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Abstract. In 1998, Blaze, Bleumer and Strauss put forth a cryptographic primitive, termed proxy
re-encryption, where a semi-trusted proxy is given some piece of information that enables the re-
encryption of ciphertexts from one key to another. Unidirectional schemes only allow translating
from the delegator to the delegatee and not in the opposite direction. In all constructions described
so far, although colluding proxies and delegatees cannot expose the delegator’s long term secret,
they can derive and disclose sub-keys that suffice to open all translatable ciphertexts sent to the
delegator. They can also generate new re-encryption keys for receivers that are not trusted by
the delegator. In this paper, we propose traceable proxy re-encryption systems, where proxies that
leak their re-encryption key can be identified by the delegator. The primitive does not preclude
illegal transfers of delegation but rather strives to deter them. We give security definitions for
this new primitive and a construction meeting the formalized requirements. This construction is
fairly efficient, with ciphertexts that have logarithmic size in the number of delegations, but uses a
non-black-box tracing algorithm. We discuss how to provide the scheme with a black box tracing
mechanism at the expense of longer ciphertexts.

Keywords. unidirectional proxy re-encryption, transferability issues, collusion detection and
traceability.

1 Introduction

Ten years ago, Blaze, Bleumer and Strauss proposed a cryptographic primitive called proxy re-
encryption (PRE), in which a proxy transforms – without being able to infer any information
on the corresponding plaintext – a ciphertext computed under Alice’s public key into one that
can be opened using Bob’s secret key. In all known constructions, if Bob and a malicious proxy
cooperate, they can derive new re-encryption keys without Alice’s consent. The purpose of this
paper is to coin a new notion, that we call traceable proxy re-encryption (TPRE) in which such
misbehaving proxies can be identified by the delegator. We formalize security notions for this
new primitive and give a reasonably efficient construction fitting this model under appropriate
complexity assumptions.

Related work. Blaze et al. [7] proposed the first PRE scheme, where plaintexts and secret
keys remain hidden from the proxy. Unfortunately, their scheme has inherent limitations: the
proxy key also allows translating ciphertexts from Bob to Alice, which may be undesirable, and
the proxy and the delegatee can collude to expose the delegator’s private key.

In 2005, Ateniese, Fu, Green and Hohenberger [4] showed how to construct unidirectional
schemes using bilinear maps and simultaneously prevent proxies from colluding with delegatees
in order to expose the delegator’s long term secret. Their schemes involve two distinct encryption
algorithms: first-level encryptions are not translatable whilst second-level encryptions can be
re-encrypted by proxies into ciphertexts that are openable by delegatees. Let (G1,G2,GT , e, ψ)
be a cryptographic bilinear structure (denoted multiplicatively) of prime order p and let g be
a generator of G1 (see § 2.2 for a definition). Alice and Bob publish the public keys yA = ga
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and yB = gb (respectively) and keep secret their discrete logarithms a and b. To encrypt a
message m ∈ GT to Alice at the second level, a sender picks a random r ∈ Z∗p and trans-
mits the pair (c1, c2) where c1 = yrA and c2 = m · e(g, h)r where h = ψ(g). The proxy is
given the re-encryption key hb/a and can translate ciphertexts from Alice to Bob by computing
(e(c1, hb/a), c2) = (e(g, h)br,m · e(g, h)r). The decryption operations are somewhat similar to
those of the Elgamal [18] cryptosystem. This strategy does not completely withstand collusions
since, if Bob and the proxy cooperates, they obtain the element h1/a which suffices to decrypt
any second-level ciphertext intended to Alice. Even if the last few years saw a renewed interest
in proxy re-encryption [4, 25, 15, 20, 24], all known constructions entail to trust proxies not to
collude with certain participants. Otherwise, sub-keys such as h1/a or new re-encryption keys
can be derived and disclosed over the Internet.

Transferability issues in proxy re-encryption. Following [21], a PRE scheme is said non-
transferable if the proxy and a set of colluding delegatees cannot re-delegate their decryption
rights. The first question that comes to mind is whether transferability is really preventable
since the delegatee can always decrypt and forward the plaintext. However, the difficulty in
retransmitting data restricts this behavior. The security goal is therefore to prevent the delegatee
and the proxy to provide another party with a secret value that can be used offline to decrypt
the delegator’s ciphertexts. Obviously, the delegatee can always send its secret key to this party,
but in doing so, it assumes a security risk that is potentially injurious to itself. In the simple
aforementioned unidirectional system, colluders can unfortunately disclose h1/a which is clearly
harmless to the cheating delegatee and allows for the offline opening of second level ciphertexts
encrypted for the delegator. All other existing unidirectional [4] schemes are actually vulnerable
to this kind of attack.

A desirable security goal is therefore to prevent a malicious proxy (or a collusion of several
rogue proxies) interacting with users to take such actions. To the best of our knowledge, this
non-transferability property has been elusive in the literature. This is not surprising since,
given that proxies and delegatees can always decrypt level 2 ciphertexts by combining their
secrets, they must be able to jointly compute data that allows decrypting and, once revealed
to a malicious third party, ends up with a transfer of delegation. Therefore, discouraging such
behaviors seems much easier than preventing them.

Our contributions. We introduce a new notion, that we call traceable proxy re-encryption
(TPRE), where proxies that reveal their re-encryption key to third parties can be identified
by the delegator. The primitive does not preclude illegal transfers of delegation but provides a
disincentive to them. Unlike prior unidirectional PRE systems, when delegators come across an
illegally formed re-encryption key, they can determine its source among potentially malicious
proxies. It also allows tracing delegatees and proxies that pool their secrets to disclose a pirate
decryption sub-key which suffices to decipher ciphertexts originally intended for the delegator.
Identifying dishonest delegatees is useful in applications such as PRE-based file storage systems
[4] where there is a single proxy (i.e. the access control server) and many delegatees (i.e. end
users). When a pirate decryption sub-key is disclosed in such a situation, we can find out which
client broke into the access control server to generate it.

Deterring potentially harmful actions from parties that are a priori trustworthy may seem
overburden: no one would elect a delegatee without having high confidence in his honesty. In
these regards, the present work is somehow related to ideas from Goyal [19] that aim at avoiding
to place too much trust in entities (i.e. trusted authorities in identity-based encryption schemes)
that must be trusted anyway. Arguably, users are less reluctant to grant their trust when abuses
of delegated power are detectable and discouraged.

We formalize security notions for TPRE and give efficient implementations meeting these
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requirements under different pairing-related assumptions. Our constructions borrow techniques
from traitor tracing schemes [16]. We also make use of a special kind of identity-based encryp-
tion (IBE) system (where arbitrary strings such as email addresses [27, 10] can act as a public
keys so as to avoid costly digital certificates), introduced in 2006 by Abdalla et al. and called
wildcard identity-based encryption (WIBE) [1].

Our main scheme is fairly efficient, with ciphertexts of logarithmic size in the number of
delegations, but the tracing system is non-black-box. Its security relies on (formerly used) mild
pairing-related assumptions and the security analysis takes place in the standard model (with-
out the random oracle heuristic [6]).

We also discuss how the scheme can be equipped with a black-box tracing mechanism at the
expense of longer ciphertexts. The design principle is to associate re-encryption keys with code-
words from a collusion-secure code [13]. This scheme is inspired from a WIBE-based identity-
based traitor tracing scheme [2] and inherits its disadvantages: its computational overhead and
the size of ciphertexts are linear in the length of the underlying code.

Roadmap. In the upcoming sections, we first define the concept of TPRE scheme and its
security model. Then, we describe the intractability assumption that our scheme relies on. In
section 3, we detail our scheme and first provide some intuition of the underlying idea. We finally
give security results. Section 4 briefly explains how to obtain a black-box tracing mechanism.

2 Preliminaries

2.1 Model and security notions

Definition 1. A (single hop) unidirectional PRE scheme is a tuple of algorithms

(Global-setup,Keygen,ReKeygen,CheckKey,Enc1,Enc2,ReEnc,Dec1,Dec2)

- Global-setup(λ) → par: on input of a security parameter λ, this algorithm produces public
parameters par to be used by all parties.

- Keygen(λ, par) → (sk, pk): on input of common public parameters par and a security pa-
rameter λ, all parties use this randomized algorithm to generate a private/public key pair
(sk, pk).

- ReKeygen(par, ski, pkj) → Rij: given public parameters par, user i’s private key ski and
user j’s public key pkj, this (possibly randomized) algorithm outputs a key Rij that allows
re-encrypting second level ciphertexts intended to i into first level ciphertexts encrypted for
j.

- CheckKey(par, ski, pkj , Rij) → b ∈ {0, 1}: is a deterministic algorithm checking the well-
formedness of Rij as a proxy key for re-encrypting messages from user i to j.

- Enc1(par, pk,m) → C: on input of public parameters par, a receiver’s public key pk and a
plaintext m, this probabilistic algorithm outputs a first level ciphertext that cannot be re-
encrypted for another party.

- Enc2(par, pk,m)→ C: given public parameters par, a receiver’s public key pk and a plaintext
m, this randomized algorithm outputs a second level ciphertext that can be re-encrypted into
a first level ciphertext (intended to a possibly different receiver) using the appropriate re-
encryption key.

- ReEnc(par, Rij , C) → C ′: this (possibly randomized) algorithm takes as input public param-
eters par, a re-encryption key Rij and a second level ciphertext C encrypted for user i. The
output is a first level ciphertext C ′ re-encrypted for user j. In single hop schemes, C ′ cannot
be re-encrypted any further.
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- Dec1(par, sk, C) → m: given a private key sk, a first level ciphertext C and system-wide
parameters par, this algorithm outputs a plaintext m ∈ {0, 1}∗.

- Dec2(par, sk, C)→ m: given a private key sk, a second level ciphertext C and public param-
eters par, this algorithm returns a plaintext m ∈ {0, 1}∗.

For any common public parameters par, any message m ∈ {0, 1}∗ and any couple of pri-
vate/public key pair (ski, pki), (skj , pkj) these algorithms should satisfy the following correctness
conditions:

Dec1(par, ski,Enc1(par, pki,m)) = m;
Dec2(par, ski,Enc2(par, pki,m)) = m;

Dec1(par, skj ,ReEnc(par,ReKeygen(par, ski, pkj),Enc2(par, pki,m))) = m;
CheckKey(par, ski, pkj ,ReEnc(par,ReKeygen(par, ski, pkj))) = 1.

In a traceable PRE scheme, there is an additional procedure Trace which, given user i’s private
key ski as well as a pirate proxy key Rbad

ij allowing for illegal translations from i to another user
j, outputs the identity of at least one of the malicious proxies that made up Rbad

ij . Algorithm
Trace can also take as input a pirate decryption key Rbad

i? that, instead of re-encrypting second
level ciphertexts intended for user i, simply directly recovers the underlying plaintext. In this
case, the tracing algorithm should also determine which malicious delegatee has colluded with
the incriminated proxy to generate of Rbad

i? .

Semantic security. As in [4, 15], we require that users publicize public keys only if they hold the
corresponding private keys. This amounts to adopt a trusted key generation model or a model
where all parties have to prove knowledge of their secret keys when registering their public keys
upon certification.

Like [4, 15], we also assume a static model where adversaries do not choose whom to corrupt
depending on the information gathered so far.

Definition 2. A (single-hop) unidirectional PRE scheme is semantically secure at level 2 if the
probability

Pr[(pk?, sk?)← Keygen(λ), {(pkx, skx)← Keygen(λ)}, {(pkh, skh)← Keygen(λ)},
{Rx? ← ReKeygen(skx, pk?)},

{R?h ← ReKeygen(sk?, pkh)}, {Rh? ← ReKeygen(skh, pk?)},
{Rhx ← ReKeygen(skh, pkx)}, {Rxh ← ReKeygen(skx, pkh)},
{Rhh′ ← ReKeygen(skh, pkh′)}, {Rxx′ ← ReKeygen(skx, pkx′)},

(m0,m1, St)← A
(
pk?, {(pkx, skx)}, {pkh}, {Rx?}, {Rh?},
{R?h}, {Rxh}, {Rhx}, {Rhh′}, {Rxx′}

)
,

d? R← {0, 1}, C? = Enc2(md? , pk
?), d′ ← A(C?, St) :

d′ = d?]

is negligibly (as a function of the security parameter λ) close to 1/2 for any PPT adversary A.
In our notation, St is a state information maintained by A while (pk?, sk?) is the target user’s
key pair generated by the challenger that also chooses other keys for corrupt and honest parties.
For other honest parties, keys are subscripted by h or h′ and we subscript corrupt keys by x or
x′. The adversary is granted access to all re-encryption keys but those for re-encrypting from
the target user to a corrupt one. A is said to have advantage ε if this probability, taken over all
coin tosses, is at least 1/2 + ε.
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Security of first level ciphertexts. Definition 2 provides adversaries with a second level challenge
ciphertext. An orthogonal definition captures A’s inability to distinguish first level ciphertexts
as well. For single-hop schemes, the adversary is allowed to see all re-encryption keys in this
definition. As first level ciphertexts cannot be re-encrypted any further, there is no reason to
hold specific honest-to-corrupt re-encryption keys back from the adversary. A unidirectional
scheme fitting this definition is said semantically secure at the first level.

Digital-identity security in PRE. In [4], Ateniese et al. define an important security requirement
for unidirectional PRE schemes. This notion, termed master secret security or digital-identity
security, demands that no coalition of dishonest delegatees and proxies be able to pool their keys
in order to expose the private key of their delegator. More formally, the following probability
should be negligible as a function of the security parameter λ. In our notations, we superscript
pk and sk with ? to denote the keys of the target honest user whereas adversarial users’ keys
are subscripted by x.

Pr[ (pk?, sk?)← Keygen(λ), {(pkx, skx)← Keygen(λ)},
{R?x ← ReKeygen(sk?, pkx)}, {Rx? ← ReKeygen(skx, pk?)},
γ ← A(pk?, {(pkx, skx)}, {R?x}, {Rx?}) : γ = sk? ]

While reasonable in many applications, this definition does not consider colluding delegatees
and proxies who attempt to produce a new re-encryption key R?x′ that was not originally given
and allows re-encrypting from the target user to another malicious party x′. As already stressed,
all known unidirectional PRE schemes fail to resist such attacks. Although colluders are unable
to expose the delegator’s long term secret sk?, they can still compute a sub-key skbad that
allows decrypting ciphertexts at level 2. To address this issue, our model asks that the cheated
delegator be able to determine – at least partially and with high probability – where the illegal
transfer of delegation stems from or who crafted the pirate sub-key skbad. In our scheme, this
unfortunately comes at the expense of sacrificing the key and ciphertext optimality properties
met in [4].

Traceability. Consider a set of proxies P1, P2, . . . , PN that receive re-encryption keys allowing
for the translation of ciphertexts from user A to his delegatees B1, B2, . . . , BN . We say that a
PRE scheme is traceable if any subset of these proxies colluding with delegatees B1, B2, . . . , BN
is unable to generate a new re-encryption key that cannot be traced back to one of them.

Definition 3. A unidirectional PRE scheme is traceable if no PPT adversary A has non-
negligible probability of success in the following game:

1. The challenger provides A with the target user’s public key pk0, public keys pki for other
honest parties and key pairs (ski, pki) for corrupt users.

2. On multiple occasions, A may invoke a re-encryption key generation oracle Orkey. When
queried on input of public keys (pki, pkj) that were both obtained from the challenger, this
oracle returns the re-encryption key Rij = ReKeygen(ski, pkj). Let T be the set of proxy keys
obtained by A.

3. A outputs a pirate re-encryption key R?0t together with a public key pkt that belongs to the
public key space of the scheme (i.e. for which an associated private key exists) and differs
from public keys of the target user’s delegatees. The adversary is declared successful if the
following two conditions hold:

a. CheckKey(sk0, pkt, R
?
0t) = 1 (i.e. R?0t is a valid re-encryption key).
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b. The tracing procedure (run by the challenger on R?0t using the target user’s secret sk0)
fails to identify a correct proxy key Rbad

0j ∈ T .
That is, if Rbad

0j = Trace(sk0, R
?
0t, pkt), we have either Rbad

0j = ⊥ or if Rbad
0j 6∈ T .

The pirate key R?0t should re-encrypt from user 0 to a user having public key pkt. For simplic-
ity, we assume that the latter is supplied by A at the end of the game. When the target user
finds a suspicious re-encryption key R? in practice, he does not a priori know to whom cipher-
texts can be re-encrypted using R?. However, he can determine it by simply testing whether
CheckKey(sk0, p̃kj , R

?) = 1, for j = 1, . . . , η, given a set of suspicious public keys {p̃k1, . . . , p̃kη}.
We insist that pkt may differ from public keys that are generated by the challenger at step

1 of the game. Besides, the definition does not force A to reveal the matching private key skt
to the challenger: the only requirement is that such a private key exists.

At first glance, one may wonder why A should be allowed to come up with an arbitrary pkt
of her choosing whilst delegation queries to Orkey are only permitted for delegatees’ public keys
that were chosen by the challenger.

We actually find it natural to assume that honest users only delegate to parties whose
public key has been properly certified and for which knowledge of the underlying secret key
has been demonstrated to the CA at key registration. In contrast, pkt is not meant to have
a legal use and simply provides a way to covertly translate the target user’s communications.
Hence, there is no reason to assume that the challenger learns skt whatsoever. Finally, when the
proxy is compromised but the delegatee j remains honest, the adversary obtains R0j such that
CheckKey(sk0, pkj , R0j) = 1. Then, she might be able to compute R?0t and pkt (as a function of
pkj) such that CheckKey(sk0, pkt, R

?
0t) = 1. In this case, the adversary clearly does not know

skt. The property that we require is that R?0t can be traced back to the proxy involved in its
creation. Then, if pkt happens to be a registered public key (for which a proof of knowledge of
the underlying private key was provided), the delegator figures out that the original delegatee
was also part of the collusion, as well as the user holding skt.

Bounded Traceability. Similarly to common situations in traitor tracing schemes, it may happen
that traceability is guaranteed only if the adversary makes at most k re-encryption key queries
involving the secret sk0 of the target user acting as a delegator (regardless of whether the
delegatee is honest). On the other hand, she is granted as many re-encryption key queries
involving other honest delegators as she likes. Schemes that are secure in this scenario are said
k-traceable.

Black Box Traceability. A new analogy with traitor tracing primitives suggests to strengthen the
definition by assuming that the adversary only outputs a re-encryption device P that translates
ciphertexts with non-negligible probability but cannot be reverse-engineered so as to extract the
built-in key. Indeed, it has been reported [22] that proxy re-encryption systems can be safely
obfuscated. It would thus be desirable to have a black-box tracing procedure to recover the
identity of colluding parties using P as a re-encryption oracle. A variant of our scheme can be
equipped with a limited black-box tracing mechanism. Due to the use of collusion-secure codes
[13], this variant unfortunately features unreasonably large ciphertexts and cannot be considered
as being practical. Moreover, it only tolerates a bounded number of traitors k. Lastly, it does not
allow to determine who the dishonest delegatees are when running a pirate decryption device
D in tracing mode: only colluding proxies can be traced.

2.2 Bilinear Maps and Complexity Assumptions

We consider a configuration of bilinear map groups (G1,G2,GT ) of prime order p with a mapping
e : G1 ×G2 → GT and an isomorphism ψ : G2 → G1 satisfying the following properties:
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1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G1 ×G2 and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) 6= 1GT whenever g 6= 1G1 and h 6= 1G2 .

We will need an extension of the Decision Bilinear Diffie-Hellman (DBDH) assumption which
is the intractability of distinguishing e(g, h)abc given (ha, hb, hc).

Definition 4. In bilinear map groups (G1,G2,GT ), The Augmented Decision Bilinear
Diffie-Hellman Problem (ADBDH) is to distinguish e(g, h)abc ∈ GT from random elements
of GT given (g, h, ha, hb, hc, ha

2b) ∈ G1 × G5
2. A distinguisher D (τ, ε)-breaks the assumption if

it has running time τ and

Adv(D) = |Pr[D(ha, hb, hc, ha
2b, e(g, h)abc) = 1|a, b, c R← Z∗p]

− Pr[D(ha, hb, hc, ha
2b, e(g, h)z) = 1|a, b, c, z R← Z∗p]| ≥ ε

This problem is not easier than breaking the `-Bilinear Diffie-Hellman Exponent (`-BDHE)
assumption of [11] that implies the infeasibility of recognizing e(ψ(h′), h)(a

`+1) given

(h′, h, ha, h(a2), . . . , h(a`), h(a`+2)) ∈ G`+4
2 .

When a = b, ADBDH boils down to a special case3 of `-BDHE with ` = 1. The generic hardness
ADBDH is thus implied by that of `-BDHE, which was shown in [9].

Our proof of traceability relies on a problem named 2-out-of-3 Diffie-Hellman in [23], where
its generic intractability was shown in prime order groups. A not harder version of this problem
was previously considered in [3].

Definition 5. The 2-out-of-3 Diffie-Hellman problem (2-3-CDH) is, given (h, ha, hb) ∈ G3,
to find a pair (C,Cab) ∈ G×G with C 6= 1G.

3 A Scheme with Logarithmic Complexity

This section presents our main scheme providing non-black-box traceability. It borrows ideas
from the identity-based traitor tracing described in [2].

3.1 Intuition

To provide a better intuition of the scheme, we need the recall the Waters IBE [30] and the
notion of wildcard IBE [1]. The former involves a trusted party that publishes a master public
key mpk = (Z = e(g, h)z, V0, V1, . . . , Vn) ∈ GT × Gn+1

2 where z R← Z∗p and n is the length of
identity strings. The trusted authority keeps a master secret msk = hz to itself. This secret is
used to derive private keys from user’s identities id = i1 . . . in ∈ {0, 1}n by computing

did = (d1, d2) =
(
msk · (V0 ·

n∏
`=1

V i`
` )r, hr

)
for a randomly chosen exponent r R← Z∗p. Such a private key always satisfies

e(g, d1) = Z · e(U0 ·
n∏
`=1

U`, d2) (1)

3 It is actually the hardness of deciding if T
?
= e(g, h)a

2c given (h′ = hc, ha, h(a3)).
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where U` = ψ(V`) for ` = 0, . . . , n. Therefore, a ciphertext encrypted as

C0 = m · Zs C1 = gs C2 =
(
U0 ·

n∏
`=1

U i``
)s
,

for a random s R← Z∗p, can be deciphered by computing m = C0 · e(C2, d2)/e(C1, d1) (this is
easily observed by raising both members of (1) to the power s).

Wildcard IBE schemes [1] (or WIBE for short) are hierarchical IBE systems where certain
levels of the hierarchy can be left unspecified by a sender willing to allow decryption by any
hierarchy member whose identity fits a certain pattern. These WIBE systems were notably used
to construct multi-receiver encryption systems. In the case of Waters’ IBE, the unique level of
the hierarchy can be left unspecified by replacing the ciphertext component C2 with a vector
(U s0 , U

s
1 , . . . U

s
n) so that C2 =

(
U0 ·
∏n
`=1 U

i`
`

)s can be reconstructed at decryption for any identity
id ∈ {0, 1}n. Placing such a “wildcard” at the unique level of the hierarchy permits decryption
by anyone holding a decryption key for some identity. The same underlying idea was used in [2]
to devise an identity-based traitor tracing scheme from a 2-level WIBE built on [30].

At high level, our scheme can be seen as using a multi-receiver encryption scheme derived
from the single level Wa-WIBE of [1]. Instead of assigning a unique identifier to decryption keys
as in [2], we embed it in re-encryption keys.

These re-encryption keys are generated by binding decryption keys of the multi-receiver
scheme to delegatees’ public keys. Identity-based private keys are associated with serial numbers
(seen as identities) and tied up to the public keys of entities to whom messages must be re-
encrypted. More precisely, we let each party j generate an additional public key component
Yj = hyj and a delegation from user i to user j is made effective by the re-encryption key

Rij = (id, Aij , Bij) =
(
id, Y zi

j · (Vi,0 ·
n∏
`=1

V i`
i,`)

r, hr
)

where pki = (Zi = e(g, h)zi , Yi = hyi , Ui,0, . . . , Ui,n) is user i’s public key and Ui,` = ψ(Vi,`)
for ` = 0, . . . , n. The re-encryption algorithm can actually be thought of as translating WIBE
ciphertexts into regular public key encryptions under the delegatee’s public key.

The tracing system is non-black-box. It takes as input a pirate re-encryption key and merely
extracts the built-in serial number from it. With a non-black-box tracing algorithm, we do not
need collusion-secure codes [13]. The proof of traceability takes advantage of the collusion-
resistance of the underlying WIBE and we have logarithmic-size ciphertexts in the number of
delegations.

3.2 The Scheme

For simplicity, we assume that all users have at most N delegatees. Public keys and second level
ciphertexts consist of O(n) = O(logN) group elements.

Global-setup(λ): on input of a security parameter λ, choose bilinear map groups

(G1,G2,GT , e, ψ)

of prime order p > 2λ with generators h R← G2, g = ψ(h).
Keygen(λ): user i sets his public key as

pki =
(
Zi = e(g, h)zi , Yi = hyi , Ui,0 = gui,0 , Ui,1 = gui,1 , . . . , Ui,n = gui,n

)
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for random values (zi, yi, ui,0, ui,1, . . . , ui,n) R← (Z∗p)
n+3. For ` = 0, . . . , n, group elements

Vi,` = hui,` ∈ G2 (that satisfy Ui,` = ψ(Vi,`)) are also computed and included in the private
key ski = (zi, yi, Vi,0, . . . , Vi,n). Let wi,j ∈ {0, 1}n be a unique identifier to be assigned by
user i to the re-encryption key Rij translating to user j. Elements Ui,`, Vi,` define functions

FVi : {0, 1}n → G2 : FVi(wi,j) = Vi,0 ·
n∏
`=1

V
wi,j,`
i,`

and FUi : {0, 1}n → G1 : FUi(wi,j) = ψ
(
FVi(wi,j)

)
.

ReKeygen(ski, pkj): given user i’s private key ski = (zi, yi, Vi,0, . . . , Vi,n) and user j’s pub-
lic key pkj = (Zj , Yj , Uj,0, Uj,1, . . . , Uj,n), choose4 a previously unemployed string wi,j =
wi,j,1 . . . wi,j,n ∈ {0, 1}n and a random exponent r R← Z∗p to generate the unidirectional key

Rij = (wi,j , Aij , Bij) = (wi,j , Y zi
j · FVi(wi,j)

r, hr).

CheckKey(ski, pkj , Rij): given ski = (zi, yi, Vi,0, . . . , Vi,n), parse user j’s public key pkj as

(Zj , Yj , Uj,0, Uj,1, . . . , Uj,n)

and Rij as (wi,j , Aij , Bij). Return 1 if

e(g,Aij) = e(g, Yj)zi · e(FUi(wi,j), Bij) (2)

and 0 otherwise.
Enc1(m, pki, par): to encrypt a message m ∈ GT under the public key

pki = (Zi, Yi, Ui,0, Ui,1, . . . , Ui,n)

at the first level, choose s R← Z∗p and output

C = (C0, C1) =
(
m · e(g, h)s, e(g, Yi)s

)
Enc2(m, pki, par): to encrypt a message m ∈ GT under the public key pki at level 2, the sender

picks a random exponent s R← Z∗p and computes

C = (C0, C1, C2,0, C2,1, . . . , C2,n) =
(
m · Zsi , gs, U si,0, U si,1, . . . , U si,n

)
ReEnc(Rij ,Ci): given the translation key Rij = (wi,j , Aij , Bij) ∈ {0, 1}n×G2

2 and a ciphertext
Ci = (C0, C1, C2,0, . . . , C2,n) ∈ GT ×Gn+2

1 , compute

FUi(wi,j)
s = C2,0 ·

n∏
`=1

C
wi,j,`
2,` =

(
Ui,0 ·

n∏
`=1

U
wi,j,`
i,`

)s
and output

C′j = (C ′0, C
′
1) =

(
C0,

e(C1, Aij)
e(FUi(wi,j)s, Bij)

)
(3)

=
(
m · e(g, h)zis, e(g, Yj)zis

)
=
(
m · e(g, h)s̃, e(g, Yj)s̃

)
(4)

with s̃ = szi.
4 in order to avoid to store wij and r, the delegator can compute them as a pseudorandom function of a short

secret key and the public key pkj .
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Dec1(Cj , skj): given skj = (zj , yj , Vj,0, . . . , Vj,n), parse the ciphertext Cj as (C0, C1) ∈ G2
T .

Return m = C0/C
1/yj
1 .

Dec2(Ci, ski): parse Ci as C = (C0, C1, C2,0, . . . , C2,n) ∈ GT ×Gn+2
1 and ski as

(zi, yi, Vi,0, . . . , Vi,n).

Return m = C0/e(C1, h)zi .
Trace(ski, Rit, pkt): on input of a public key pkt = (Zt, Yt, Ut,0, . . . , Ut,n) and a re-encryption

key Rit = (w,Ait, Bit) ∈ {0, 1}n × G2 × G2 such that CheckKey(ski, pkt, Rit) = 1, this
algorithm incriminates the proxy that has been provided with a re-encryption key including
w as identifier.

The correctness of the re-encryption algorithm is easily checked by observing that re-encryption
keys Rij = (wi,j , Aij , Bij) always satisfy relation (2). Raising both members of the latter to the
power s ∈ Z∗p gives

e(gs, Aij) = e(g, Yj)zis · e(FUi(wi,j)s, Bij)

which explains the transition between relations (3) and (4).
As in prior unidirectional schemes, the proxy and the delegator can collude to compute and

disclose a quantity that allows opening all second level ciphertexts: given Rij = (wi,j , Aij , Bij)
and yj s.t. Yj = hyj , they can obtain

Rbad
i? = (wi,j , A

1/yj
ij , B

1/yj
ij ) =

(
wi,j , h

zi · FVi(wi,j)r
′
, hr

′)
,

with r′ = r/yj , that allows for the off-line decryption of level 2 ciphertexts. However, when

presented with Rbad
i? = (wi,j , A′ij , B

′
ij), the tracing algorithm runs the validity check e(g,A′ij)

?=
Zi · e(FUi(wi,j), B′ij). If the latter test is successful, the the proxy identified by wi,j and its
associated delegatee are both found guilty for having conspired to produce Rbad

i? . The serial
number wi,j makes the source of the collusion evident and provides a deterrent for abuses of
trust.

When the tracing system takes as input a pair (Rit = (w,Ait, Bit), pkt), the original delegatee
j associated the serial number w = wij cannot be incriminated as the corrupt proxy may have
maliciously chosen pkt as a function of pkj (possibly in an attempt to trick user i into believing
that j is not trustworthy).

3.3 Security

Theorem 1. The scheme is semantically secure at the second level under the Augmented DBDH
assumption.

Proof. Let (A = ha, B = hb, C = hc, D = ha
2b, T ) ∈ G4

2 × GT be an Augmented DBDH
instance. We construct an algorithm B that decides if T = e(g, h)abc using its interaction with
a chosen-plaintext adversary A.

All public keys that A gets to see are indexed by an integer i ∈ {0, . . . , Nmax}, where
Nmax + 1 denotes the maximal number of users in the system. Let us call HU ⊂ {0, . . . , Nmax}
the set of honest players, including the target receiver whose public key has index 0. Let also
CU ⊂ {1, . . . , Nmax} denote the set of corrupt receivers. The attack environment is emulated
as follows.
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• Key generation:
- The public key pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n) of the target user is chosen as Z0 =
e(ψ(A), B) = e(g, h)ab and Y0 = hy0 , U0,` = gu0,` with y0, u0,`

R← Z∗p for ` = 0, . . . , n.
- For users i ∈ HU\{0}, public keys are defined by randomly choosing

zi, yi, ui,0, . . . , ui,n
R← Z∗p

and setting Zi = e(g, h)zi , Yi = Ayi = hayi and Ui,` = gui,` for ` = 0, . . . , n.
- For corrupt users i ∈ CU , B generates pki according to the specification of the scheme

and discloses private elements zi, yi, ui,0, . . . , ui,n ∈ Z∗p.
• Re-encryption key generation: to generate re-encryption keys Rij from player i to player j,
B has to distinguish several situations.

- If i ∈ CU or i ∈ HU\{0}, B knows user i’s private key component zi such that Zi =
e(g, h)zi and generates a re-encryption key as specified by the re-encryption algorithm.

- If i = 0 and j ∈ HU\{0}, B picks a new string w0,j ∈ {0, 1}n and a random exponent
r R← Z∗p to return

R0j =
(
w0,j , D

yj · FV0(w0,j)r, hr
)
,

for a random r R← Z∗p. Observe that R0j has the correct shape since Z0 = e(g, h)ab,
Yj = Ayj = hayj and Dyj = (ha

2byj ) = (hayj )ab.
• Challenge: when A comes up with messages m0,m1 ∈ GT , B flips a uniformly distributed

coin d? R← {0, 1} and sets the challenge ciphertext as

C0 = md? · T C1 = ψ(C) C2,` = ψ(C)u0,` for ` = 0, . . . , n.

Since C = hc and Z0 = e(g, h)ab, C = (C0, C1, C2,0, . . . , C2,n) is a valid encryption of md?

under pk0 with the encryption exponent s = c whenever T = e(g, h)abc. When T is random
in GT , C leaks no information on d? and A can only guess it with probability 1/2. Therefore,
B outputs 1 (meaning that T = e(g, h)abc) if A successfully guesses d? and 0 otherwise. ut

Theorem 2. The scheme is semantically secure at the first level under the DBDH assumption.

Proof. Given in appendix A. ut

Theorem 3. The scheme is traceable under the 2-3-CDH assumption in G2.

Proof. For the sake of contradiction, assume that an adversary A defeats the non-black-box
tracing algorithm (in the sense of definition 3) with probability ε. We build an algorithm B′′
solving a 2-3-CDH instance (A = ha, B = hb) with probability O(ε/qrk), where qrk is the number
of re-encryption key queries.

• Key generation: a set of public keys is prepared by B′′. For the target user 0, it first
defines Z0 = e(ψ(A), B) = e(g, h)ab and Y0 = hy0 for a random y0

R← Z∗p. The vector
(V0,0, V0,1, . . . , V0,n) is defined as V0,0 = Aα0−κτ ·hβ0 , V0,` = Aα` ·hβ` for ` ∈ {1, . . . , n} using
random vectors (α0, α1, . . . , αn) R← Zn+1

τ , (β0, β1, . . . , βn) R← Zn+1
p , where κ R← {0, . . . , n} is

chosen at random and τ = 2qrk. For any string w0,j = w0,j,1 . . . w0,j,n ∈ {0, 1}n, we have

FV0(w0,j) = V ′ ·
n∏
`=1

V
w0,j,`

0,` = AJ(w0,j)hK(w0,j)

11



for functions J : {0, 1}n → Z, K : {0, 1}n → Zp respectively defined as

J(w0,j) = α0 +
n∑
`=1

α`w0,j,` − κτ

and

K(w0,j) = β0 +
n∑
`=1

β`w0,j,`.

For ` = 0, . . . , n, B′′ also sets U0,` = ψ(V0,`). As in [30], the simulator will be successful
if J(w0,j) 6= 0 for all strings w0,j 6= w? involved in delegation queries whereas J(w?) = 0
for the identifier w? of the re-encryption key produced by A at the tracing stage. Since
|J(.)| ≤ τ(n+1)� p, we have J(w?) = 0 with non-negligible probability O(1/τ(n+1)). For
all other (honest or corrupt) users i ∈ {1, . . . , Nmax}, public keys are honestly generated by
B′′ that chooses the private keys (zi, yi, ui,0, . . . , ui,n) ∈ Zn+3

p . The latter secrets are given to
A for indices i ∈ CU ⊂ {1, . . . , Nmax} of corrupt users.

• Re-encryption key queries: at any time, Amay ask for re-encryption keys Rij of her choosing.
When i 6= 0, B′′ knows user i’s private key and can normally handle the delegation query.
Otherwise, following the technique of [8, 30], it constructs a re-encryption key by sampling
a fresh random string w0,j

R← {0, 1}n and a random exponent r R← Zp to compute

R0j = (w0,j , A0j , B0j) =

(
w0,j , B

−yj
K(w0,j)

J(w0,j) · FV0(w0,j)r, B
−

yj
J(w0,j) · hr

)
,

where yj ∈ Z∗p is part of user j’s private key, which is returned to A. If we define r̃ =
r − (byj)/J(w0,j), R0j has the correct distribution since

A0j = B
−yj

K(w0,j)

J(w0,j) · F (w0,j)r

= B
−yj

K(w0,j)

J(w0,j) · F (w0,j)r̃ · (AJ(w0,j) · hK(w0,j))
byj

J(w0,j) = (hyj )ab · F (w0,j)r̃

and B0j = hr̃. If J(w0,j) = 0, B′′ aborts as it cannot answer the query.

• Tracing stage: a successful attacker must output a pair (R?0t, pkt) such that

CheckKey(sk0, R
?
0t, pkt) = 1

and R?0t = (w?, A?0t, B
?
0t) cannot be traced to a member of the coalition T . This implies that

w? must differ from all the serial numbers w0j that were associated with user 0’s delegatees.
At this point, B′′ declares failure if J(w?) 6= 0. With probability at least 1/4qrk(n+ 1) (see
[30] for a detailed analysis of this probability) such a failure state is avoided. In this case,
B′′ parses pkt as (Zt, Yt, Ut,0, . . . , Ut,n) and outputs

(
Yt, A

?
0t/B

?
0t
K(w?)) = (Yt, Y ab

t )

which solves the 2-3-CDH problem in G2. ut
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4 A Variant with Black Box k-Traceability

The scheme can be endowed with a black-box tracing mechanism which is similar to the one
described in [2]. The idea is to associate identity-based private keys with the codewords (seen
as identities) of a collusion-secure code [13] instead of serial numbers. These keys are bound to
delegatees’ public keys to form fingerprinted re-encryption keys. Assuming the hardness of the
Decision Diffie-Hellman problem in G1 for configurations where G1 6= G2 (and no isomorphism
from G1 to G2 is computable), well-formed ciphertexts are not publicly recognizable. Then,
pirate re-encryption devices P can be probed with invalid ciphertexts so as to determine the
codeword of one of the pirate re-encryption keys.

As in [2], this comes at the expense of prohibitively large ciphertexts, the size of which
becomes proportional to the length of the collusion-secure code. We need a binary (k,N, ε)-
collusion-secure code (as defined in appendix B), where N is the the maximal number of del-
egatees per user, k is the maximal number of colluding proxies against a delegator and ε is
the maximal probability that a colluder avoids being traced. Such a code can be obtained with
codewords of length n = O

(
k2(logN + log(ε−1))

)
[29], which is also the number of group ele-

ments in a ciphertext. If users have at most N = 100 delegatees, in the case k ≈ 10, we end up
with ciphertexts made of about 700 group elements (which amounts to 13 Kb using curves [5]
where elements of G1 have a 161-bit representation). We leave open the problem of constructing
an efficient black-box traceable scheme.

The tracing system, borrowed from [2], probes re-encryption devices with second level ci-
phertexts wherein certain components have been altered and eventually retrieves bits at all
positions where words in the feasible set of the coalition (see appendices B and C for details)
are identical. More precisely, the tracing algorithm checks whether the pirate device success-
fully re-encrypts ciphertexts where components C2,` (for all ` ∈ {1, . . . , n}), have been tampered
with. If it does, the tracer deduces that C2,` was not used by the pirate device, which means
that the associated bit is 0 in all codewords that were assigned to re-encryption keys available
to the coalition. Once a n-bit word in the feasible set of the coalition has been found, the tracing
procedure of the collusion-secure code allows recovering the fingerprint of one of the involved
re-encryption keys, which identifies a misbehaving proxy.

5 Conclusion

In all PRE schemes proposed so far, proxies and delegatees can derive new re-encryption keys
for receivers that are not trusted by the delegator. In this paper, we proposed traceable proxy
re-encryption systems, in which proxies that leak their re-encryption key can be identified by
the delegator and we presented an efficient realization of this concept. An interesting open issue
is to design a more efficient TPRE scheme with black-box traceability.
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A Proof of Theorem 2

Let (A = ha, B = hb, C = hc, T
?= e(g, h)abc) be a DBDH instance. We show a simple distin-

guisher B′ built from an adversary A against first level challenge ciphertexts. For the target
user, the public key pk0 is made of Z0 = e(g, h)z0 , Y0 = C = hc, U0,` = gu0,` for ` = 0, . . . , n
with z0, u0,0, . . . , u0,n

R← Z∗p. All other users’ public keys are honestly generated and B′ knows
the corresponding secret key ski = (zi, yi, ui,0, . . . , ui,n). Recall that all re-encryption keys must
be given to the adversary. Since B′ knows zi ∈ Zp such that Zi = e(g, h)zi for all users (including
user 0), it can handle all delegation queries on behalf of all parties acting as delegators.

At the challenge step, A outputs messages m0,m1 ∈ GT and expects to receive a challenge
ciphertext encrypted for user 0. To generate it, B′ flips a fair coin d? R← {0, 1} and sets

C0 = md? · e(ψ(A), B) C1 = T.

Since Y0 = hc, it can be readily observed that C = (C0, C1) is a proper encryption of md? with
the encryption exponent s = ab if T = e(g, h)abc. If T is random, the bit d? is perfectly hidden
from A. As usual, B′ decides that T = e(g, h)abc if and only if A’s guess is correct. ut

B Binary Collusion-Secure (Fingerprinting) Codes

In order to make the description of the scheme with black-box traceability self-contained, we
review in this appendix the definition of collusion-secure (fingerprinting) codes from [13]. We
only consider binary codes (i.e. codes defined over {0, 1}) and for more details on collusion-secure
codes, we refer the reader to [13, 29] and references therein.

We begin by defining some notation:

– x ∈ {0, 1}n is called a binary word of length n. For such a word, we write x = x1 . . . xn where
xi ∈ {0, 1} is the ith bit of x (for i ∈ {1, . . . , n}).

– Let I = {1 ≤ i1 < . . . < ij ≤ n} be a set of indices. For a word x ∈ {0, 1}n, x|I denotes the
subword xi1 . . . xij ∈ {0, 1}n made of bits at positions in I.

– Let W = {w1, . . . , wj ∈ {0, 1}n} be a set of words, and let I be the set of all positions where
all strings in W are equal, i.e. I is the maximal set such that w1|I = · · · = wk |I . The feasible
set FS(W ) of W is defined as the set of all strings that are equal to w1, . . . , wk at positions
in I, i.e.

FS(W ) = {x ∈ {0, 1}n : x|I = w1|I = · · · = wk |I}.

The formal definition of collusion-secure codes proposed by Boneh and Shaw in [13] is the
following:

Definition 6. Let 0 < k ≤ N be positive integers and ε ∈ (0, 1]. A binary (k,N, ε) collusion-
secure code of length n consists of a tracing algorithm T , a set C called the codebook, of
indexed codeswords wi for 1 ≤ i ≤ N and a trapdoor τ . These are such that for all collusions
C ⊂ {1, . . . , N} of size at most k, W = {wi : i ∈ C}, and for all (unbounded) algorithms A it
holds that

Pr [T (x, τ) ∈ C|x ∈ FS(W );x← A(W )] > 1− ε,
where the probability is taken over the random coins of T and A.
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C Details of the Scheme with Black-Box Tracing

The variant with black-box traceability is very close to the scheme of section 3 and we just
outline the simple modifications that are required.

As in [2], we assume that pirate devices do not retain state information from prior re-
encryptions when run in tracing mode.

Unlike what occurs in the scheme of section 3, the black-box tracing algorithm does not
allow to incriminate delegatees when we run it on input of a pirate sub-key that decrypts at
level 2. The reason is that the reconstructed word eventually lies in the feasible set of codewords
assigned to all re-encryption keys (i.e. those assigned to dishonest delegatees as well as those
corresponding to honest ones) that were made available to the coalition.

Global-setup(λ): is the same as in section 3.2.
Keygen(λ): is as in section 3.2 with the difference that user i also selects a set Ci of N binary

words wi,1, . . . , wi,N of length n that form a (k,N, ε) collusion-secure code. The latter is
generated with an underlying trapdoor τi to be used by its tracing procedure and that is
also part of user i’s private key. For codewords, elements Ui,`, Vi,` define functions FVi :
{0, 1}n → G2 and FUi : {0, 1}n → G1 as in section 3.2.

ReKeygen, Enc2, Enc1, ReEnc, Dec2 and Dec1 also remain unchanged.
Trace(ski,P): given oracle access to a pirate proxy P that correctly re-encrypts with probability

δ, the tracing algorithm conducts the following steps.
Let pkt = (Zt, Yt, Ut,0, . . . , Ut,n) be the public key under which P re-encrypts ciphertexts.
For ` = 1, . . . , n, initialize a counter ctr` ← 0 and run the following test L = 16λ/δ
times:
1. Choose a random message m ∈ GT and encrypt it using a random exponent s R← Z∗p

to get a ciphertext C = (C0, C1, C2,0, C2,1, . . . , C2,n).
2. Replace element C2,` with a random element from G1.
3. Query the pirate proxy P on the altered ciphertext.
4. If P actually re-encrypts C as a first level ciphertext C′ = (C0, C

′
1) with C ′1 =

e(gs, Yt)zi , increase ctr`.
After these L iterations, set wP

` ← 1 if ctr` < 4λ and wP
` ← 0 otherwise.

The decoded n-bit word wP is finally taken as input by the tracing procedure of the collusion-
secure code that uses the trapdoor τi to uncover the identity of a rogue proxy with probability
ε.

If I denotes the set of positions where all codewords of the coalition are identical, bits of wP

outside I can be arbitrarily chosen by the pirate device (that can notice the ill-formedness of
the ciphertext when its altered component is C2,` for ` 6∈ I). But it does not matter since, as in
[2], the tracing system of the code only needs a word wP ∈ {0, 1}n inside the feasible set.

It is essentially routine to prove the black-box traceability property using ideas from [2] but
a slightly different assumption is needed. As in [2], we first have to count on the difficulty of
DDH in G1 within asymmetric pairing configuration. This assumption obviously requires the
infeasibility of inverting ψ : G2 → G1 and found several applications (see [26, 14, 2] for instance).

Definition 7. The eXternal Diffie-Hellman assumption (XDH) in asymmetric bilinear
groups (G1,G2) posits the hardness of the Decisional Diffie-Hellman problem in G1: given
(ga, gb) ∈ G1

2, distinguishing gab from random should be hard. A distinguisher’s advantage
can be defined as in definition 4.

The second assumption that we make is a generalization – introduced in [3] – of the computa-
tional BDH assumption (CBDH).
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Definition 8. The Generalized Bilinear Diffie-Hellman Problem (GBDH) is, given as
input (ha, hb, hc) ∈ G3

2, to come up with a pair (g′, e(g′, h)abc) ∈ G1 ×GT .

The GBDH assumption is non-standard but it is worth mentioning that any algorithm breaking
it would also be able to solve the Decision Tripartite Diffie-Hellman problem in G2 which is to
distinguish habc from random given (ha, hb, hc) and that has been more widely used (see [12] for
instance).

Theorem 4. The modified scheme is black-box k-traceable assuming that the code is a (k,N, ε)-
collusion-secure code of length n, that the XDH assumption holds in G1 and that the GBDH
problem is hard. More concretely, the advantage of any PPT adversary A in constructing an un-
traceable re-encryption device that translates ciphertexts with probability δ after having obtained
k re-encryption keys is at most

Adv(A)TPRE ≤ ε+ n · (AdvGDBH(B′′) + exp(−λ))

if δ > 2 ·Adv(B′)XDH where B′, B′′ are PPT algorithm that are built on A.

Proof. Given an adversary A that outputs a pirate device P translating ciphertexts with prob-
ability δ, we construct an attacker A′ against the collusion-secure code. The latter adversary
takes a set of k codewords and outputs a new one w′. As in [2], we show that, with all but
negligible probability, A′ avoids being traced whenever A does. Algorithm A′ takes as input a
set of random codewords W = {w1, . . . , wk} and generates public keys on behalf of all honest
and corrupt users i ∈ HU ∪ CU . Codewords of W are used to define the target user’s code-
book while A′ generates itself the codebooks that are part of other users’ private keys. At the
jth re-encryption key of the shape (pk0, pkj) (i.e. involving user 0 as a delegator and pkj as a
delegatee’s public key), A′ fetches a fresh codeword from W and assigns it to the re-encryption
key R0j which is returned to A.

Eventually, A outputs a pirate translation device P which is run in tracing mode so as to
finally reconstruct a n-bit word w′. As in [2], it can be shown that w′ falls outside FS(W ) with
probability smaller than

n · (AdvGDBH(B′′) + exp(−λ)). (5)

Let I be the set of positions that are identical in all words of W . For indices `? ∈ I such
that w`? = 0, lemma 1 first shows that P re-encrypts ciphertexts where C2,`? is random with
probability negligibly close to δ unless the XDH assumption is false. For indices `? ∈ I where
w`? = 1, lemma 2 gives an upper bound on P’s chance to succeed in translating ciphertexts
where C2,`? is perturbed. The claimed bound (5) is obtained through a similar analysis to [2].

ut

Lemma 1. For any `? ∈ {1, . . . , n}, if w0,j,`? = 0 in all codewords w0,j associated with re-
encryption keys available to the coalition, P has probability at least p0 ≥ δ − AdvXDH(λ) to
re-encrypt ciphertexts where C2,`? was tampered with.

Proof. Towards a contradiction, assume that an adversary A comes up with a pirate device P,
where w0,j,`? = 0 in all underlying codewords w0,j , that re-encrypts ciphertexts with probability
p0 ≤ δ − γ for some γ > 0. Then, there exists an algorithm B′ breaking the XDH assumption
with advantage γ.

On input of an XDH instance (A = ga, B = gb, η
?= gab), this algorithm B′ first prepares a

set of public keys by defining the target user’s public key

pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n)
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as Z0 = e(g, h)z0 , Y0 = hy0 , with z0, y0
R← Z∗p, U0,`? = A = ga and U0,` = gu0,` with u0,`

R← Z∗p for
` ∈ {0, . . . , n}\{`?}. Note that pre-images V0,` = hu0,` so that ψ(V0,`) = U0,` are also available
for all ` ∈ {0, . . . , n}\{`?}. For other public keys pki with i ∈ {1, . . . , N}, B′ simply runs the
key generation algorithm according to its specification.

As w0,j,`? = 0 for all codewords w0,j assigned to re-encryption keys R0j queried by A, B′ is
able to compute such keys R0j = (w0,j , Y

z0
j · FV0(w0,j)r, hr) by running ReKeygen (although it

does not know V0,`? = ψ−1(ga)). When A outputs a pirate ciphertext translator P, B′ feeds it
with a ciphertext

C0 = m · e(B, h)z0 C1 = B C2,`? = η C2,` = Bu0,` for ` ∈ {0, . . . , n}\{`?}

for a random message m R← GT . The device P then generates a re-encryption C′ = (C0, C
′
1).

Given the public key pkt = (Zt, Yt, Ut,0, . . . , Ut,n) of the user receiving re-encryptions from P,
B′ can check whether C′ was successfully translated by testing if C ′1 = e(B, Yt)z0 . If yes, B′
outputs 1 (meaning that η = gab). Otherwise, it returns 0 and bets that η is random. ut

Lemma 2. For any `? ∈ {1, . . . , n}, if w0,j,`? = 1 in all codewords w0,j embedded in re-
encryption keys of colluding proxies, then P has probability at most p1 ≤ AdvGBDH(λ) to
re-encrypt ciphertexts where C2,`? was tampered with.

Proof. Assume that A is an adversary producing a re-encryption box P that has non-negligible
probability p1 of re-encrypting ciphertexts where C2,`? has been replaced by a random element
of G1. We construct a distinguisher B′′ solving a computational GBDH instance (A = ha, B =
hb, C = hc).
B′′ first generates a set of public keys. The target user’s public key is set as

pk0 = (Z0, Y0, U0,0, U0,1, . . . , U0,n)

where Z0 = e(ψ(A), B) = e(g, h)ab, Y0 = hy0 and U0,` = gu0,` with y0, u0,`
R← Z∗p for ` ∈

{0, . . . , n}\{`?}. The remaining public key component is chosen as U0,`? = gα0,`? · ψ(A)β0,`? for
random integers α0,`? , β0,`?

R← Z∗p. Note that V0,`? = hα0,`? ·Aβ0,`? is also computable as well as
V0,` = hu0,` for ` 6= `?. For other users i ∈ {1, . . . , n}, public keys pki = (Zi, Yi, Ui,0, Ui,1, . . . , Ui,n)
are calculated as specified by the key generation algorithm and private elements (zi, yi, ui,0, . . . , ui,n)
are known to B′′.

Given that w0,j,`? = 1 for all of the k codewords w0,j contained in re-encryption keys R0j

that A must be provided with, these keys can be generated by choosing r R← Z∗p and setting

A0j = V r
0,`? ·B

−
yjα0,`?

β0,`? ·
n∏

`=0,` 6=`?

(
V r

0,` ·B
−
yju0,`
β0,`?

)w0,j,` , B0j = hr ·B
−

yj
β0,`?

which provides a valid re-encryption key R0j = (w0,j , A0j , B0j) since Xj = hxj and, if we define
r̃ = r − byj/β0,`? , we have B0j = hr̃ and

A0j = V r̃
0,`? · (hα0,`? ·Aβ0,`? )

byj
β0,`? ·B

yjα0,`?

β0,`? ·
n∏

`=0,`6=`?

(
V r̃

0,` · h
u0,`

byj
β0,`? ·B

−
yju0,`
β0,`?

)w0,j,`

= (hyj )ab · V r̃
0,`? ·

n∏
`=0,` 6=`?

(
V r̃

0,`

)w0,j,` .

When B′′ obtains a pirate device P from A, it probes it with a ciphertext

C0
R← GT C1 = ψ(C) C2,`?

R← G1 C2,` = ψ(C)u0,` for ` ∈ {0, . . . , n}\{`?}
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which is a valid ciphertext (with the encryption exponent s = c) where C2,`? has been replaced
by a random element. By assumption, P is assumed to re-encrypt it under some public key
pkt = (Xt, Yt, Ut,0, Ut,1, . . . , Ut,n) that was not involved in a re-encryption key query with user
0 acting as a delegator. When obtaining a re-encryption C′t = (C0, C

′
1) =

(
C0, e(g, Yt)abc

)
=(

C0, e(ψ(Yt), h)abc
)
, B′′ outputs a pair (ψ(Yt), C ′1) which violates the GBDH assumption. ut
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