover, that it
is WI, or that it is an argument of knowledge.

5 Zero-knowledge and 2-round argument systems

Barak et. al [BLV04] constructed a 2-round argument for NP that is zero-
knowledge against cheating verifiers of bounded non-uniformity assuming the
existence of a 2-round universal argument secure against 2nε

-sized circuits.
We observe that if we strengthen the soundness requirement on the universal
argument to an argument of knowledge, it follows readily from [Bar01,BLV04]
that there exists a 4-round zero-knowledge argument for NP. The idea is to
convert the universal argument of knowledge into a WI universal argument
of knowledge (with a subexponential-time knowledge extractor) without any
overhead in the number of rounds. To accomplish this, we encrypt the messages of
the universal argument using a weak commitment scheme and prove correctness
using a WI proof for NP [DN00].

Theorem 3 ([Bar01,BLV04]). Suppose there exist 2-round public-coin
universal argument of knowledge for NTime(f(n)) for some super-polynomial
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f : IN → IN, enhanced trapdoor permutations and collision-resistant function
ensembles secure against 2nε

-sized circuits for some constant ε > 0. Then, there
exists a 4-round public-coin (auxiliary-input) zero-knowledge argument system
for NP, with perfect completeness, negligible soundness error, an efficient prover
and a simulator that runs in strict polynomial time.

Another open problem is whether there exists non-interactive zero-knowledge
(NIZK) arguments or 2-round WI arguments for NP with subpolynomial
communication complexity and randomness [FLS99,KP98,DLN+04]. We do not
know how to construct either primitive starting from an argument system for
NP with subpolynomial communication complexity, but it follows from the
characterization of zaps (a 2-round public-coin WI proof system for NP) in
[DN00] that they are almost equivalent:

Theorem 4 ([FLS99,DN00]). Suppose there exist one-way functions secure
against 2nε

-sized circuits for some constant ε > 0. Then, the following statements
are equivalent:

– There exists a 2-round public-coin efficient-prover honest-verifier WI
argument for NP with subpolynomial communication complexity.

– There exists an efficient-prover NIZK argument for NP where the length of
the common reference string and the proof are subpolynomial in the length
of the input.

Theorem 4 is weaker than the characterization of zaps in [DN00] in that
we can only deduce the existence the existence of honest-verifier WI (but
not cheating-verifier WI) arguments for NP from NIZK. This is because the
construction of zaps from NIZK protocols requires that the underlying NIZK
protocol be a proof system in order to preserve soundness. On the other hand,
we observe that honest-verifier WI is sufficient for the construction of a NIZK
argument for NP.

6 Insecurity of the Fiat-Shamir transformation

Goldwasser and Kalai [GK03] proved the existence of a (secure) 3-round
public-coin identification scheme for which any instantiation of the Fiat-Shamir
transformation with an efficiently computable function ensemble yields an
insecure signature scheme. As both the identification scheme and the signature
scheme are defined in the public-key model, there is a fairly natural interpretation
of the construction as obtaining a 2-round argument system from a 4-round
argument system via the Fiat-Shamir transformation. The main (albeit minor)
technical difference is in handling auxiliary inputs inherent to argument systems,
as the set-up in [GK03] is inherently uniform (there, the variable is the security
parameter, and messages to be signed are thought of as having constant size1).

1 Alternatively, we may consider the forger as forging a family of uniformly computable
messages of length polynomial in the security parameter, infinitely often.
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We also feel that viewing the constructions of [GK03] in the context of argument
systems yields a clearer and simpler presentation of their constructions and
results. The following result has been independently observed by the authors
of [GK03] (but was not explicitly mentioned in [GK03]):

Theorem 5 ([GK03]). Suppose there exists (standard) collision-resistant
function ensembles. Then, there exists a 4-round public-coin argument system
with negligible soundness error, but for which the instantiation of the Fiat-Shamir
transformation with any efficiently function ensemble yields a 2-round protocol
that is not computationally sound (that is, it has a polynomial-sized cheating
prover that succeeds with non-negligible probability).

Remark 4. The cheating prover in the proof of Theorem 5 succeeds with only
a non-negligible probability. It is therefore conceivable while the Fiat-Shamir
paradigm does not in general preserve soundness of 4-round argument systems,
the Fiat-Shamir paradigm along with parallel repetition does preserve soundness
of 4-round argument systems (since parallel repetition does reduce the soundness
error for 2-round argument systems to a negligible quantity [BIN97]).

We also observe that the Fiat-Shamir transformation fails to preserve the
weak proof-of-knowledge property. The proof goes via a case analysis similar to
that in [GK03] (except a lot simpler). Suppose the statement holds for (Pua, Vua);
then we are done. Otherwise, we have a 2-round public-coin universal argument
of knowledge which combined with Barak’s non-uniform generation protocol
[Bar01] yields the desired argument system.

Theorem 6. Suppose there exists (standard) collision-resistant function ensem-
bles. Then, there exists a 4-round public-coin universal argument of knowledge,
but for which the instantiation of the Fiat-Shamir transformation with any
efficiently function ensemble yields a 2-round protocol that does not satisfy the
weak proof-of-knowledge property.

7 Insecurity of Babai-Moran round reduction

We start by describing Babai-Moran round reduction. For a public-coin proof
system Π = (P, V ) of at most 4 rounds, this procedure has a simple description
and comprises two steps, for some parameter k = poly(n). First, the residual
protocol after the prover’s first message is repeated k times in parallel and the
new verifier accepts if all k repetitions are accepting. Next, second, the order
of the prover’s first message and the verifier’s next message are reversed. We
denote the new protocol by Π rr(k). For protocols with 3 or 4 rounds, the resulting
protocol has 2 rounds.

Intuitively, Babai-Moran round reduction fails to preserve computational
soundness for the following reasons:

– Parallel repetition fails to reduce soundness error at an exponential rate
beyond 1/ poly(n) if we require a black-box proof of security [BIN97].
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– A cheating prover can gain significant advantage upon round-switching,
wherein the verifier reveals his coin tosses before the prover sends his next
message.

We exploit the former reasoning in our construction of the 3-round argument
system, as the latter does not seem to apply in this case (made precise in Prop 3)
as the first message of a 3-round argument system is “unconditionally sound”.
For the 4-round argument system, we exploit the latter reasoning in an essential
manner so as to obtain a result that holds even with a non-black-box proof of
security.

Theorem 7 (Babai-Moran round reduction).

(i) Suppose there exists collision-resistant function ensembles secure against
nlog n-sized circuits. Then, there exists a 4-round public-coin argument
system with negligible soundness error for which Babai-Moran round
reduction yields a 2-round argument system that is not computationally
sound.

(ii) There exists a 3-round (relativized) public-coin argument system with
negligible soundness error for which Babai-Moran round reduction yields a
2-round argument system that is not computationally sound if limited to a
black-box proof of security.

In both constructions, the cheating prover succeeds with probability 1 − neg(n).
This means that even upon applying parallel repetition to the resulting 2-round
argument systems, we would not obtain a computationally sound protocol.

Both constructions are for the empty language L∅. The 4-round protocol,
specified in Fig 1, is a straight-forward simplification of the argument system in
[Kil92]. For 3-round argument systems, we only rule out the case with a black-
box proof of security. In this setting, it suffices to construct a relativized protocol,
wherein all parties (provers, cheating provers, verifier) have oracle access to a
permutation π, as shown in Fig 2. It helps to think of π as a one-way permutation,
although we will require a stronger property that we only know how to prove in
a relativized setting:

Lemma 2 ([GT00]). For all sufficiently large n, there exists a permutation π
on {0, 1}n such that for all oracle circuits A of size nlog n,

Pr[σ ← {0, 1}n; Aπ,Iσ (σ) = y; π(y) = σ] <
1

nlog n

where Iσ is an oracle that on input σ′ 6= σ returns π−1(σ′), and ⊥ otherwise.

We note that overcoming the limitation to black-box proof of security for
3-round argument systems will require resolving a well-known open problem:

Proposition 3. Suppose parallel repetition on 2-round argument systems can
reduce the computational soundness error exponentially fast to 2− poly(n), then
Babai-Moran round reduction yields a collapse of 3-round argument systems to
2-round argument systems.
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Common input: 1n

1. (V1) verifier sends a random h from H (collision-resistant function ensemble).
2. (P1) prover sends a Merkle-tree commitment to B, where B is an array of nlog n

blocks of 0n.
3. (V2) verifier sends β at random from 1 to nlog n and γ at random from {0, 1}n.
4. (P2) prover decommits to B[β].

Verification: verifier accepts if B[β] decommits to γ.

1. (V1) verifier sends a random h from H, and β1, . . . , βk at random from 1 to
nlog n and γ1, . . . , γk at random from {0, 1}n.

2. (P1) prover sends a Merkle-tree commitment to B, which is an array of nlog n

blocks of 0n, and decommits to B[β1], . . . , B[βk].

Verification: verifier accepts if B[βi] decommits to γi for all i = 1, . . . , k.

Fig. 1. 4-round protocol Π1 and 2-round protocol Π
rr(k)
1 for the empty language L∅

Common input: 1n, oracle access to π (a permutation on {0, 1}n)

1. (P1) prover sends z ∈ {0, 1}n.
2. (V1) verifier sends a random σ in {0, 1}n.
3. (P2) prover sends y ∈ {0, 1}n.

Verification: verifier accepts iff π(y) = z ⊕ σ.

1. (V1) verifier sends random σ1, . . . , σk in {0, 1}n.
2. (P1) prover sends z, y1, . . . , yk ∈ {0, 1}n.

Verification: verifier accepts iff π(yi) = z ⊕ σi, for all i = 1, . . . , k.

Fig. 2. 3-round relativized protocol Π2 and 2-round protocol Π
rr(k)
1 for L∅

8 Conclusion

We hope that the collection of observations, connections and results presented
in this paper (one that is perhaps better regarded as a survey) clarifies our
understanding of round-efficient argument systems and motivates further work
in this area, and perhaps a resolution of the main open problem – determining
the exact round complexity of non-trivial argument systems.

9 Acknowledgments

I am very grateful to Yael Tauman Kalai, Luca Trevisan and Salil Vadhan for
their encouragement and insightful discussions on the subject; Salil also gave me
very valuable feedback on earlier versions of this paper. I thank Kobbi Nissim
for bringing [DLN+04] to my attention, and the anonymous referees for helpful
suggestions on the write-up.



12

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In Proc.
42nd FOCS, 2001.

[Bar04] Boaz Barak. Non-Black-Box Techniques in Cryptography. Ph.D., Weizmann
Institute of Science, January 2004.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
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