
More on Noncommutative Polynomial Identity Testing

Andrej Bogdanov Hoeteck Wee∗

Abstract

We continue the study of noncommutative polynomial
identity testing initiated by Raz and Shpilka and present effi-
cient algorithms for the following problems in the noncom-
mutative model:

Polynomial identity testing: The algorithm gets as an input
an arithmetic circuit with the promise that the polynomial
it computes has small degree (for instance, a circuit of log-
arithmic depth or an arithmetic formula) and determines
whether or not the output of the circuit is identically zero
(as a formal expression). Unlike the algorithm by Raz and
Shpilka, our algorithm is black-box (but randomized with
one-sided error) and evaluates the circuit over the ring of
matrices. In addition, we present query complexity lower
bounds for identity testing and explore the possibility of de-
randomizing our algorithm. The analysis of our algorithm
uses a noncommutative variant of the Schwartz-Zippel test.

Minimizing algebraic branching programs: The algorithm
gets as an input an algebraic branching program (ABP) and
outputs a smallest equivalent ABP. The algorithm is based
on Nisan’s characterization of ABP complexity, and uses
as a sub-routine an algorithm for computing linear depen-
dencies amongst arithmetic formulas, a problem previously
studied by the authors.

1 Introduction

The problem of polynomial identity testing asks the
following: Given a finite field F and a polynomial p ∈
F[x1, . . . , xn] computable by an arithmetic circuit, can we
determine whether p is identically zero?1 The celebrated
lemma of Schwartz and Zippel [12, 14] shows that if p is
nonzero, then p(a1, . . . , an) is unlikely to evaluate to zero

∗Computer Science Division, University of California, Berkeley. {adib,
hoeteck}@cs.berkeley.edu. Work supported by US-Israel BSF Grant
2002246.

1As in [10], we reserve the term “identically zero” to refer to a poly-
nomial being identically zero as a formal expression. If a polynomial p
evaluates to zero everywhere on the input domain, we say that p vanishes
over the input domain. For instance, the bivariate polynomial p(x, y) =
(xp − 1)(yp − 1) vanishes over F2

p, but is not identically zero.

if a1, . . . , an are chosen at random from a set of size slightly
larger than the degree of p. No polynomial-time determin-
istic algorithm for the problem is known, even in the special
case when p is computable by an arithmetic formula rather
than a circuit. A formula is a circuit where every gate has
fan-out one.

Recently Raz and Shpilka [10] considered the noncom-
mutative case of this problem. In the noncommutative sce-
nario, p is a polynomial in the ring F{x1, . . . , xn} of poly-
nomials over noncommuting variables x1, . . . , xn. Syntac-
tically, a noncommutative circuit is exactly like a commu-
tative arithmetic circuit, except that the inputs to the multi-
plication gates are ordered. Such a circuit represents a for-
mal expression in F{x1, . . . , xn}, and we ask whether this
expression is identically zero. If p is identically zero as a
noncommutative polynomial, then p is identically zero also
when viewed as a commutative polynomial. However, the
converse is not true; for example the “commutator polyno-
mial” x1x2 − x2x1 is identically zero in the commutative
case, but nonzero in the noncommutative case.

Raz and Shpilka showed that the class of noncommuta-
tive formulas admits a deterministic polynomial-time algo-
rithm for polynomial identity testing by reducing the prob-
lem to identity testing for algebraic branching programs
(ABPs) using a technique of Nisan’s and then solving the
problem for ABPs. Unlike the Schwartz-Zippel algorithm
for the commutative case, the algorithm of Raz and Shpilka
is “non-black-box”: While Schwartz-Zippel only uses the
ability to evaluate the formula over its chosen input, Raz
and Shpilka rely on the structure of the formula to deter-
mine whether it is identically zero.

To our knowledge, for the more general case of noncom-
mutative circuits very little is known; there seems to be no
known algorithm, deterministic, randomized, or even non-
deterministic, to test if the circuit computes the identically
zero polynomial.

1.1 Our Contributions and Perspective

We present a polynomial-time randomized algorithm
for polynomial identity testing of noncommutative circuits,
with the promise that the degree of the circuit is polyno-
mial in its size. More generally, the running time is poly-

nomial in the circuit size, the degree and log |F|. Our al-
gorithm is “black-box” and is based on a noncommutative
variant of the Schwartz-Zippel test: We show that a polyno-
mial p in F{x1, . . . , xn} of degree d is unlikely to evaluate
to zero when the formal variables are replaced with suffi-
ciently large matrices over F or an extension of F.

When the input is a noncommutative formula, our al-
gorithm can be implemented in randomized NC using the
standard technique of parallel formula evaluation. (How-
ever, this implementation is no longer black-box.) Paral-
lel evaluation of arithmetic formulas is well known in the
commutative setting [3, 4]; the approach easily extends for
arithmetic formulas over rings of matrices.2

We suspect that when the input to our algorithm is a
noncommutative formula, it may be possible to obtain a
partial derandomization of our algorithm that uses only a
polylogarithmic (in the formula size) number of random
bits. Roughly, if one can show that no bivariate polynomial
p ∈ F{x, y} computed by a formula of size s is a poly-
nomial identity for matrices of dimension ω(log s), then
our randomized algorithm will use only O(log3 s) bits of
randomness. We do not know of an example that violates
this conjecture, and in Section 6 we show that certain well
known classes of identities satisfy it.

For the case of general noncommutative circuits (with no
promise on the degree of the circuit), our argument merely
yields that the problem is in coREXP. While this observa-
tion is not trivial (since a circuit can compute a noncom-
mutative polynomial with a doubly exponential number of
terms), it is far from satisfactory, as no hardness result about
this problem is known. We show lower bounds (Section 4.2)
which imply that any evaluation-based algorithm over alge-
bras of dimension 2o(s) whose proof of correctness treats
the circuit as a “black box” computing a polynomial of de-
gree 2O(s) cannot do better. Therefore, to obtain an im-
proved black-box algorithm for identity testing of general
noncommutative circuits, one needs to either evaluate over
an algebra of exponential dimension that admits some effi-
cient implicit representation (compatible with addition and
multiplication), or use properties of noncommutative cir-
cuits other than bounds on the degree and the number of
variables of the polynomial computed by the circuit in the
analysis.

This may be compared with a result by Kabanets and
Impagliazzo [7] in the commutative setting, where they
show a quasipolynomial derandomization of polynomial
identity testing under the assumption that there exists an
exponential-time computable family of multilinear polyno-
mials that requires subexponential size arithmetic circuits.
The difficulty in resolving such an assumption stems from
our inability to prove arithmetic lower bounds for general

2Brent’s paper references a report by Maruyama [8] that extends his
results over rings of matrices.

circuits. In contrast, lower bounds for noncommutative for-
mulas are easy to prove; however we were unable to show
a good bound for the class of all polynomial identities of
k × k matrices, or to find a counterexample.

We also present a new application of noncommutative
polynomial identity testing in the context of minimizing al-
gebraic branching programs (ABPs), starting from the Raz-
Shpilka identity testing algorithm for ABPs. Although a
minimization algorithm generalizes an identity testing algo-
rithm in the context of ABPs3, our work does not subsume
the Raz-Shpilka algorithm, since we use their algorithm as
a subroutine to compute linear dependencies amongst arith-
metic formulas. (The latter problem previously surfaced
in our work on hypercube linearity testing [2].) Our min-
imization algorithm builds on Nisan’s characterization of
ABP complexity [9]. In particular, Nisan’s characteriza-
tion is constructive, as it yields an ABP of size equal to the
lower bound. Our algorithm may be seen as an efficient re-
alization of Nisan’s construction. To our knowledge, this is
the first polynomial-time minimization algorithm for mod-
els outside of finite automata.

1.2 Additional Related Work

Motivated by the study of algebraic algorithms for ap-
proximating the permanent, Chien and Sinclair [5] extended
Nisan’s formula lower bound methods to obtain exponen-
tial ABP lower bounds for the permanent and the deter-
minant in a very large class of noncommutative algebras
with polynomial identities, or PI-algebras. They do not
address the question of polynomial identity testing in PI-
algebras, namely whether a given polynomial with coeffi-
cients in some field F vanishes over a PI-algebra containing
F. For polynomial identity testing in the black box model,
the case of PI-algebras is easier than the case of the free
noncommutative algebra. Our methods extend trivially to
give randomized identity testing algorithms over any PI-
algebra in which addition and multiplication of algebra el-
ements is computable in time polynomial in the represen-
tation of the elements. As an interesting open problem,
we note that there is no known deterministic algorithm for
arithmetic formula identity testing in PI-algebras (even for
special cases like the algebra of 2× 2 matrices). In particu-
lar, the Raz-Shpilka algorithm does not extend to this case.

2 Preliminaries

Let F be a field, and we write F{x1, . . . , xn} to de-
note the set of polynomials with coefficients from F over

3A minimal ABP computing the identity must have some edge labelled
with the zero function and therefore we can always use a minimization
algorithm to solve identity testing for ABPs, even if the minimization al-
gorithm does not output a canonical minimal ABP.

noncommuting variables x1, . . . , xn. A polynomial p ∈
F{x1, . . . , xn} is homogeneous if all its terms have the
same total degree. We say p is multilinear if it is ho-
mogeneous of degree n with n variables, and the individ-
ual degree of all its variables is one. This means that a
multilinear polynomial p has the form p(x1, . . . , xn) =∑

σ∈Per(n) ασxσ(1) . . . xσ(n), where Per(n) denotes the set
of all permutations σ : [n] → [n].

Arithmetic circuits. An arithmetic circuit over a field F
represents a multivariate polynomial in the obvious way:
a multiplication (addition) gate outputs the product (sum)
of the formal polynomials represented by its input. (We
may also allow generalized addition gates that, on input
f, g, compute arbitrary linear combinations af + bg, where
a, b ∈ F.) The input wires to the circuit correspond to the
input variables of the polynomial and the output of the cir-
cuit computes some polynomial of the input variables. We
measure the size of an arithmetic circuit as the number of
gates. An arithmetic circuit is called a formula if the fan-
out of every gate in the circuit is at most one.

Black-box evaluations of polynomials. Given a polyno-
mial p over noncommuting variables over F, we allow eval-
uations p over extension fields of F, and more generally,
any associative algebra over F. Evaluating p over a non-
commutative algebra is in fact necessary for “black-box”
noncommutative polynomial identity testing. We stress that
it is reasonable to ask for values of the polynomials where
the input comes from an algebra over F because the polyno-
mial is given to the algorithm in the form of an arithmetic
circuit.

3 Polynomial Identities

Let F be a field and A be an associative algebra with
identity over F. The dimension of A over F is the dimension
of A as an F-vector space. Given a set S ⊆ A and a polyno-
mial p ∈ F{x1, . . . , xn}, we call p a polynomial identity (in
short, PI) for S if for all a1, . . . , an ∈ S , p(a1, . . . , an) = 0.
We say S satisfies a PI if some nonzero p is a PI for S.

We will be particularly interested in the special case
when A is the set of k × k matrices over F itself, or over
some field extension F′ over F. We denote the space of
k× k matrices over F by Fk×k. The (i, j)th unit matrix eij ,
where 1 ≤ i, j ≤ k is the matrix in Fk×k whose (i, j)th
entry is 1 and whose other entries are zero.

Let Sk(F) denote the linear subspace of Fk×k consisting
of all matrices whose entries are all zero except along the
main and second upper diagonal. Alternatively, Sk(F) is
the linear space spanned by the unit matrices eii, 1 ≤ i ≤ k
and ei(i+1), 1 ≤ i ≤ k − 1. For T ⊆ F and L(F) a space
of matrices generated by some of the unit matrices eij , we

denote by L(T) the set of matrices in L(F) all of whose
entries are in T .

We state two lemmas that are standard in the theory of
polynomial identities. Similar statements can be found, for
example, in the books by Rowen [11] or Drensky and For-
manek [6].

Lemma 3.1. Let F be an arbitrary field, F′ an extension of
F, S a linear subspace of F′k×k. If there exists a PI for S of
degree d over F then there exists a multilinear identity for
S of degree at most d over F.

Proof. For an arbitrary polynomial p ∈ F′{x1, . . . , xn}, the
linearization of p with respect to x1 is the polynomial (in
n + 1 variables)

p1(y11, y12, x2, . . . , xn) = p(y11 + y12, x2, . . . , xn)
− p(y11, x2, . . . , xn)
− p(y12, x2, . . . , xn).

The linearization pi of p with respect to xi is defined like-
wise. Note that pi has the following properties:

1. The total degree of pi does not exceed the total degree
of p.

2. If xi has degree di > 1 in p, then yi1, yi2 have degrees
exactly di − 1 in pi. (In particular, if p 6= 0 then pi 6=
0.)

3. If xi has degree one in p, then pi consists of those terms
of p that do not contain xi, with a change in sign.

In addition, if p is a PI for S, then pi is a PI for S as
well. This suggests the following procedure: Starting with
p, find a variable xi in p such that either its degree is strictly
greater than one or xi does not appear in all terms of p.
Replace p with pi and repeat. By the above properties, the
procedure must terminate with a multilinear identity for S
of degree at most d. In particular, property 2 ensures that the
individual degree of every variable in the final polynomial
is one, and property 3 ensures that every variable appears in
every monomial.

The Amistur-Levitzki Theorem [1] states that over any
field F, the matrix algebra Fk×k satisfies no PI of (total)
degree less than 2k, and satisfies exactly one (up to constant
factor) multilinear identity of degree 2k. We use a slight
generalization of the first part of the Theorem, which we
state below.

Lemma 3.2. For arbitrary F, Sk(F) does not satisfy any PI
of degree 2k − 1 or less.

Notice that the statement holds for PIs with an arbitrary
number of variables.

Proof. Suppose that Sk(F) satisfies an identity of degree
2k − 1 or less. By Lemma 3.1, Sk(F) must satisfy a multi-
linear identity of degree n ≤ 2k − 1. This identity has the
form

p(x1, . . . , xn) =
∑

σ∈Per(n)
ασxσ(1) . . . xσ(n),

where ασ ∈ F. Fix σ and consider the substitution

xσ(1) = e11, xσ(2) = e12, xσ(3) = e22, xσ(4) = e23, . . .

where we choose consecutive entries by “walking along a
staircase.” The only term of p that does not vanish under this
substitution is the term ασxσ(1) . . . xσ(n) = ασe1r, where
r = dn/2e ≤ k. Since p is a PI for Sk(F), we must have
ασ = 0. It follows that p is identically zero.

4 Noncommutative Identity Testing

Let Pn,d(F) denote the class of (noncommutative) poly-
nomials over F of degree d in variables x1, . . . , xn, ex-
cluding the zero polynomial. Note that in the problem of
polynomial identity testing, we are interested in whether the
polynomial is identically zero as a formal expression.

4.1 A black-box randomized algorithm

Our algorithm gets as an input an arithmetic circuit with
the promise that the polynomial p it computes has small
degree (for instance, a circuit of logarithmic depth or an
arithmetic formula). The high-level idea is as follows: we
evaluate p on random k×k matrices over some field F′ and
for a sufficiently large k. F′ is a field extension of F, with
|F′| � d. We regard each entry of the matrix in F′k×k as an
indeterminate, and we view the k2 indeterminates as com-
muting variables. Upon substitution, p computes a k × k
matrix wherein each entry is a polynomial in k2 (commut-
ing) variables. If p is not a PI for F′k×k, then some entry of
p computes a nonzero polynomial of degree at most d over
F. In particular, if we pick a random matrix, p will compute
a nonzero matrix with high probability, and we may obtain a
lower bound for this probability via commutative Schwartz-
Zippel. In order to optimize the parameters, we will pick
random matrices from a linear subspace Lk of F′k×k, where
some entries of the matrix are fixed as 0 and the remaining
entries are chosen randomly from some subset T of F′.

Lemma 4.1 (Noncommutative Schwartz Zippel). Let p ∈
F{x1, . . . , xn} be a polynomial of degree d, F′ be an exten-
sion of F, Lk be a linear subspace of F′k×k generated by an
arbitrary subset of the unit matrices eij , and T ⊆ F′. Then
either p is a PI for Lk, or

Pr[p(M1, . . . ,Mn) = 0] ≤ d/|T |,

where M1, . . . ,Mn are chosen independently at random
from Lk(T).

Proof. Let e1, . . . , ek2 denote a basis of F′k×k over F′, cho-
sen in such a way that the first l vectors e1, . . . , el are the
unit matrices that generate Lk. Consider the polynomial
q ∈ F{y11, . . . , ynl} which is the image of p under the
substitutions xi = yi1e1 + · · · + yilel. Informally, q is a
k × k matrix where each matrix entry computes a polyno-
mial qi (1 ≤ i ≤ k2) in F[y11, . . . , ynl]. We can therefore
(uniquely) rewrite q in the form

q(y11, . . . , ynl) =
∑k2

j=1
qj(y11, . . . , ynl)ej ,

where q1, . . . , qk2 are commutative polynomials in
F[y11, . . . , ynl]. Moreover, it is easy to check that if p
has degree d, then each qj has degree at most d. If all
of the polynomials q1, . . . , qk2 are identically zero, then
p is identically zero, so p is a PI for Lk. Otherwise,
one of q1, . . . , qk2 (say q1) is nonzero. By the commu-
tative Schwartz-Zippel Lemma, q1(a11, . . . , anl) remains
nonzero with probability 1 − d/|T | under a random
substitution yij = aij ∈ T . Choosing random matrices
M1, . . . ,Mn ∈ Lk(T) amounts exactly to choosing ran-
dom values aij ∈ T , so it follows that p(M1, . . . ,Mn) 6= 0
with at least the same probability.

Theorem 4.2. There exists a black-box, randomized
identity testing algorithm for the class Pn,d that uses
O(d log n log(d log n/ε)) random bits and succeeds with
probability 1− ε.

Proof. Let F′ be an extension of F (or perhaps F itself) of
size at least d log n/ε, and let T be a subset of F′ of size
d log n/ε. Without loss of generality, suppose n is a power
of two, and let bi1bi2 . . . bi log n ∈ {0, 1}log n denote the
(padded) binary representation of i − 1, for 1 ≤ i ≤ n.
Let k = d log n/2. Our algorithm for polynomial identity
testing does the following:

1. Choose random matrices M0,M1 ∈ Sk(T).

2. For 1 ≤ i ≤ n, let Ni =
∏log n

j=1 Mbij
.

3. Accept if p(N1, . . . , Nn) evaluates to 0, and reject oth-
erwise.

Let q(Y0, Y1) be the polynomial obtained from
p(X1, . . . , Xn) after performing the substitution Xi =∏log n

j=1 Ybij
. We remark that q is not identically zero, as any

monomial of q has a unique pre-image in p. Moreover, q has
degree at most d log n, so q ∈ P2,d log n. By Lemma 4.1, ei-
ther q is a PI for Sk(F), or q(M0,M1) 6= 0 with probability
1 − ε. By Lemma 3.2, q cannot be a PI for Sk(F), so the
latter must hold.

4.2 Lower bounds on query complexity

Theorem 4.3. Let A be an associative algebra with identity
of dimension k over F. Any deterministic black-box algo-
rithm for testing Pn,d that evaluates over A must make at
least nd/k queries. The lower bound holds for both adap-
tive and nonadaptive queries.

Proof. Let e1, . . . , ek be a basis for A as an F-vector space.
Given a set of elements aij ∈ A, 1 ≤ i ≤ q, 1 ≤ j ≤ n,
where q < nd/k, we exhibit a polynomial p ∈ Pn,d such
that for all 1 ≤ i ≤ q, p(ai1, . . . , ain) = 0. Write

p(x1, . . . , xn) =
∑

s∈[n]d
βsxs1· · ·xsd

,

where βs ∈ F are “indeterminates”. For each s ∈
[n]d, ais1· · · aisd

∈ A, so we may write ais1· · · aisd
=∑k

l=1 aislel. Upon substitution, we obtain:

p(ai1, . . . , ain) =
∑

s∈[n]d
βs

∑k

l=1
aislel

=
∑k

l=1

(∑
s∈[n]d

aislβs

)
el.

The equation p(ai1, . . . , ain) = 0 is equivalent to the set of
linear constraints:

For all 1 ≤ l ≤ k,
∑

s∈[n]d
aislβs = 0.

Taking the constraints over all possible i = 1, 2, . . . , q, we
have a system of qk linear constraints over the variables βs.
Since there are nd distinct βs and nd > qk, there exists a
nonzero solution for the system. This specifies a nonzero
polynomial p ∈ Pn,d that vanishes on all queries.

Corollary 4.4. Let A be an associative algebra with iden-
tity of dimension k over F. Any randomized black-box algo-
rithm using R random bits and Q queries for testing Pn,d

by evaluating over A satisfies R + log Q ≥ d log n− log k.

Any efficient algorithm can conceivably only compute
over algebras with poly(n) dimensions, so for d = ω(1),
we have a lower bound of Ω(d log n) for R + log Q. Our
algorithm from Theorem 4.2 achieves Θ̃(d log n), which is
tight up to polylogarithmic factors.

5 Minimizing ABPs

Definition 5.1 ([9]). An algebraic branching program
(ABP) is a leveled directed acyclic graph with one vertex of
in-degree zero, which is called the source, and one vertex of
out-degree zero, which is called the sink. The vertices of the
graph are partitioned into levels numbered 0, . . . , d. Edges
are labeled with a homogeneous linear function in the input

variables, and may only connect vertices from level i to ver-
tices from level i + 1. The source is the only vertex at level
0 and the sink is the only vertex at level d. Finally, the size
of the ABP is the number of vertices in the graph.

The polynomial that is computed by an ABP is the sum
over all directed paths from the source to the sink of the
product of linear functions that labeled the edges of the path.
It is clear that an ABP with d + 1 levels computes a homo-
geneous polynomial of degree d.

Lemma 5.2. There is a deterministic polynomial-time al-
gorithm that on input k homogeneous ABPs of the same de-
gree, computes the space of linear dependencies amongst
the k ABPs.

Proof. Suppose the k ABPs define polynomials P1, . . . , Pk

in F{x1, . . . , xn}. Let u, v denote new formal variables,
and for each α1, . . . , αk ∈ F, consider the polynomial P
in F{x1, . . . , xn, u, v} computed by the ABP with source
node s and sink node t and for each i = 1, 2, . . . , k, an edge
from s to the source node of Pi labelled u, and an edge from
the sink node of Pi to t labelled αiv. It is easy to see that

α1P1 + . . . + αkPk ≡ 0 ⇔ P ≡ 0

Now, apply the Raz-Shpilka identity testing algorithm
[10, Sec 2.2] to P , reducing P to a ABP P ′ of depth 2, with
the guarantee that P ≡ 0 iff P ′ ≡ 0. In addition, P ′ has
the following structure: the edges between the source node
and level 1 nodes are labelled with linear expressions over
new variables x′1, . . . , x

′
m and the edges between the level

1 nodes and the sink node are labelled with α1v, . . . , αkv
respectively. Now, we can expand the polynomial com-
puted by P ′ and by solving the linear system over the vari-
ables x′1v, . . . , x′mv compute the linear space comprising
all α1, . . . , αk such that P ′ (and thus P) computes the zero
polynomial.

Corollary 5.3. There is a deterministic polynomial-time al-
gorithm that on input k arithmetic formulas, computes the
space of linear dependencies amongst the k formulas.

Proof. Let d denote the maximal depth of the input formula.
Our algorithm will first transform each of the given formula
to at most d + 1 ABPs and for each i = 0, 1, . . . , d, com-
pute the linear dependencies for the k ABPs computing the
homogeneous part of degree i for each input formula. The
final output is the intersection of the d+1 linear spaces.

Let f be a homogeneous polynomial of degree d on n
variables x1, . . . , xn. A k-term is an ordered sequence of
k variables amongst x1, . . . , xn (allowing repetitions). For
each 0 ≤ k ≤ d, we define a matrix Mk(f) ∈ Fnk×nd−k

as
follows: there is a row for each k-term τ and each (d− k)-
term σ, and the (τ, σ)-th entry of Mk(f) is the coefficient
of monomial τσ in f .

Theorem 5.4 ([9]). The smallest ABP computing f has size∑d
k=0 rank(Mk(f)).

Theorem 5.5. There is a deterministic polynomial-time al-
gorithm that on input an ABP outputs a smallest equivalent
ABP.

Proof. For k = 0, 1, . . . , d, where d is the degree of the
polynomial computed by the input ABP B, let v1, . . . , vt

be the vertices of the ABP in the k’th level. We define
the matrices Lk and Rk as follows: Lk will have a row
for each k-term and a column for each 0 ≤ i ≤ t and
Rk will have a row for each 0 ≤ i ≤ t and a column for
each (d − k)-term. For a k-term τ and i, (τ, i)-th entry
of Lk is the coefficient of τ in the polynomial computed
by the restricted ABP with sink vi. For a (d − k)-term σ
and i, the (i, σ)-th entry of Rk[i, σ] is the coefficient of
σ in the polynomial computed by the restricted ABP with
source vi. It is easy to verify that Mk(f) = LkRk and
thus rank(Mk(f)) = min{rank(Lk), rank(Rk)}. In fact,
the lower bound in Theorem 5.4 follows from this and the
observation that rank(Lk), rank(Rk) ≤ t.

Using the algorithm from Lemma 5.2, we may compute a
basis for the polynomials computed by the t restricted ABPs
with sink vi, for i = 1, . . . , t, along with a representation
of the remaining polynomials as a linear combination of the
basis functions; we call vi a basis vertex if the polynomial
computed by the restricted ABP with sink vi is part of the
basis. We eliminate each vertex vi that is not a basis vertex,
and each edge connecting vi to a vertex u in the k+1’st level
is replaced by edges connecting u to the appropriate linear
combination of the basis vertices in the k’th level. Now,
we have a new ABP B′ computing the same polynomial as
B, except B′ has exactly rank(Lk) vertices in level k. By
repeating the same procedure in a bottom-up manner, we
obtain a new ABP B′′ computing the same polynomial as
B and where there are at most min{rank(Lk), rank(Rk)}
vertices in the k’th level for any 0 ≤ k ≤ d. It follows from
Theorem 5.4 that B′′ is a smallest ABP computing the same
polynomial as B.

6 Identity Testing for Noncommutative For-
mulas

In this section we apply our randomized algorithm for
“black box” identity testing to the case when the input is
represented by an arithmetic formula. Like in the case of
commutative identity testing, we obtain an algorithm in the
complexity class coRNC. We also remark on a possible
partial derandomization of this algorithm, if certain lower
bounds on the class of matrix identities can be proved.

6.1 Parallel evaluation of arithmetic formulas

We begin with a variant of a theorem by Brent, Kuck, and
Maruyama [3] regarding parallel evaluation of arithmetic
formulas. It is a straightforward generalization of their re-
sult for the noncommutative scenario. For completeness,
we include a sketch of the proof.

We assume that we have a representation of F that al-
lows addition in time O(log |F|) and multiplication in time
O(log2 |F|).

Lemma 6.1. There is a parallel randomized algorithm that,
given a noncommutative formula p(x1, . . . , xn) of size s,
and matrices M1, . . . ,Mn ∈ Fk×k, computes the matrix
p(M1, . . . ,Mn) in parallel in time O(log(s) log2(k|F|))
using poly(sk) processors.

Proof sketch. Let T be the parse tree of formula p. The in-
ternal nodes of p are labeled by gates, and the leaves are
labeled by the variables x1, . . . , xn. Without loss of gener-
ality, assume that all leaves are labeled by distinct variables.
(This does not affect the size of the formula.) By a simple
lemma of Brent [4], if n ≥ 3, there is a node v of T such
that the subtree Tv of T rooted at v has size at least 2n/3,
but both Tvl and Tvr have size at most 2n/3, where vl, vr
are the children of v. Let Ty be the tree obtained from T by
contracting all descendants of v and labelling the new leaf
at v with a new formal variable y.

To evaluate p, we recursively evaluate in parallel all of
Tvl, Tvy , and Ty over the input matrices, treating y as a
formal variable. The formal polynomial represented by Ty

has the form AyB+C, where A, B, and C are polynomials
in x1, . . . , xn only. We show that all of A, B, and C can be
represented by trees TA, TB and TC of total size at most
2n/3. Let θ1, . . . , θk denote the sequence of operations on
the path from y to the root of Ty . Let Ci denote the subtree
of θi that does not contain y. It is not difficult to check that
TA, TB and TC can be constructed as follows:

1. The tree TA is the product of all Ci such that θi = ∗
and Ci is a left child of θi.

2. The tree TB is the product of all Ci such that θi = ∗
and Ci is a right child of θi.

3. The tree TC is obtained from Ty by setting y = 0.

After all of TA, TB , TC and Tv have been evaluated, we
are left with performing two matrix multiplications and one
matrix addition. These can be done in parallel in time
O(log2(k|F|)). The processor and time complexity follow
easily.

Given a formula of size s, we can compute a field ex-
tension F′ of F containing at least s elements in zero-error
probabilistic time poly(|F|, log s) [13]. This observation,

together with Theorem 4.2 and Lemma 6.1 gives the fol-
lowing:

Theorem 6.2. Fix a finite field F. Noncommutative arith-
metic formula identity testing over F is in coRNC.

6.2 Towards a derandomization

For a fixed field F, let k(s) denote the smallest k such
that no noncommutative ABP of size s is a PI for Fk×k.
We observe that given a bound on k(s), Lemma 4.1 gives
the following black-box randomized algorithm for iden-
tity testing of ABPs. Given a polynomial p ∈ F[Y0, Y1]
represented by an ABP of size s, choose random matri-
ces M0,M1 ∈ T k(s)×k(s), where T is a subset of F (or
of a field extension of F) of size at least s/ε, evaluate
p(M0,M1), and accept if p evaluates to the zero matrix.
This test requires (k(s))2 log(s/ε) random bits. (Note that
this can be extended to n variate polynomials by the argu-
ment used in the proof of Theorem 4.2; the randomness be-
comes (k(s log n))2 log(s log n/ε) random bits.)

The Amistur-Levitzki Theorem yields the bound k(s) ≤
s/2, and does not give any improvement over our results
from Section 4.1. However, it appears that all known ex-
amples of PI for k × k matrices have ABP size that is ex-
ponential in k. Although we are unable to prove a general
upper bound for k(s), we illustrate this for two well known
classes of identities.

The best known identity for Fk×k is the standard identity
s2k(x1, . . . , x2k) = 0, where

sn(x1, . . . , xn) =
∑

σ∈Per(n)
sign(σ)xσ(1) . . . xσ(n).

The standard identity is a special case of a more general
class of identities called normal identities. A polynomial
p(x1, . . . , xt, y1, . . . , yn) is t-normal if it is multilinear and
if for all 1 ≤ i < j ≤ t, p vanishes under the substitution
xi = xj . The standard polynomial sn is n-normal. The
following lemma is an easy application of Theorem 5.4, us-
ing standard properties of normal polynomials ([11], Sec-
tion 1.2).

Lemma 6.3. Every t-normal polynomial has ABP size at
least 2t.

Another well known identity for Fn×n is the identity of
algebraicity

an(x, y1, . . . , yn+1) =∑
σ∈Per(n)

y1x
σ(1)y2 . . . ynxσ(n)yn+1.

Lemma 6.4. The polynomial an has ABP size Ω(2n/n5/2).

Proof sketch. We show that there exists a k such that
rank(Mk(an)) = Ω(2n/n5/2). Let St be the collection
of all subsets of [n] of size bn/2c whose entries sum up to
t. By the pigeonhole principle, there must exist a value of t
such that |St| >

(
n

bn/2c
)
/n2 = Ω(2n/n5/2). Fix this t. Let

k = t + bn/2c.
There is a submatrix Nk of Mk(an) that is de-

composable into |St| × |St| blocks, such that its di-
agonal blocks are nonzero but all the other blocks
are zero. It must then hold that rank(Mk(an)) ≥
rank(Nk) ≥ |St|. The rows of Nk are indexed by
terms of the form y1x

s1y2x
s2 . . . ybk/2cx

sbk/2c , where
{s1, . . . , sbk/2c} ∈ St. The columns are indexed by
terms of the form ybk/2cx

sbk/2c+1 . . . xsnyn+1, where [n]−
{sbk/2c+1, . . . , sn} ∈ St.

Finally, we note that there exist noncommutative alge-
bras admitting identities whose formula size is polynomial
in the dimension; for example the algebra of k × k upper
triangular matrices over a field F satisfies the identity

(x1x2 − x2x1)(x3x4 − x4x3) . . . (x2k−1x2k − x2kx2k−1).

7 Acknowledgments

We thank Steve Chien, Ran Raz, Luca Trevisan, and Salil
Vadhan for helpful conversations.

References

[1] S. A. Amistur and J. Levitzki. Minimal identities for alge-
bras. In Proceedings of the of the American Mathematical
Society, volume 1, pages 449–463, 1950.

[2] A. Bogdanov and H. Wee. A stateful implementation of a
random function supporting parity queries over hypercubes.
In Proceedings of the 8th International Workshop on Ran-
domization and Computation (RANDOM), pages 298–309,
2004.

[3] R. Brent, D. Kuck, and K. Maruyama. The parallel evalua-
tion of arithmetic expressions without division. IEEE Trans-
actions on Computers, C-22:532–534, 1973.

[4] R. P. Brent. The parallel evaluation of general arithmetic
expressions. Journal of the ACM, 21(2):201–206, 1974.

[5] S. Chien and A. Sinclair. Algebras with polynomial iden-
tities and computing the determinant. In Proceedings of
the 45th IEEE Symposium on Foundations of Computer Sci-
ence, 2004.

[6] V. Drensky and E. Formanek. Polynomial Identity Rings.
Advanced Courses in Mathematics – CRM Barcelona.
Birkhauser, 2004.

[7] V. Kabanets and R. Impagliazzo. Derandomizing polyno-
mial identity tests means proving circuit lower bounds. In
Proceedings of the 35th ACM Symposium on Theory of Com-
puting, pages 355–364, 2003.

[8] K. Maruyama. The parallel evaluation of matrix expressions.
Technical Report RC 4380, IBM Research Center, Yorktown
Heights, New York, May 1973.

[9] N. Nisan. Lower bounds for non-commutative computation.
In Proceedings of the 23rd ACM Symposium on Theory of
Computing, pages 410–418, 1991.

[10] R. Raz and A. Shpilka. Deterministic polynomial identity
testing in non commutative models. In Proceedings of the
17th Conference on Computational Complexity, pages 215–
222, 2004.

[11] L. H. Rowen. Polynomial Identities in Ring Theory. Aca-
demic Press, 1980.

[12] J. T. Schwartz. Fast probabilistic algorithms for verification
of polynomial identities. Journal of the ACM, 27(4):701–
717, 1980.

[13] M. Sudan. Lecture notes on algebra. http://theory.lcs.mit
.edu/˜madhu/FT01/scribe/algebra.ps, September 2001.

[14] R. E. Zippel. Probabilistic algorithms for sparse polynomi-
als. In Proceedings of EUROSAM 79, pages 216–226, 1979.

