
Finding Pessiland�

Hoeteck Wee

Computer Science Division,
University of California, Berkeley
hoeteck@cs.berkeley.edu

Abstract. We explore the minimal assumptions that are necessary for non-
trivial argument systems, such as Kilian’s argument system for NP with poly-
logarithmic communication complexity [K92]. We exhibit an oracle relative to
which there is a 2-round argument system with poly-logarithmic communication
complexity for some language in NP, but no one-way functions. The language
lies outside BPTime(2o(n)), so the relaxation to computational soundness is
essential for achieving sublinear communication complexity. We obtain as a
corollary that under black-box reductions, non-trivial argument systems do not
imply one-way functions.

1 Introduction

Pessiland, coined by Impagliazzo [I95], is a world in which there are hard-on-average
languages in NP but no one-way functions. In Pessiland, generating hard instances
of NP-languages is easy, but we do not know of a way of exploiting these hard-
on-average problems in cryptography. In fact, Impagliazzo and Luby [IL89] proved
that most cryptographic applications, including bit commitment, private-key encryption
and digital signatures, require one-way functions (which allow us to generate hard
instances of NP-languages along with a witness) and are therefore impossible to realize
in Pessiland.

Recently, Barak’s construction of (non-black-box) zero-knowledge arguments [B01]
renewed interest in the round complexity and the minimal assumptions necessary for
the existence of non-trivial argument systems for NP and NEXP [K92, M00, BG02,
W05]. We consider an argument system for NP or NEXP to be non-trivial if the
communication complexity is subpolynomial in the length of the witness. Currently, the
best construction for NEXP is a 4-round protocol based on the existence of (standard)
collision-resistant hash functions [BG02]. If we could relax the assumption to one-
way functions, then Barak’s construction would yield a constant-round zero-knowledge
argument for NP under the same assumption. On the other hand, we do not even
know if one-way functions are necessary for non-trivial argument systems. For 2-round
argument systems, it is known that a relaxation of hard-on-average languages in NP is
necessary [W05] (also, Appendix A.2).

� Work supported by US-Israel BSF Grant 2002246. Presently visiting Tsinghua University,
Beijing, China.

S. Halevi and T. Rabin (Eds.): TCC 2006, LNCS 3876, pp. 429–442, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

430 H. Wee

1.1 Main Results

In this work, we establish a connection between the two problems: we provide a
relativized construction of Pessiland which contains a non-trivial 2-round argument
system for a language in NP.

Theorem 1. There exists an oracle relative to which there exists a strongly hard-on-
average language in NP ∩ coNP, but no one-way functions. Furthermore, there is a
2-round public-coin argument system with poly-logarithmic communication complexity
for a language that lies within NP but outside BPTime(2o(n)).

It is important that our argument system is for a language outside BPTime(2o(n)),
as it means that the relaxation to computational soundness is essential for achiev-
ing sublinear communication complexity. This rules out trivial 2-round argument
systems with poly-logarithmic communication complexity for languages in BPP or
NTime(log2 n). In particular, a relativizing argument in [GH98] implies that languages
outside BPTime(2o(n)) do not have interactive proof systems with sublinear (total)
communication complexity, regardless of the number of rounds, and even if the verifier
is allowed a polynomial amount of private randomness.

As a corollary, we deduce that there does not exist a black-box construction (such
as those used in [V04, W05]) of one-way functions or collision-resistant hash functions
from non-trivial 2-round argument systems. This partially explains why we have not
been able to prove a statement of the form “if there exists a non-trivial 2-round
argument system, then there exists one-way functions”. In particular, a proof of this
statement must use a non-relativizing argument or make some stronger assumptions on
the underlying language. On the other hand, we do not expect to disprove this statement.
Suppose non-trivial 2-round argument systems do not exist (which is quite plausible);
then, the statement is vacuously true.

The black-box construction of primitives from interactive protocols in [V04, W05]
only yields auxiliary-input primitives, as the input instance for the protocol is hard-
wired into the algorithm computing the primitive. As such, one would ideally like to
rule out auxiliary-input one-way functions (that is, we only require that the function be
computable by a nonuniform polynomial-time algorithm) while exhibiting a non-trivial
argument system. At this point, we are only able to achieve a much weaker result:

Theorem 2. There exists an oracle relative to which there exists a strongly hard-on-
average language in NP, but no auxiliary-input one-way functions.

The analysis of our first construction is fairly straight-forward apart from some subtle
details, and uses several techniques from previous work (such as [IR89, GT00]); the
insight lies in the construction and in establishing a connection between Pessiland and
non-trivial argument systems. Our second construction, on the other hand, requires a
more intricate and novel analysis.

1.2 Perspective and Related Works

Round-efficient argument systems. All previous constructions of non-trivial argument
systems (in the standard model) [K92, BG02] require 4 rounds and the existence of

Finding Pessiland 431

collision-resistant hash functions. Micali [M00] gave the first relativized construction of
a non-trivial 2-round argument system, by using a random oracle to instantiate collision-
resistant hash functions and the Fiat-Shamir paradigm in Kilian’s 4-round protocol
[K92]. While these previous constructions were for either NP-complete or NEXP-
complete languages, our relativized construction (which does not require one-way
functions or collision-resistant hash functions) is for a language in NP but possibly not
NP-complete. We stress that previous work [W05] deducing hard-on-average problems
in NP from non-trivial argument systems for NP (and NEXP) does not exploit the
structure of NP in any way; it merely uses the fact NP does not have a proof system
with the same communication complexity as the underlying argument system under
standard complexity assumptions.

Relationships between cryptographic primitives. Starting with the work of Impagliazzo
and Rudich [IR89], the study of relationships between cryptographic primitives has
focused on the impossibility of basing complex primitives on simpler ones, particularly
one-way functions and one-way permutations. Our main result goes in the reverse
direction: it shows the impossibility of constructing simpler primitives from a specific
cryptographic application (in a black-box manner). It also provides an example of a
cryptographic application (for a contrived language, unfortunately) which may be based
on weaker assumptions than the existence of one-way functions. In an unpublished
work, Impagliazzo and Rudich gave the first1 relativized construction of Pessiland,
which yields a black-box separation between hard-on-average languages in NP and
one-way functions.

2 Preliminaries

We use Π� to denote the set of all permutations on {0,1}�, Fn,� to denote the set
of all functions from {0,1}n to {0,1}�, and Un to denote the uniform distribution
over {0,1}n. A negligible function is a function of the form n−ω(1). In the context of
describing probability distributions, we write x ∼ Un to denote choosing x according to
the distribution Un; we also use x ∈ S to denote choosing an element x from the set S
uniformly at random. We use · to denote the standard dot product of binary strings, and
H(·) to denote the Shannon entropy function, namely, H(p)=−p log p−(1−p) log(1− p),
for p ∈ [0,1].

2.1 Models of Computation

A circuit has AND and OR gates where each gate has in-degree 2 and out-degree 1,
and is labeled with a bit that indicates whether its value should be negated. The size of
a circuit is the number of gates. A nonuniform polynomial-time algorithm refers to a

1 We only learnt about the work of Impagliazzo and Rudich after independently arriving at the
same construction. We also clarify that finding in the title alludes to the search for constructions
of Pessiland with stronger cryptographic implications (and a positive result for exploiting
average-case hardness) than a mere separation between hard-on-average languages and one-
way functions.

432 H. Wee

family of polynomial-size circuits; specifically, we may consider the polynomial-time
algorithm as being circuit evaluation and the nonuniformity being the corresponding
circuit. An oracle circuit has 3 types of gates: AND, OR and oracle gates. The in/out-
degree of the oracle gate matches the input/output length of the oracle. It is easy to
see that an oracle circuit of size s having input/output length n and oracle access to a
function f : {0,1}n → {0,1} can be encoded using O(sn log(sn)) bits. A nonuniform
oracle polynomial-time algorithm refers to a family of polynomial-size oracle circuits.

2.2 Average-Case Hardness and One-Way Functions

Definition 1. For any α ∈ [0,1/2], a function f : {0,1}n → {0,1} is α-hard for size s
if every circuit of size s fails to compute f on an α fraction of inputs.

Definition 2. For any function α : N → [0,1/2], a function f : {0,1}∗ → {0,1} is α-
hard if for every nonuniform polynomial-time algorithm A, for all sufficiently large n’s,

Pr
x∼Un

[A(x) �= f (x)] > α(n)

A function f is weakly hard-on-average (resp. strongly hard-on-average) if f is α-hard
for some α(n) = n−c where c > 0 is a constant (resp. some α(n) = 1/2 − n−ω(1)). A
language L is α-hard if the characteristic function for L is α-hard. We also extend the
notions of weakly and strongly hard-on-average to languages.

Definition 3. For any function α : N → [0,1], a function f : {0,1}∗ → {0,1}∗ is α-one-
way (resp. auxiliary-input α-one-way) if f is computable in polynomial time (resp. by
a nonuniform polynomial-time algorithm) and if for every nonuniform polynomial-time
algorithm A, and all sufficiently large n’s,

Pr
x∼Un

[A(f (x)) /∈ f −1(f (x))] > α(n)

A function f is weakly one-way (resp. strongly one-way) if f is α-one-way for some
α(n) = n−c where c > 0 is a constant (resp. some α(n) = 1−n−ω(1)).

All of these notions extend naturally to the setting of oracle nonuniform polynomial-
time algorithms (and oracle circuits). We will often appeal to the following technical
lemma from [GT00] stating that random permutations are strongly one-way. We will
also use the fact that the proof relativizes.

Lemma 1 ([GT00]). For all sufficiently large �, with probability 1−2−2�/2
over π ∈ Π�,

for all oracle circuits A of size 2�/5,

Pr
x∼U�

[Aπ(π(x)) �= x] > 1−2−�/5

2.3 Interactive Proofs and Argument Systems

For a relation R ⊆ {0,1}∗ × {0,1}∗, the language associated with R is LR = {x :
∃y (x,y) ∈ R}.

Finding Pessiland 433

Definition 4. An interactive protocol (P,V) is an interactive proof system for a
language L if there is a relation R such that L = LR, and functions c,s : IN → [0,1]
such that 1− c(n) > s(n)+1/poly(n) and the following holds:

– (efficiency): the length of all the messages are bounded by a polynomial in the
length of the common input x, and V is computable in probabilistic polynomial
time.

– (completeness): for all (x,w) ∈ R, then V accepts in (P(w),V)(x) with probability
at least 1− c(|x|),

– (soundness): for all x /∈ L, then for every P∗, V accepts in (P∗,V)(x) with
probability at most s(|x|).

We call c(·) the completeness error and s(·) the soundness error. We say that (P,V) has
negligible error if both c and s are negligible. We say that it has perfect completeness if
c = 0. P is an efficient prover if P(w) is computable by a probabilistic polynomial-time
algorithm when (x,w) ∈ R. The communication complexity of the proof system is the
total length of all the messages exchanged by both parties, and the round complexity is
the total number of messages exchanged by both parties (in both directions).

Definition 5. An argument system (P,V) is defined in the same way as an interactive
proof system, with the following modification:

– The soundness condition is replaced with computational soundness: For every
nonuniform polynomial-time machine P∗ and for all sufficiently long x /∈ L, the
verifier V accepts in (P∗,V)(x) with probability at most s(|x|).

In this paper, we focus on public-coin argument systems with perfect completeness,
negligible soundness error, and an efficient prover.

2.4 Relativization and Black-Box Reductions

In each of our relativized constructions, we consider a family of oracles O = {On}n≥1,
with an oracle for each input length. For simplicity, we will only present our results for
the model where an oracle Turing machine (respectively an oracle circuit) on an input of
length m only queries On for a single value of n, where n = n(m) is polynomially related
to m. This is already sufficient to capture most black-box reductions and transformations
used in cryptography.

For black-box constructions of cryptographic primitives from interactive protocols,
we require that the construction uses oracle access to the efficiently computable entities
in the protocol, such as the verifier, the efficient prover (if one exists), and the simulator
(in the case of zero-knowledge). An example is the construction of one-way functions
from zero-knowledge proof systems in [V04], where the function is computed using
black-box access to the simulator and the verifier for the underlying proof system. Such
constructions usually only yield auxiliary-input cryptographic primitives because we
need to hardwire the instance used in the protocol into the algorithm for computing the
primitive. We omit a formal definition of black-box constructions used in this work (as
a sufficiently general framework will be fairly involved without yielding any additional
insight); instead, we refer the reader to [RTV04] for a formal treatment of black-box
constructions and reductions.

434 H. Wee

3 The Impagliazzo-Rudich Construction

We begin by reviewing the relativized construction of Pessiland due to Impagliazzo and
Rudich (unpublished). We use some of the ideas and proofs in our main constructions.

Theorem 3 (Impagliazzo-Rudich). There exists an oracle relative to which there
exists a strongly hard-on-average language in NP∩ coNP, but no one-way functions.

For any f ∈ Fn,n (namely, a function from {0,1}n to {0,1}n), we define a verification
oracle for f :

Vf (x,y) =

{
1 if f (x) = y

0 otherwise

The construction used in the proof of Theorem 3 is as follows:

Construction 1. For each n ∈ N, we have an oracle Vπ , for some permutation π ∈ Πn

(specifically, one that satisfies the condition in Lemma 1 and that in Lemma 2 below).
In addition, we provide access to a PSPACE oracle.

We choose π by sampling a random permutation on {0,1}n. If π is strongly one-way,
then the NP-relation {(x,w) | π(w) = x} yields a hard-on-average search problem (with
a unique witness), and upon applying the Goldreich-Levin transformation [GL89], we
obtain a strongly hard-on-average language in NP∩coNP. Furthermore, a polynomial-
time oracle Turing machine M makes a query to Vπ of the form (x,π(x)) with negligible
probability, so MZ agrees with MVπ on almost all inputs. Here, Z : {0,1}∗ → {0,1}
denotes the function that evaluates to 0 everywhere. Using the PSPACE oracle, we may
then invert MZ everywhere and thus MVπ almost everywhere.

Lemma 2. Fix T (n) = nlogn and an encoding of oracle Turing machines. For all
sufficiently large n, with probability at least 1/2n2 over π ∈ Πn, for all oracle Turing
machines M that can be described using at most logn bits and makes at most T (n)
oracle queries,

Pr
x∼Un

[
MVπ (x) = MZ(x)

]
≥ 1− 1

2T (n)

Proof. Fix an oracle Turing machine M. By linearity of expectations, we have

Eπ∈Πn

[∣∣{x ∈ {0,1}n : MVπ (x) �= MZ(x)}
∣∣] ≤ 2n · T (n)

2n −T (n)

By Markov’s inequality,

Pr
π∈Πn

[∣∣{x ∈ {0,1}n : MVπ (x) �= MZ(x)}
∣∣ ≥ 2n

2T (n)

]
≤ 2T (n)2

2n −T (n)
<

1
4n3

This allows us to take a union bound over all oracle Turing machines M with description
at most logn bits (there are at most 2n of them). ��

Finding Pessiland 435

Remark 1. As stated, the above lemma only allows us to rule out one-way functions
computed by oracle Turing machines M that on an input of length n, only queries Vπ
corresponding to a permutation on {0,1}n. To handle the case where M queries oracles
corresponding to permutations on different input lengths, we choose π ∈ Πn to allow
for a union bound over all oracle Turing machines M that can be described using at most
logn bits and makes at most T (n) queries to Vπ on some input of length m(n) where
m(n) is polynomially related to n (instead of only considering m(n) = n).

Lemma 3 ([LTW05]). Let f ,g : {0,1}n → {0,1}n be functions that agree on an ε
fraction of inputs. Let A() be the probabilistic procedure that, for every y ∈ {0,1}n,
A(y) outputs ⊥ if f (−1)(y) = /0, and a uniformly random element of f (−1)(y) otherwise.
Then, the probability that A(g(x)) ∈ g(−1)(g(x)) is at least ε2, when taken over the
uniform choice of x ∈ {0,1}n and over the internal coin tosses of A.

Remark 2. Since we also provide access to a PSPACE oracle, we should say that
with overwhelming probability over π , MZ,PSPACE agrees with MVπ ,PSPACE almost
everywhere. This is true since the proof of Lemma 2 relativizes. With a PSPACE oracle,
we may uniformly sample pre-images for MZ,PSPACE in probabilistic polynomial time,
which together with Lemma 3, is sufficient to rule out one-way functions.

Lemma 4 ([GT00, GL89]). For all sufficiently large n, with probability 1 − o(1/n2)
over π ∈ Πn, the function f : {0,1}2n → {0,1} given by f (y,r) = π−1(y) · r is (1/2 −
n− logn)-hard against oracle circuits of size nlogn with oracle access to π .

4 Our First Pessiland

We present our construction that establishes Theorem 1. Fix n and � = 100log2 n. For
each f ∈ Fn,3n and a collection of permutations {πy ∈ Π� | y ∈ {0,1}3n}, we define a
3-tuple (Vπ ,Vf ,T) where Vπ and Vf are verification oracles for checking the relations
induced by {πy} and f , and T is a trapdoor permutation oracle for computing πy and
π−1

y if given (w,y) such that f (w) = y.
Our 2-round protocol for the language L f = {y | ∃w : f (w) = y} is shown in Fig 1. On

input y ∈ {0,1}3n, the prover is asked to invert πy on a random input, and the verifier
checks the answer using the verification oracle Vπ . The trapdoor permutation oracle
yields an efficient prover for the YES instances. For the NO instances, generating an
accepting response is as hard as inverting a random permutation.

Vπ(y,α,β) =

{
1 if πy(α) = β
0 otherwise

Vf (w,y) =

{
1 if f (w) = y

0 otherwise

T (w,y,b,z) =

⎧⎪⎨
⎪⎩

πy(z) if f (w) = y and b = 0

π−1
y (z) if f (w) = y and b = 1

⊥ otherwise

436 H. Wee

Common input: An instance y ∈ {0,1}3n.
Prover’s private input: A witness w ∈ {0,1}n.

V → P : Send β R←− {0,1}O(log2 n).
P → V : Send α = T (w,y,β).

Verification: V accepts if Vπ (y,α ,β) = 1 (that is, πy(α) = β).

Fig. 1. 2-round public-coin protocol prot for the language L f = {y | ∃w : f (w) = y}

Construction 2. For each n ∈ N, we have an oracle (Vπ ,Vf ,T), for some appropriate
choices of f ∈ Fn,3n and {πy ∈ ΠO(log2 n) | y ∈ {0,1}3n}. In addition, we provide access
to a PSPACE oracle.

We begin with an overview of the analysis for our construction.

Computational soundness. A successful cheating prover is one that inverts πy on a
noticeable fraction of inputs, for some y /∈ L f . However, for each y /∈ L f , the random
permutation πy is one-way against oracle circuits of size nlogn with probability

1−2−nlogn
(Lemma 1). This holds even if the circuit is given oracle access to Vf ,πy

and (πy′ ,π−1
y′) for all y′ �= y (which are sufficient to simulate the oracles (Vπ ,Vf ,T)),

because πy′ and f are chosen independently of πy. We can then take a union bound to
ensure that every permutation in the collection {πy} is strongly one-way, as shown
in Lemma 5.

Ruling out low-communication proof systems. A 2-round argument system for L f

with communication complexity �(n) is only interesting if we could rule out 2-
round interactive proof systems for the language L f with the same communication
complexity. We prove in Lemma 6 that there is no subexponential-size oracle circuits
for deciding L f , given oracle access to Vf and to {(πy,π−1

y)}y∈{0,1}3n , which is

sufficient to simulate oracle access to (Vπ ,Vf ,T). This implies L f /∈ BPTime(2o(n)).
Note that an algorithm running in time BPTime(2O(�(n))) can compute and invert the
permutations πy everywhere given oracle access to Vπ . It is therefore essential to our
proof that the collection of permutations {πy} is defined independently of f .

Ruling out one-way functions. The analysis is virtually identical to that for the
Impagliazzo-Rudich Pessiland, since a polynomial-time oracle Turing machine is
unlikely to query (Vπ ,Vf ,T) at any input where the answer is neither 0 nor ⊥. Note
that in order to satisfy the efficient prover condition (for YES instances), it suffices
to provide oracle access to π−1

f (w) in T . By incorporating oracle access to π f (w) into

T , we also rule out the trivial auxiliary-input one-way permutation given by π−1
f (w).

However, we do not know how to rule out every auxiliary-input one-way function
for this construction.

A strongly hard-on-average language. We can construct the language from the strongly
hard-on-average function given by g : {0,1}3n+2� → {0,1} where g(y,β ,r)
= π−1

y (β) · r.

Finding Pessiland 437

Lemma 5. For all sufficiently large n, for every f ∈ Fn,3n, with probability 1 −
2−Ω(nlogn) over {πy}y∈{0,1}3n ∈ Π 23n

� , for all y ∈ {0,1}3n and for all oracle circuits A

of size nlogn,

Pr
x∼U�

[AVf ,πy,{(πy′ ,π
−1
y′)|y′ �=y}(πy(x)) = x] < 2−nlogn

Proof. By Lemma 1 (and the fact that it relativizes), if we fix a sufficiently large n,
along with any f ∈ Fn,3n, any y ∈ {0,1}3n, and any πy′ ∈ Π� for all y′ �= y, we know that

with probability 2−Ω(nlogn) over πy ∈ Π�, for all oracle circuits A of size nlogn,

Pr
x∼U�

[AVf ,πy,{(πy′ ,π
−1
y′)|y′ �=y}(πy(x)) = x] < 2−nlogn

The lemma follows from taking a union bound over all y ∈ {0,1}3n. ��
Lemma 6. For all sufficiently large n, for every collection of permutations{πy}y∈{0,1}3n ,

with probability 1 − 2−Ω(2n) over f ∈ Fn,3n, there is no oracle circuit of size 2n/5 that
given oracle access to Vf and to {(πy,π−1

y)}y∈{0,1}3n decides L f .

Proof. We establish this result following the counting argument in [GT00]. We may
neglect oracle access to {(πy,π−1

y)}y∈{0,1}3n since the argument relativizes. The idea is
to show that any function f for which there is an oracle circuit A that given oracle access
to Vf decides L f has a “short” description (given A). There are very few such functions,
so a random f satisfies the hardness property with overwhelming probability.

Formally, fix an oracle circuit A : {0,1}3n → {0,1} of size 2n/5 and suppose A on
oracle access to Vf decides L f for some f ∈ Fn,3n. We simulate A on every input in
{0,1}3n in lexicographic order and observe the queries that A makes to Vf . WLOG,
assume A never makes the same query twice on a given input. Define X ⊆ {0,1}n to be
all x such that A queries Vf on (x, f (x)).

CASE 1: |X | ≤ 3
4 ·2n. Given the set X and f |X , we may simulate A on all inputs without

oracle access to Vf , thereby recovering the set f ({0,1}n). We may then specify f
on each input outside X using just n bits (instead of 3n bits) since we only need n
bits to specify an element in the set f ({0,1}n).

CASE 2: |X | > 3
4 · 2n. Over all possible inputs, A makes at most 23n · 2n/5 queries to

Vf . Therefore, there are at most 1
4 · 2n values of x for which A makes more than

4 · 22n · 2n/5 queries to Vf of the form (x, ·). In particular, there is a subset X ′ of X
with 1

2 ·2n elements, and for each x ∈ X ′, A makes at most 4 ·22n ·2n/5 queries to Vf

of the form (x, ·). Given the circuit A, the set X ′ and f |{0,1}n\X ′ , we may specify f
on each input in X ′ using 11n/5+2 bits (instead of 3n bits) since we only need to
specify i such that the i’th query A makes of the form (x, ·) returns 1.

In both cases, given A, we may specify f with 2n(2n/5 − 2) less bits (relative to the
2n ·3n bits required to specify a function in Fn,3n). It takes an additional O(2n/5n2) bits
to specify A. ��

438 H. Wee

5 A Second Pessiland

We present our next construction that establishes Theorem 2. It is similar to the
Impagliazzo-Rudich Pessiland except we provide a verification oracle for a random
function instead of a random permutation.

Construction 3. For each n ∈ N, we have an oracle Vf , for some appropriate choice
of f ∈ Fn,n. In addition, we provide access to a PSPACE oracle.

First, we show that for most f ∈ Fn,n, the language L f = {y | ∃x : f (x) = y} is
weakly hard-on-average (Lemma 7); the proof is an extension of that for Lemma 6,
except more involved because we are establishing average-case hardness instead of
worst-case hardness. Since the main technical result from [HVV04] on hardness
amplification within NP relativizes, we may deduce that there is a strongly hard-on-
average language L′

f in NP/poly, obtained by applying some monotone transformation
to some padded variant of L f . We provide an additional oracle that on input 1n, outputs
the nonuniformity needed to compute L′

f in NP. To rule out auxiliary-input one-way
functions, it suffices to show that the function computed by any small oracle circuit
may be approximated by the function computed by a standard circuit with a polynomial
blow-up in size (Lemma 8).

Lemma 7. For all sufficiently large n, with probability 1 − 2−Ω(n2) over f ∈ Fn,n, the
language L f = {y | ∃x : f (x) = y} is 0.01-hard against oracle circuits of size 2o(n) with
oracle access to Vf .

Proof (sketch). A standard “balls in bins” analysis (e.g. [MR95, Theorem 4.18]) tells us
that with probability 1−2−Ω(2n) over f ∈ Fn,n, | f ({0,1}n)| is bounded from above by
2
3 ·2n (we may replace 2

3 by any constant larger than 1− 1
e). We may then simply focus

on f such that | f ({0,1}n)| < 2
3 ·2n, and proceed as in the proof of Lemma 6. Again, we

consider an oracle circuit A : {0,1}n → {0,1} that solves L f on at least a 0.99 fraction
of inputs and we define X to be all x such that A queries Vf on (x, f (x)).

CASE 1: |X | ≤ 0.02 · 2n. Let Y = {y | A(y) �= L f (y)}, that is, the subset of inputs
on which A is wrong. Given f |X and the sets X ,Y (which may be specified using
(0.02n + H(0.02) + H(0.01) + o(1))2n bits), we may simulate A on all inputs
without oracle access to Vf , thereby recovering the set f ({0,1}n). We may then
specific f on inputs outside X using log(2

3 · 2n) bits. Therefore, given the circuit
A, we may specify f using 2nn − (0.98log 3

2 − H(0.01) − H(0.02) − o(1))2n <
2n(n−0.35) bits.

CASE 2: |X | > 0.02 ·2n. We argue that there is a subset X ′ of X with 0.01 ·2n elements,
and for each x ∈ X ′, A makes at most 100 ·2o(n) queries to Vf of the form (x, ·). Given
the circuit A, we may then specify f using (0.99+o(1))2nn bits. ��

To facilitate the proof of the next lemma, we introduction an additional notation: for
any f ∈ Fn,n and any subset Q of {0,1}n, we define:

Vf ,Q(x,y) =

{
1 if f (x) = y and x ∈ Q

0 otherwise

Finding Pessiland 439

Lemma 8. For all sufficiently large n, with probability 1 − 2−Ω(n2) over f ∈ Fn,n, for
all oracle circuits C of size s where n ≤ s ≤ 2n/10 and for all ε ≥ 2−n/10, there exists a
circuit C′ of size O(s4n3/ε2) such that CVf and C′ agree on a 1−ε/2 fraction of inputs.

To see why the naive approach of setting C′ = CZ (as in Lemma 2) fails, consider an
oracle circuit C that independent of its input, outputs Vf (0n,1n). Then, with probability
1 − 2−n, C′ and C agree on all inputs, and with probability 2−n, disagree on all inputs.
This is not sufficient for a union bound over all polynomial-size circuits. To work
around this, we hardwire into C′ information about f . Specifically, we show that with
overwhelming probability over f ∈ Fn,n, for all C of size s, there exists a set Q ⊆ {0,1}n

of size O(s4n2/ε2) such that the circuit CVf ,Q agrees with CVf on a 1 − ε/2 fraction of
inputs. Note that we allow Q to depend on f . We may specify f |Q using |Q|n bits of
nonuniformity, so CVf ,Q may be computed by a circuit C′ of size O(s4n3/ε2) (without
oracle access to Vf).

Here is an outline of the analysis. Let us examine the first oracle query made by
the circuit C on different inputs, and we define Q1 to be all x such that the first query
C makes to Vf matches (x, ·) on more than a ε3/s3n2 fraction of inputs. Therefore,
|Q1| = poly(s,n,1/ε). Now, consider the oracle circuit C1 that behaves like C, except
the first oracle query is made to Vf ,Q1 instead of Vf . Suppose C and C1 differs on a ε/2s
fraction of inputs. This must be because for a ε/2s fraction of inputs, the first query
C makes to Vf matches (x, f (x)), for some x /∈ Q1. For a random f and a fixed x, this
happens with probability 2−n. Moreover, this must happen for at least s2n2/ε2 different
values of x not in Q1 (since each x /∈ Q1 accounts for at most a ε3/s3n2 fraction of
inputs). For a random f , the evaluation of f on each of these x values are independent.
Thus, the probability (over f) that C and C1 differs on a ε/2s fraction of inputs is
roughly 2−Ω(ns2).

Proof. Formally, fix f ∈ Fn,n. We define oracle circuits C0,C1, . . . ,Cs and subsets
Q0,Q1, . . . ,Qs of {0,1}n inductively as follows:

– Q0 = /0 and C0 = C.
– Qi is union of Qi−1 and the set{

x ∈{0,1}n
∣∣Pr
z

[
i’th oracle query for computing C

Vf
i−1(z) matches (x, ·)

]
≥ ε2/s3n2

}

– Ci on input z and oracle access to Vf simulates the computation of CVf (z) except
for j = 1,2, . . . , i, the j’th oracle query is answered using Vf ,Q j instead of Vf . We
will hardwire the description of the sets Q1, . . . ,Qi into Ci, so upon oracle access to
Vf , Ci may simulate the oracles Vf ,Q j , j = 1, . . . , i.

Claim. For all i = 1,2, . . . ,s, Pr f∈Fn,n

[
Prz

[
C

Vf
i−1(z) �=C

Vf
i (z)

]
< ε/2s

]
≥ 1−2−Ω(sn2)

It follows readily from the claim that

Pr
f∈Fn,n

[
Pr
z

[
CVf (z) �= C

Vf
s (z)

]
< ε/2

]
≥ 1− s ·2−Ω(sn2)

440 H. Wee

This implies that with overwhelming probability over f , CVf and CVf ,Qs agree on a
1−ε/2 fraction of inputs. We may bound |Qs| by s4n2/ε2 since |Qi| ≤ |Qi−1|+s3n2/ε2.
Hence, CVf ,Qs may be computed by a circuit C′ of size O(s4n2/ε2). The lemma then
follows from taking a union bound over all circuits of size s, all s between n and 2n/10,
and all 1/ε between 2 and 2n/10. ��

Now, we provide the proof of the above claim.

Proof (of claim). We start with the case i = 1. Note that the definition of Q1 does
not depend on f . Consider any input z to CVf . If the first oracle query made by

CVf corresponds to an element in Q1, then Pr f [C
Vf
1 (z) = CVf (z)] = 1. Otherwise,

Pr f [C
Vf
1 (z) = CVf (z)] = 1−2−n. For each x ∈ {0,1}n, we define

αx =

{
Prz

[
first oracle query for CVf (z) matches (x, ·)

]
if x /∈ Q1

0 otherwise

(note that αx is independent of f) and Yx to be the random variable (where the
randomness is over f ∈ Fn,n) for the probability

Pr
z

[
first oracle query for CVf (z) matches (x, ·) and CVf (z) �= C

Vf
1 (z)

]
Hence, we have ∑x αx ≤ 1 and for all x ∈ {0,1}n:

0 ≤ Yx ≤ αx ≤ ε2/s3n2 and E f [Yx] = αx2−n

In addition,
Pr
f ,z

[
C

Vf
1 (z) �= CVf (z)

]
= E f

[
∑
x

Yx

]
By convexity, we have ∑x α2

x ≤ ε2/s3n2. Applying the Hoeffding bound [H63] yields:

Pr
f

[
∑
x

Yx −2−n ≥ ε/4s
]

≤ e−2(ε/4s)2/∑x α2
x ≤ e−sn2/8

In the general case, we fix an assignment to f |Qi−1 , so the set Qi is also fixed. As
before, we define

αx =

{
Prz

[
i’th oracle query for C

Vf
i−1(z) matches (x, ·)

]
if x /∈ Qi

0 otherwise

(here, αx is independent of f |{0,1}n\Qi−1
) and Yx to be the random variable (where the

randomness is over f |{0,1}n\Qi−1
) for the probability

Pr
z

[
i’th oracle query for C

Vf
i−1(z) matches (x, ·) and C

Vf
i−1(z) �= C

Vf
i (z)

]
Again, the Hoeffding bound yields:

Pr
f |{0,1}n\Qi−1

[
∑
x

Yx −2−n ≥ ε/4s
]

≤ e−sn2/8

Finding Pessiland 441

This holds for all f |Qi−1 . Averaging over all possible assignments of f |Qi−1 , we have:

Pr
f

[
Pr
z

[
C

Vf
i−1(z) �= C

Vf
i (z)

]
≥ ε/4s+2−n

]
≤ e−sn2/8

This completes the proof of the technical claim. ��

Acknowledgements

I am grateful towards Salil Vadhan for sharing his insightful observations which led me
towards the problems addressed in this work, and Luca Trevisan for his help with the
proofs in Section 5. In addition, I thank Lance Fortnow and Russell Impagliazzo for
pointing out previous constructions of Pessiland, and the anonymous referees for their
helpful and constructive feedback.

References

[B01] B. Barak. How to go beyond the black-box simulation barrier. In Proc. 42nd FOCS,
2001.

[BG02] B. Barak and O. Goldreich. Universal arguments and their applications. In Proc.
17th CCC, 2002.

[GH98] O. Goldreich and J. Håstad. On the complexity of interactive proofs with bounded
communication. IPL, 67(4):205–214, 1998.

[GL89] O. Goldreich and L. Levin. Hard-core predicates for any one-way function. In Proc.
21st STOC, 1989.

[GT00] R. Gennaro and L. Trevisan. Lower bounds on efficiency of generic cryptographic
constructions. In Proc. 41st FOCS, 2000.

[H63] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13–30, 1963.

[HVV04] A. Healy, S. Vadhan, and E. Viola. Using nondeterminism to amplify hardness. In
Proc. 36th STOC, 2004.

[I95] R. Impagliazzo. A personal view of average-case complexity. In Proc. 10th Structure
in Complexity Theory Conference, 1995.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based
cryptography. In Proc. 30th FOCS, 1989.

[IR89] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In Proc. 21st STOC, 1989.

[K92] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In Proc. 24th
STOC, 1992.

[LTW05] H. Lin, L. Trevisan, and H. Wee. On hardness amplification of one-way functions.
In Proc. 2nd TCC, 2005.

[M00] S. Micali. Computationally sound proofs. SICOMP, 30(4):1253–1298, 2000.
[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,

1995.
[RTV04] O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between

cryptographic primitives. In Proc. 1st TCC, 2004.
[V04] S. Vadhan. An unconditional study of computational zero knowledge. In Proc. 45th

FOCS, 2004.
[W05] H. Wee. On round-efficient argument systems. In Proc. 32nd ICALP (Track C),

2005.

442 H. Wee

A Appendix

A.1 The Hoeffding Bound

We state the concentration result for sum of independent bounded random variables
(with possibly arbitrary distributions) used in the proof of Lemma 8.

Lemma 9 ([H63]). If X1, . . . ,Xn are independent random variables such that ai ≤ Xi ≤
bi, i = 1,2, . . . ,n, then for all t > 0,

Pr[X −E[X] ≥ t] ≤ e−2t2/∑i(bi−ai)2

where X = X1 + . . .Xn.

A.2 Necessity of Hardness Assumptions

For ease of reference, we reproduce the proof from [W05] (with a minor improvement
in the result) that a 2-round argument system for NP with subpolynomial communi-
cation complexity implies hard-on-average search problems in NP. Under complexity
assumptions, such a protocol cannot be a proof system [GH98]. Hence, there exists
infinitely many NO instances that are merely “computationally sound”, from which we
may construct hard-on-average search problems in NP. We stress that the construction
of hard-on-average search problems uses the underlying verifier in a black-box manner.

Lemma 10 ([W05]). Suppose a promise problem Π = (ΠY ,ΠN) has a 2-round
public-coin argument system (P,V) with communication complexity m(n), perfect
completeness and negligible soundness error. Then, there exists a subset I ⊂ ΠN such
that:

– Ignoring inputs in I, Π has a 2-round public-coin proof system with communication
complexity m(n), perfect completeness and soundness error less than 1. This
implies (ΠY ,ΠN \ I) ∈ DTime(2O(m(n))).

– When x ∈ I, the predicate V (x, ·, ·) induces a distribution over hard-on-average
search instances in NP. That is, for every x ∈ I:

Pr
r
[∃ y : V (x,r,y) = 1] = 1,

but for every n, every x ∈ I ∩ {0,1}n and every nonuniform polynomial-time
algorithm A, there exists a negligible function ε(n) such that

Pr
r
[V (x,r,A(r)) = 1] < ε(n)

Theorem 4 ([W05]). Suppose NP has a 2-round public-coin argument system (P,V)
with communication complexity no(1), perfect completeness and negligible soundness
error. Then, (at least) one of the following is true:

– NP ⊆ DTime(2no(1)
)

– There exists an infinite set I such that for all x ∈ I, the predicate V (x, ·, ·) induces
a distribution over hard-on-average search instances in NP (as formalized in
Lemma 10). This yields an auxiliary-input samplable distribution over satisfiable
instances in NP where the search problem is infinitely-often strongly hard-on-
average.

	Introduction
	Main Results
	Perspective and Related Works

	Preliminaries
	Models of Computation
	Average-Case Hardness and One-Way Functions
	Interactive Proofs and Argument Systems
	Relativization and Black-Box Reductions

	The Impagliazzo-Rudich Construction
	Our First Pessiland
	A Second Pessiland
	Appendix
	The Hoeffding Bound
	Necessity of Hardness Assumptions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

