
New Extensions of Pairing-based Signatures into
Universal (Multi) Designated Verifier Signatures?

Damien Vergnaud

École normale supérieure – C.N.R.S. – I.N.R.I.A.
45 rue d’Ulm, 75230 Paris Cedex 05 – France

Abstract. The concept of universal designated verifier signatures was introduced by Steinfeld,
Bull, Wang and Pieprzyk at Asiacrypt 2003. These signatures can be used as standard publicly
verifiable digital signatures but have an additional functionality which allows any holder of a sig-
nature to designate the signature to any desired verifier. This designated verifier can check that
the message was indeed signed, but is unable to convince anyone else of this fact. We propose
new efficient constructions for pairing-based short signatures. Our first scheme is based on Boneh-
Boyen signatures and its security can be analyzed in the standard security model. We prove its
resistance to forgery assuming the hardness of the so-called strong Diffie-Hellman problem, under
the knowledge-of-exponent assumption. The second scheme is compatible with the Boneh-Lynn-
Shacham signatures and is proven unforgeable, in the random oracle model, under the assumption
that the computational bilinear Diffie-Hellman problem is untractable. Both schemes are designed
for devices with constrained computation capabilities since the signing and the designation pro-
cedure are pairing-free. Finally, we present extensions of these schemes in the multi-user setting
proposed by Desmedt in 2003.

Keywords: pairing-based cryptography, designated verifier signature, security analysis

1 Introduction

Recently many universal designated verifier signature protocols have been proposed (e.g. [14,
20, 23]). The present paper focuses on the proposal of two new efficient constructions for pairing-
based short signatures [4, 5] and on the security treatment of them. The resistance to forgery
of the first scheme relies on the hardness of the strong Diffie-Hellman problem, under the
knowledge-of-exponent assumption, in the standard security model, and the one of the second
scheme relies, in the random oracle model, on the hardness of a new computational problem
(not easier than the widely used computational bilinear Diffie-Hellman problem).

1.1 Related work.

Many cryptographic primitives have been proposed to limit the self-authenticating property of
digital signatures. The primary one: undeniable signatures – introduced by Chaum and van
Antwerpen in 1989 [6] – appeared to have some weaknesses. The concept of designated verifier
signatures was introduced by Jakobsson, Sako and Impagliazzo [11] in order to repair their so-
called lie detector problem. Designated verifier signatures are intended to a specific and unique
designated verifier, who is the only one able to check their validity. Motivated by privacy issues
associated with dissemination of signed digital certificates, Steinfeld, Bull, Wang and Pieprzyk
[20] defined, in 2003, a new kind of signatures called universal designated-verifier signatures
(UDVS). This primitive can function as a standard publicly-verifiable digital signature scheme
but has an additional functionality which allows any holder of a signature to designate the
signature to any verifier. Again, the designated-verifier can check that the message was signed
by the signer, but is unable to convince anyone else of this fact. Designated verifier signatures
? This is the full version of “New Extensions of Pairing-based Signatures into Universal Designated Verifier

Signatures” [22] presented at ICALP’06.

(universal or not) have found numerous applications in financial cryptography (e.g. call for
tenders, electronic voting, electronic auction or distributed contract signing).

Steinfeld et al. proposed an efficient UDVS scheme constructed using any bilinear group-pair.
In collaboration with Laguillaumie, we suggested in [14] a variant which significantly improves
this protocol. Both schemes are compatible with the key-generation, signing and verifying al-
gorithms of the Boneh-Lynn-Shacham [5] signature scheme (BLS). In [4], Boneh and Boyen
proposed efficient pairing-based short signatures (BB) whose security can be analyzed in the
standard security model. A UDVS scheme compatible with a variant of Boneh and Boyen’s
scheme has been proposed by Zhang, Furukawa and Imai [23].

1.2 Contributions of the paper.

The main contribution of the paper is to provide a new efficient UDVS protocol compatible with
the original Boneh-Boyen scheme. The idea underlying our design relies on the flexibility of BB
signatures and specifically on their good behaviour under scalar multiplication. The new scheme,
that we call UDVS-BB, is unforgeable in the standard security model assuming the hardness of
the strong Diffie-Hellman problem [4], under the knowledge-of-exponent assumption (KEA) [2,
8]. The protocol proposed by Zhang et al. is proven unforgeable assuming the hardness of the
same algorithmic problem, but under an additional assumption (which is stronger than KEA).
The security of UDVS-BB can also be proved under a well-defined (though ad hoc) computa-
tional problem without using any non-black-box assumption (such as KEA). The computational
workload of UDVS-BB amounts to three exponentiations over bilinear groups for designating a
signature and four pairing evaluations to verify it, and moreover, the length of the signatures
is much smaller than the one of Zhang et al.’s signatures. Following the general paradigm from
[13], this scheme is readily extended to produce universal multi designated verifier signatures
(UMDVS) [16] that are verifiable in a non-interactive way. The multi-user scheme inherits the
efficiency properties of UDVS-BB with the same signature size (which, in particular, does not
grow with the number of verifiers).

Using the same design principle, we propose a new UDVS protocol compatible with the BLS
signatures which is well-suited for devices with constrained computation capabilities and low
bandwidth. Indeed the designation procedure of the signatures is pairing-free and the resulting
size is comparable to the length of DSA signatures. The proof of security for this scheme, that
we called UDVS-BLS, takes place in the random oracle model [3]: we show that this scheme
is unforgeable with respect to a new computational assumption weaker than the widely used
computational bilinear Diffie-Hellman assumption. In some cases [11, 14] it may be desirable
that UDVSs provide a stronger notion of privacy. The scheme UDVS-BLS provides this secu-
rity requirement assuming the hardness of the xyz-decisional co-Diffie Hellman problem. It is
possible to extend this scheme into a UMDVS one.

2 Definitions

2.1 Notations

The set of n-bit strings is denoted by {0, 1}n and the set of all finite binary strings is denoted
by {0, 1}∗. Let A be a probabilistic Turing machine running in polynomial time (a PPTM,
for short), and let x be an input for A. The probability space that assigns to a string σ the
probability that A, on input x, outputs σ is denoted by A(x). The support of A(x) is denoted
by A[x]. Given a probability space S, a PPTM that samples a random element according to
S is denoted by x

R←− S. For a finite set X, x R←− X denotes a PPTM that samples a random
element uniformly at random from X.

2

2.2 Universal designated verifier signatures

In this subsection, we recall the definitions of UDVS schemes and of their security requirements
[13, 20].

Syntactic definition

Definition 1. A universal designated verifier signature scheme Σ is an 8-tuple

Σ = (Setup,SKeyGen,VKeyGen, Sign,Verify,Designate,Fake,DVerify)

such that

– (Setup, SKeyGen, Sign,Verify) is a signature scheme:
• Σ.Setup is a PPTM which takes an integer k as input. The output are the public pa-

rameters P. k is called the security parameter.
• Σ.SKeyGen is a PPTM which takes the public parameters as input. The output is a pair

(sks, pks) where sks is called a signing secret key and pks a signing public key.
• Σ.Sign is a PPTM which takes the public parameters, a message, and a signing secret

key as inputs and outputs a bit string.
• Σ.Verify is a PPTM which takes the public parameters, a message m, a bit string σ and

a signing public key pks. It outputs a bit. If the bit output is 1 then the bit string σ is
said to be a signature on m for pks.

– Σ.VKeyGen is a PPTM which takes the public parameters as input. The output is a pair
(skv, pkv) where skv is called a verifying secret key and pkv a verifying public key.

– Σ.Designate is a PPTM which takes the public parameters, a message m, a signing public
key pks, a signature σ on m for pks and a verifying public key as inputs and outputs a bit
string.

– Σ.Fake is a PPTM which takes the public parameters, a message, a signing public key and
a verifying secret key as inputs and outputs a bit string.

– Σ.DVerify is a deterministic PPTM which takes the public parameters, a message m, a bit
string τ , a signing public key pks, a verifying public key pkv and the matching verifying secret
key skv as inputs. It outputs a bit. If the bit output is 1 then τ is said to be a designated
verifier signature on m from pks to pkv.

Σ must satisfies the following properties, for all k ∈ N, all P ∈ Σ.Setup[k], all (pks, sks) ∈
Σ.SKeyGen[P], all (pkv, skv) ∈ Σ.VKeyGen[P] and all messages m:

– Correctness of Signature:

∀σ ∈ Σ.Sign[P,m, sks], Σ.Verify[P,m, σ, pks] = {1}.

– Correctness of Designation:

∀σ ∈ Σ.Sign[P,m, sks], ∀τ ∈ Σ.Designate[P,m, pks, σ, pkv],
Σ.DVerify[P,m, τ, pks, pkv, skv] = {1}.

– Source Hiding:

Σ.Designate(P,m, pks, Σ.Sign(P,m, sks), pkv]) = Σ.Fake(P,m, pks, skv).

The correctness properties insure that a properly formed (designated verifier) signature is always
accepted by the (designated) verifying algorithm. The source hiding property states that given
a message m, a signing public key pks, a verifying public key pkv and a designated verifier
signature τ on m from pks to pkv it is (unconditionally) infeasible to determine if τ was produced
by Σ.Designate or Σ.Fake.

3

Security requirements In this section, we state the definitions of unforgeability and privacy of
signer’s identity under a chosen message attack that were introduced in [14, 20]. In the following
Σ = (Setup, SKeyGen,VKeyGen, Sign,Verify,Designate,Fake,DVerify) denotes a UDVS scheme.

Resistance to forgery. The accepted definition of security for signature schemes is existential
unforgeability under adaptive chosen message attack [10]. The notion of UDVS-EF-CMA-security
[14, 20] is a natural extension of this to the UDVS setting.

It is defined via a random experiment parameterized by a security parameter k. The ex-
periment involves an adversarial user A and is as follows: first two public/secret key pairs for
the signer and the verifier are generated by running the key generation algorithms. Then A
engages in polynomially many runs of the signing oracle, the verifying oracle and – possibly –
the random oracle, interleaved at its own choosing. Eventually, A outputs a pair (m?, τ?), such
that m? was never queried to the signing oracle, and it wins if the verifying oracle returns 1
when queried on this pair.

Definition 2. Let A be a PPTM. We consider the following random experiments, where k ∈ N
is a security parameter:

Experiment ExpUDVS-EF-CMA
Σ,A (k)

L ← ∅
P R←− Σ.Setup(k)

(sks, pks)
R←− Σ.SKeyGen(P) ; (skv, pkv) R←− Σ.VKeyGen(P)

(m?, τ?) R←− AS,V(P, pks, pkv)∣∣∣∣S : m 99K Σ.Sign(P,m, sks);L ← L ∪ {m}
V : (m, τ) 99K Σ.DVerify(P,m, τ, pks, pkv, skv)

return 1 if Σ.DVerify(P,m?, τ?, pks, pkv, skv) = {1} and m? /∈ L
0 otherwise.

Let τ, qS, qV ∈ NN, ε ∈ [0, 1]N. We define the success of A via

SuccUDVS-EF-CMA
Σ,A (k) = Pr[ExpUDVS-EF-CMA

Σ,A (k) = 1].

1. A is a (τ, qS, qV)-UDVS-EF-CMA-adversary if for all k ∈ N, the experiment ExpUDVS-EF-CMA
Σ,A (k)

ends in expected time less than τ(k) and in this experiment A makes at most qS(k) (resp.qV(k))
queries to the oracle S (resp.V).

2. Σ is (τ, qS, qV, ε)-UDVS-EF-CMA-secure if for any (τ, qS, qV)-UDVS-EF-CMA-adversary A
and any positive integer k, SuccUDVS-EF-CMA

Σ,A (k) ≤ ε(k).

This definition does not capture that the adversary cannot generate a new signature on a
previously signed message (the so-called strong unforgeability).

Privacy of signer’s identity. As explained in [11], in some cases, it may be desirable that desig-
nated verifier signatures provide a stronger notion of privacy. More precisely, given a designated
verifier signature and two potential signing public keys, it should be computationally infeasible
for an eavesdropper, to determine under which of the two corresponding secret keys the sig-
nature was performed. The privacy of signer’s identity (Ψ) property was formalized in [14] to
capture this security notion.

4

We consider a UDVS-Ψ -CMA-adversary A, which runs in two stages: in the find stage,
it takes two signing public keys pks0 and pks1 and a verifying public key pkv, and outputs a
message m? together with some state information I?. In the guess stage, it gets a challenge
UDVS τ? formed at random under one of the two keys and the information I?, and must say
which key was chosen. The adversary has access to the signing oracles S, to the verifying oracle
V and – possibly – to a random oracle. It is allowed to invoke them on any message with the
restriction of not querying m? from S or V in any stage.

Definition 3. Let A be a PPTM. We consider the following random experiments, where b ∈
{0, 1} and k ∈ N is a security parameter:

Experiment ExpUDVS-Ψ-CMA−b
Σ,A (k)

L ← ∅
P R←− Σ.Setup(k)

(sks0, pks0) R←− Σ.SKeyGen(P) ; (sks1, pks1) R←− Σ.SKeyGen(P),

(skv, pkv) R←− Σ.VKeyGen(P)

(m?, I?) R←− AS,V(find,P, pks0, pks1, pkv)∣∣∣∣S : (m, i) 99K Σ.Sign(P,m, sksi);L ← L ∪ {m}
V : (m, τ, i) 99K Σ.DVerify(P,m, τ, pksi, pkv, skv);L ← L ∪ {m}

σ?
R←− Σ.Sign(P,m?, sksb) ; τ? R←− Σ.Designate(P,m?, pksb, σ

?, pkv)

b?
R←− AS,V(guess, τ?, I?)

return 1 if b = b? and m? /∈ L
0 otherwise.

Let τ, qS, qV ∈ NN, ε ∈ [0, 1]N. We define the advantage of A via

AdvUDVS-Ψ-CMA
Σ,A (k) =

∣∣∣Pr[ExpUDVS-Ψ-CMA−0
Σ,A (k) = 1]− Pr[ExpUDVS-Ψ-CMA−1

Σ,A (k) = 1]
∣∣∣.

1. A is a (τ, qS, qV)-UDVS-Ψ -CMA-adversary if for all k ∈ N, the experiment ExpUDVS-Ψ-CMA
Σ,A (k)

ends in expected time less than τ(k) and in this experiment A makes at most qS(k) (resp.qV(k))
queries to the oracle S (resp.. V).

2. Σ is (τ, qS, qV, ε)-UDVS-Ψ -CMA-secure if for any (τ, qS, qV)-UDVS-Ψ -CMA-adversary A and
any positive integer k, AdvUDVS-Ψ-CMA

Σ,A (k) ≤ ε(k).

Remark 1. Recently, Lipmaa, Wang and Bao [15] have identified a new security requirement for
designated verifier signatures, that they called the non-delegatability. This property captures the
infeasibility for a signer to delegate her authentication capacity without revealing her private
key. In spite of its interest, we do not consider this issue in the following. Indeed, in this
paper, we focus on UDVSs, and it is quite easy to see that, if the underlying designated verifier
signature scheme is non-delegatable then the basic signature scheme is universally forgeable
under a chosen-message attack. In [21], we propose a new definition of non-delegatability for
UDVS schemes and present some new schemes achieving this security requirement.

2.3 Bilinear maps and computational assumptions

The security of asymmetric cryptographic tools relies on assumptions about the hardness of
certain algorithmic problems. Bilinear maps such as Weil or Tate pairing on elliptic curves

5

and hyperelliptic curves have found various applications in cryptography (e.g. [4, 5]). In the
following, we review the definition of cryptographic bilinear maps and in order to highlight that
our schemes apply to any instantiation of BLS and BB signatures, we do not pin down any
particular generator, but instead parameterize definitions and security results by a choice of
generator.

Definition 4. A prime-order-BDH-parameter-generator is a PPTM that takes as input k ∈ N
and outputs a tuple (q,G1,G2,G3, 〈·, ·〉, ψ) satisfying the following conditions:

1. q is a prime with 2k−1 < q < 2k;
2. (G1,+), (G2,+) and (G3, ·) are groups of order q;
3. ψ : G2 −→ G1 is an isomorphism s.t. there exists a PPTM to compute ψ;
4. 〈·, ·〉 : G1 ×G2 −→ G3 satisfies the following properties:

(a) 〈[a]Q, [b]R〉 = 〈Q,R〉ab for all (Q,R) ∈ G1 ×G2 and all (a, b) ∈ Z2;
(b) 〈·, ·〉 is non degenerate (i.e. 〈ψ(P), P 〉 6= 1G3 for some P ∈ G2);
(c) there exists a PPTM to compute 〈·, ·〉.

Let (q,G1,G2,G3, 〈·, ·〉, ψ) be as above, P2 ∈ G2 and let P1 = ψ(P2). In margin to the
classical Diffie-Hellman problems in the groups G1, G2 and G3, the introduction of bilinear
maps in cryptography gives rise to new algorithmic problems [5, 14]. For instance, to analyze
the security of their signatures, Boneh and Boyen [4] introduced a new computational problem,
on which relies also the unforgeability of our scheme UDVS-BB:

`-Strong Diffie-Hellman (`-SDH): let x be an integer smaller than q. Given an integer ` and
([x]P2, . . . , [x`]P2) ∈ G`

2, compute a pair
(
[(x+m)−1]P1,m

)
in G1 × [[1, q − 1]].

We will prove the unforgeability of UDVS-BB assuming the intractability of this problem under
KEA and the one of a new ad-hoc problem (but not easier than the previous one under KEA):

PR1(`): let x, y be two integers smaller than q.
Given ` ∈ N, (m1, . . . ,m`) ∈ [[1, q]]` and ([(x+m1)−1]P2, . . . , [(x+m`)−1]P2) ∈ G`

2, compute a
4-tuple (m,R, S, T) in

(
[[1, q − 1]] \ {m1, . . . ,mqS(k)}

)
×G3

1 such that

〈S,X + [m]P2〉 = 〈R,P2〉 and 〈T, P2〉 = 〈R, Y 〉. (1)

The unforgeability of UDVS-BLS relies also on a new algorithmic problem (but not easier
than the widely used computational bilinear Diffie-Hellman problem):

PR2: let x, y, z be three integers smaller than q. Given [x]P1, [y]P2 and [z]P2, compute a pair
(R,Q) ∈ G1 ×G2 such that 〈R,Q〉 = 〈P1, P2〉xyz.
Its UDVS-Ψ -CMA-security relies on the decisional variant of it that we denote PR3.

Definition 5. Let ` ∈ NN and A be a PPTM. We consider the following random experiments,
where k ∈ N is a security parameter:

Experiment Exp
PR1(`)
Gen,A (k) Experiment ExpPR2

Gen,A(k)

P = (q,G1,G2,G3, 〈·, ·〉, ψ)
R←− Gen(k) P = (q,G1,G2,G3, 〈·, ·〉, ψ)

R←− Gen(k)

P2
R←− G2 \ {OG2} ; (x, y)

R←− [[1, q − 1]]2 P2
R←− G2 \ {OG2} ; (x, y, z)

R←− [[1, q − 1]]3

X ← [x]P2, Y ← [y]P2 X ← [x]ψ(P2), Y ← [y]P2, Z ← [z]P2

for i from 1 to `(k) do (R,Q)
R←− A(P, P2, X, Y, Z)

mi
R←− [[1, q]] ; Ri ← [(x+mi)

−1]ψ(P2) return 1 if (R,Q) ∈ G1 ×G2

(m,R, S, T)
R←− A(P, P2, X, Y,m1, . . . , and 〈R,Q〉 = 〈ψ(P2), P2〉xyz

m`(k), R1, . . . , R`(k)) 0 otherwise
return 1 if (R,S, T) ∈ G3

1

and satisfies (1)
0 otherwise

6

Let τ ∈ NN, ε ∈ [0, 1]N and let i ∈ {1, 2}. We define the successes of A via

SuccPRi
Gen,A(k) = Pr[ExpPRi

Gen,A(k) = 1].

1. A is a τ -PRi-adversary if for all positive integer k, the experiment ExpPRi
Gen,A(k) ends in

expected time less than τ(k).
2. Gen is a (τ, ε)-PRi-secure-generator if for any τ -PRi-adversary A and any positive integer

k, SuccPRi
Gen,A(k) ≤ ε(k).

Definition 6. Let A be a PPTM. We consider the following random experiments, where k ∈ N
is a security parameter:

Experiment ExpPR3-d
Gen,A (k)

P2
R←− G2 \ {OG2} ; (x, y, z, t) R←− [[1, q − 1]]4

X ← [x]ψ(P2), Y ← [y]P2, Z ← [z]P2

if d = 0 then (R,Q)← ([xt]ψ(P2), [yzt−1]P2) otherwise (R,Q) R←− G1 ×G2

b
R←− A((q,G1,G2,G3, 〈·, ·〉, ψ), X, Y, Z,R,Q)

return 1 if b = d
0 otherwise

Let τ ∈ NN, ε ∈ [0, 1]N. We define the advantage of A via

AdvPR3
Gen,A(k) =

∣∣∣Pr[ExpPR3−0
Gen,A (k) = 1]− Pr[ExpPR3−1

Gen,A (k) = 1]
∣∣∣ .

1. A is a τ -PR3-adversary if for all positive integer k, the experiment ExpPR3
Gen,A(k) ends in

expected time less than τ(k).
2. Gen is a (τ, ε)-PR3-secure-generator if for any τ -PR3-adversary A and any positive integer

k, AdvPR3
Gen,A(k) ≤ ε(k).

3 Description of the new schemes

In this section, we describe our new UDVS schemes. The general principle underlying the
construction of UDVS-BB and UDVS-BLS is based on an elegant technique proposed by Damg̊ard
[8] and aimed at making public-key encryption scheme secure against (non-adaptive) chosen
ciphertext attacks. We give in details the ideas underlying their design, since we are convinced
that they may be of independent interest1 (e.g. for the construction of new privacy-preserving
signature schemes).

3.1 Design principle

Let (G,+) be a group of prime order q and let P be a generator of G. In 1991, Damg̊ard
[8] presented a simple variant of the Elgamal encryption scheme in G. In his proposal, Alice
publishes two public keys A1 = [a1]P and A2 = [a2]P and keeps secret their discrete logarithms
a1 and a2. When Bob wants to privately send a message M ∈ G to Alice, he picks uniformly
1 Since the publication of [22], Laguillaumie, Libert and Quisquater [12] have proposed new universal designated

verifier signatures. The technique presented in this paper can be used to improve the efficiency of their schemes.

7

at random an integer r ∈ [[1, q − 1]] and transmits the triple (Q1, Q2, C) where Q1 = [r]P ,
Q2 = [r]A1 and C = M + [r]A2. When she receives the ciphertext (Q1, Q2, C), Alice checks
whether the equality Q2 = [a1]Q1 holds: if it is the case, she retrieves the message M , as
M = C − [a2]Q1, otherwise she rejects the ciphertext.

Damg̊ard proved that if the DDH problem is hard in G, then this scheme is semantically
secure against (non-adaptive) chosen ciphertext attacks, if we assume the so-called knowledge-
of-exponent assumption [2]. Intuitively this assumption states that, without the knowledge of
a1, the only way to generate couples (Q1, Q2) ∈ G2, verifying Q2 = [a1]Q1, is to choose an
integer r ∈ [[1, q − 1]] and to compute Q1 = [r]P and Q2 = [r]A1.

There are many ways in which the formulation of KEA can be varied to capture this intuition
that the only way to generate a Diffie-Hellman triple is to know the corresponding exponent
[2, 8]. Usually, this is done by saying that for any PPTM outputting such a triple, there is
an “extractor” than can return this exponent. For our purposes, it is necessary to allow the
adversary to be randomized as in [1] (in that case, it is important that the extractor gets the
coins $ of the adversary as an additional input, since otherwise the assumption is clearly false).
We propose a similar definition suitable for bilinear structures.

Definition 7. Let A and A be two PPTM’s. We consider the following random experiments,
where k ∈ N is a security parameter:

Experiment Expkea
Gen,A,A(k)

(q,G1,G2,G3, 〈·, ·〉, ψ) R←− Gen(k)

P2
R←− G2 \ {OG2} ; x R←− [[1, q − 1]]

(R,S) R←− Ak((q,G1,G2,G3, 〈·, ·〉, ψ), P2, [x]P2)
r ← Ak((q,G1,G2,G3, 〈·, ·〉, ψ), P2, [x]P2;$)
return 1 if (R,S) ∈ G1 ×G2, ψ(S) = [x]R and R 6= [r]P2

0 otherwise

We define the advantage of A relative to A via

Advkea
Gen,A,A(k) = Pr

[
Expkea

Gen,A,A(k) = 1
]
.

Let ε ∈ [0, 1]N

1. A is a ε-kea-extractor for A if for all positive integer k, Advkea
Gen,A,A(k) ≤ ε(k)

2. We say that the knowledge-of-exponent assumption holds for Gen if there exists a PPTM A
such that for every PPTM A, there exists a negligible function ε such that A is a ε-KEA-
extractor for A.

3.2 Description of the protocol UDVS-BB

Boneh-Boyen’s signatures. In 2004, Boneh and Boyen [4] proposed a new application of
bilinear structures to construct efficient short signatures. Their idea is to plug the message to
be signed in the exponent and, in order to avoid trivial “homomorphic” forgeries, to do so in a
non-linear way. For an entity whose private/public key pair is (u, [u]P2) in [[1, q − 1]]×G2, the
publication of the group element σ = [(u+m)−1]P1 seems to be a good mean to authenticate a
message m ∈ [[1, q− 1]]. Indeed, the computation of σ for a given couple (m, [u]P2) is equivalent
to the resolution of the so called co-CDH problem [5] and it seems to remain difficult even if
the adversary is allowed to choose m and knows [(u + m1)−1]P1, . . . , [(u + ms)−1]P1 in G, for

8

Algorithm UDVS-BB.Setup

Input: k
Output: P
(q,G1,G2,G3, 〈·, ·〉, ψ)

R←− Gen(k)

P2
R←− G2 ; P1 ← ψ(P2) h

R←− h(q − 1)
P ← [(q,G1,G2,G3, 〈·, ·〉, ψ), P1, P2, h]

Algorithm UDVS-BB.Sign

Input: P, m, (ua, va)
Output: σ

h← h(m)

repeat r
R←− [[1, q − 1]]

until ua + h+ var 6= 0 mod q
S ← [(ua + h+ var)

−1]P1

σ ← (r, S)

Algorithm UDVS-BB.VKeyGen

Input: P
Output: (skv, pkv)

ub
R←− [[1, q − 1]]

skv ← ub

pkv ← [ub]P2

Algorithm UDVS-BB.Fake

Input: P, m, ub, (Ua, Va)
Output: τ

(r, t)
R←− [[1, q − 1]]2

R← [t] (ψ(Ua) + [h(m)]P1 + [r]ψ(Va))
Q1 ← [t]P1, Q2 ← [ub]R, Q3 ← R
τ ← (r,Q1, Q2, Q3)

Algorithm UDVS-BB.SKeyGen

Input: P
Output: (sks, pks)

(ua, va)
R←− [[1, q − 1]]2

skv ← (ua, va)
pkv ← ([ua]P2, [va]P2)

Algorithm UDVS-BB.Verify

Input: P, m, (Ua, Va), (r, S)
Output: b

α← 〈S,U + [h(m)]P2 + [r]V 〉
if α = 〈P1, P2〉 then b← 1 else b← 0

Algorithm UDVS-BB.Designate

Input: P, m, (Ua, Va), Ub, (r, S)
Output: τ

t
R←− [[1, q − 1]]

Q1 ← [t]S, Q2 ← [t]ψ(Ub),
Q3 ← [t]P1

τ ← (r,Q1, Q2, Q3)

Algorithm UDVS-BB.DVerify

Input: P, m, ub, (Ua, Va),
(r,Q1, Q2, Q3)

Output: b

α1 ← 〈Q1, Ua + [h(m)]P2 + [r]Va〉
α2 ← 〈Q3, P2〉
β1 ← 〈Q3, [ub]P2〉, β2 ← 〈Q2, P2〉
if α1 = α2 ∧ β1 = β2 then b← 1

else b← 0

Fig. 1. Description of the protocol UDVS-BB(Gen, h)

some mi ∈ [[1, q − 1]] \ {m} (i ∈ [[1, s]]). Boneh and Boyen have proved that this problem is
not easier than the (s + 1)-SDH problem. They also made the important remark that the use
of a second pair of keys (v, [v]P2) in [[1, q − 1]] × G enables to prove the unforgeability of the
scheme under chosen message attacks, in the standard security model: they suggested to replace
the signature σ by a couple ([(u + m + rv)−1]P1, r) where r is picked uniformly at random in
[[1, q− 1]]. Finally, in order to be able to sign arbitrarily long messages, an hash function family
h is added to the public parameters, such that for every group order q output by Gen, h(q)
generates the description of a (collision resistant) hash function h which maps arbitrary long
bit strings on elements from [[1, q − 1]].

The scheme UDVS-BB. Let P = ((q,G1,G2,G3, 〈·, ·〉, ψ), P1, P2) and h be as above, let
(Ua, Va) ∈ G2 be Alice’s public key for BB signatures. The principle underlying the universal
designated verifier signature scheme UDVS-BB is based on Damg̊ard’s idea. Let us suppose that
Bob has published a public key Ub = [ub]P2 and that the pair σ = (r, S) in [[1, q − 1]] × G1

is a BB signature produced by Alice, on a message m. If Cindy wants to designate σ to Bob,
she picks uniformly at random an integer t ∈ [[1, q − 1]] and sets Q1 = [t]S, Q2 = [t]Ub and
Q3 = [t]P2. The quadruple τ = (r,Q1, Q2, Q3) is the resulting designated verifier signature on
m. The protocol UDVS-BB is described with all the details in figure 1. The following simple
observations are intuitive arguments in favor of the security of the protocol.

9

1. Under KEA, the equality
〈Q3, Ub〉 = 〈Q2, P2〉 (2)

insures Bob that Cindy knows the value t such that Q2 = [t]Ub and Q3 = [t]P2.
2. If (2) is satisfied, Bob is convinced that Cindy knows the group element S = [t−1]Q1. The

BB verification equality 〈S,Ua+[h(m)]P2+[r]Va〉 = 〈P1, P2〉, holds if and only if the equality

〈Q1, Ua + [h(m)]P2 + [r]Va〉 = 〈Q3, P2〉 (3)

does. Therefore, if the equalities (2) and (3) are true, the quadruple τ proves to Bob that
Alice has actually signed the message m.

3. However, this quadruple cannot convince anyone else, since it could have been produced by
Bob himself. Indeed, if Bob samples uniformly at random (r, t̃) in [[1, q − 1]]2 and computes
the group elements:

Q1 = [t̃]P1, Q2 = [ubt̃] (Ua + [h(m)]P2 + [r]Va) , Q3 = [t̃]Ua + [t̃ · h(m)]P2 + [t̃ · r]Va,

he produces quadruples which verify (2) and (3) and follow the same distribution as those
produced by Cindy (namely with t ≡q t̃(ua + h(m) + var)).

Remark 2. Given a UDVS produced by UDVS-BB, it is easy, by random scalar multiplication,
to produce a new signature on the same message for the same public keys. It is admitted that
weak forgery is no real threat whatsoever.

Remark 3. The computational workload of UDVS-BB.DVerify for the designated verifier can be
reduced to only two pairing evaluations and one bilinear exponentiation thanks to the knowledge
of ub by checking that Q2 = [ub]Q3 instead of β1 = β2.

Remark 4. In the algorithm UDVS-BB.Fake, the verifier’s secret key ub is used only to compute
Q2 = [ub]R. Therefore, the signer as well as the verifier can delegate his authenticating capacity
(without revealing the secret key) by publishing the elements K1 = [ua·ub]P1 and K2 = [va·ub]P1

in G2. Indeed, the knowledge of (K1,K2) suffices to produce an UDVS τ = (r,Q1, Q2, Q3) on
a message m by picking uniformly at random (r, t) ∈ [[1, q − 1]]2, and computing Q1 ← [t]P1,
Q2 ← [t]K1 + [t ·h(m)]ψ(Ub) + [t · r]K2 and Q3 = [t]ψ(Ua) + [t ·h(m)]P1 + [t · r]ψ(Va). Therefore,
the scheme UDVS-BB is delegatable.

3.3 Description of the protocol UDVS-BLS

Boneh-Lynn-Shacham’s signatures. In [5], Boneh et al. presented the signature scheme
BLS that works in any bilinear cryptographic context. The scheme resembles the undeniable
signature scheme proposed by Chaum and van Antwerpen [6] and can be seen as a variant of the
FDH signature scheme [3]. The protocol BLS is efficient, produces short signatures (for carefully
chosen parameters), and is unforgeable in the random oracle model assuming the intractability
of the co-CDH problem.

The scheme UDVS-BLS. Let Gen be a prime-order-BDH-parameter-generator, let fr ∈ NN,
and let H be an hash function family such that for bilinear structure (q,G1,G2,G3, 〈·, ·〉, ψ)
output by Gen, H(G1) generates the description of an hash function H (modeled in the security
analysis as a random oracle) which maps arbitrary long bit strings on elements from G1. Let
BLS be the associated signature scheme; using the same approach, it is possible to construct a
new UDVS scheme compatible with the BLS signatures. The protocol UDVS-BLS is described
with all the details in figure 2.

10

Algorithm UDVS-BLS.Setup

Input: k
Output: P
(q,G1,G2,G3, 〈·, ·〉, ψ)

R←− Gen(k)

P2
R←− G2 ; nr ← fr(k) ; H R←− H(G1)

P ← [(q,G1,G2,G3, 〈·, ·〉, ψ), P2, nr,H]

Algorithm UDVS-BLS.Sign

Input: P, m, u
Output: σ

r
R←− {0, 1}nr ; H ← H(m, r)

S ← [u]H ; σ ← (r, S)

Algorithm UDVS-BLS.VKeyGen

Input: P
Output: (skv, pkv)

skv = ub
R←− [[1, q − 1]]

pkv = Ub ← [ub]P2

Algorithm UDVS-BLS.Fake

Input: P, m, pks, skv

Output: τ

r
R←− {0, 1}nr ; t

R←− [[1, q − 1]]
Q1 ← [t−1]H(m, r) ; Q2 ← [t · skv]pks

τ ← (r,Q1, Q2)

Algorithm UDVS-BLS.SKeyGen
Input: P
Output: (sks, pks)

sks = ua
R←− [[1, q − 1]]

pks = Ua ← [ua]P2

Algorithm UDVS-BLS.Verify

Input: P, m, Ua, (r, S)
Output: b

H ← H(m, r)
s← 〈H,Ua〉
if s = 〈S, P2〉 then b← 1 else b← 0

Algorithm UDVS-BLS.Designate

Input: P, m, pks, (r, S), pkv

Output: τ

t
R←− [[1, q − 1]]

Q1 ← [t]S ; Q2 ← [t−1]pkv

τ ← (r,Q1, Q2)

Algorithm UDVS-BLS.DVerify

Input: P, m, pks, (r,Q1, Q2), skv

Output: b

H ← H(m, r) s← 〈[skv]H, pks〉
if s = 〈Q1, Q2〉 then b← 1

else b← 0

Fig. 2. Description of the protocol UDVS-BLS(Gen, fr,H)

Let k ∈ N, let P = ((q,G1,G2,G3, 〈·, ·〉, ψ), P2,H) be some output of BLS.Setup(k) and let
Ua = [ua]P2 (resp. Ub = [ub]P2) be Alice’s (resp. Bob’s) public key output by BLS.KeyGen(P).
BLS signatures are elements S = [ua]H ∈ G1, where the group element H is the hash value
of the signed message m and (potentially) some random salt (of size nr = fr(k)). The discrete
logarithm of H is unknown to all users, therefore, whence the signature S is randomized as
above: Q1 = [t]S for some t ∈ [[1, q − 1]], it suffices to reveal the element Q2 = [t−1]Ub to
prove, in a non-transferable way, to Bob that Alice actually signed the message m. The tuple
(P2, Ua, Ub, H, 〈Q1, Q2〉) is indeed a bilinear Diffie-Hellman tuple which could have been pro-
duced by using secret information from Alice or Bob, but not otherwise under the assumption
that the computational bilinear Diffie-Hellman problem problem is intractable.

Remark 5. The protocol UDVS-BLS is delegatable [15]. Indeed, in the algorithm UDVS-BLS.Fake,
the secret key ub from the designated verifier is only used to compute the elementQ2 = [t·ub]Ua ∈
G2 and the signer as well as the verifier can delegate their authenticating capability (without
disclosing their secret key) by publishing the element [ua · ub]P2.

4 Security results

In this section, we state the security properties of our schemes.

4.1 Unforgeability of the scheme UDVS-BB

The theorem below states that the protocol UDVS-BB(Gen, h) is UDVS-EF-CMA-secure assuming
the KEA assumption, the collision-resistance of h and the intractability of the problem `-SDH in

11

Gen, for all polynomial ` ∈ NN. Since KEA is a somewhat strange and impractical assumption,
it would be better if we could do without it, as it has been recently done by Gjøsteen [9]
for Damg̊ard’s encryption scheme. In the following theorem, we prove the unforgeability of
UDVS-BB to PR1(`) without KEA. Finally, since the protocol UDVS-BB is publicly verifiable,
we consider only UDVS-EF-CMA-attackers that do not make queries to the verifying oracle V.

Theorem 1. Let Gen be a prime-order-BDH-generator and h be an hash-function family of
codomain indexed by the orders of groups generated by Gen.

1. If the scheme BB(Gen, h) is EF-CMA-secure against polynomial adversaries, then under the
KEA assumption in Gen, the scheme UDVS-BB(Gen, h) is UDVS-EF-CMA-secure against
polynomial adversaries.

2. If for all polynomial `, Gen is `-SDH-secure against polynomial adversaries and if h is an
hash-function collision-resistant against polynomial adversaries then, under the KEA as-
sumption in Gen, the protocol UDVS-BB(Gen,H) is UDVS-EF-CMA-secure against polynomial
adversaries.

3. Let (τ, qS) ∈ F(N,N)2 and A be a (τ, qS, 0)-UDVS-EF-CMA-adversary against UDVS-BB(Gen, h).
There exist τ ′, τ ′′ ∈ F(N,N) verifying,

τ ′ = τ + qS · (Texp(G1) +O(1)) and τ ′′ = τ +O(1),

a τ ′-PR1(qS)-adversary B against Gen and a τ ′′-Collision-adversary C against h such that,

2 · SuccPR1(qS)
Gen,B + SuccCollision

h,C ≥ SuccUDVS-EF-CMA
UDVS-BB,A .

Proof.

1. The algorithm B which try to forge a signature BB, takes as input some public parameters
P and a signing public key pks. It computes a verifying public key Ub = [ub]P2 by running
the algorithm UDVS-BB.VKeyGen′(P) and then executes the algorithm A on the entries P,
pks and Ub. It forwards A’s signature queries to its own signing oracle and the simulation of
the verifying oracles is straightforward since the protocol UDVS-BB is publicly verifiable.

Let us denoteA′ the algorithm whose execution is identical to the one ofA, but which returns
the pair (Q3, Q2), when A returns τ? = (r,Q1, Q2, Q3). If A’s output is a valid forgery, then
the 4-tuple (ψ(P2), [ub]ψ(P2), Q3, Q2) is a valid Diffie-Hellman 4-tuple. Assuming KEA, there
exists A′ which taken as inputs A′’s random tape and entries, outputs t ∈ [[1, q − 1]] such
that Q3 = [t]P2 et Q2 = [t]Ub with a probability negligibly close to the success of A.

B run the algorithm A′ to get this value t and outputs the pair σ? = (r, [t−1]Q1) which is
a valid forgery for the scheme BB if τ is a valid forgery and Q3 = [t]P2. The probability of
success of B is therefore negligibly close to the one of A and its running time is polynomial.

2. It is a simple consequence of the first part of the theorem and the security theorem from [4].
3. Let Gen be a prime-order-BDH-generator, qS, τ ∈ F(N,N) andA be a (τ, qS, 0)-UDVS-EF-CMA-

adversary against UDVS-BB(Gen). It is readily seen that A can be converted into an attacker
for the simplified scheme defined without the hash function h or into an attacker C against
the collision resistance of h. For the sake of simplicity, we will assume that the scheme works
directly on messages m ∈ [[1, q]].

We will construct an algorithm B which takes as inputs (q,G1,G2,G3, 〈·, ·〉, ψ) generated
by Gen(k), a vector (m1, . . . ,mqS(k)) ∈ [[1, q]]qS(k), (P2, X, Y) ∈ G3

2 and (R1, . . . , RqS(k)) ∈

12

GqS(k)
1 satisfying Ri = [(x + mi)−1]P1 for all i ∈ [[1, qS(k)]] with P1 = ψ(P2) et X = [x]P2,

outputs a 4-tuple

(m,R, S, T) ∈
(
[[1, q − 1]] \ {m1, . . . ,mqS(k)}

)
×G3

1

which satisfies (1).
Our method of proof is inspired by Shoup [19]: we define a sequence of games Exp1, . . . ,
Exp4 starting from the actual UDVS-EF-CMA-adversary A and modify it step by step, until
we reach a final game whose success probability has an upper bound related to solving the
PR1(qS) problem. All the games operate on the same underlying probability space: the
public and private keys of the signature scheme and the coin tosses of A.

Exp1 B1 plays the role of the challenger in the experiment ExpUDVS-EF-CMA
UDVS-BB,A of the definition

2:

Initialization k
P R←− UDVS-BB.Setup(k),

(sks, pks)
R←− UDVS-BB.SKeyGen(P), (skc, pkc)

R←− UDVS-BB.VKeyGen(P)
run A(P, pks, pkc) (m?, τ?).

Simulation of the oracles
• S(m) ! UDVS-BB.Sign(P,m, sks).

In the random experiments Expi, for i ∈ [[1, 5]], we denote by Fi, the event “m? /∈
QS and UDVS-BB.DVerify(P,m?, pks, τ

?, pkc, skc) = 1”. By definition, we have Pr[F1] =
SuccUDVS-EF-CMA

UDVS-BB,A (k).

Exp2 B2 modify the previous simulation by inserting the bilinear structure underlying the
instance of the problem PR1(qS) to solve in the public parameters P.

Initialization k
P ← [(q,G1,G2,G3, 〈·, ·〉, ψ), P1, P2],

(ua, va, ub)
R←− [[1, q − 1]]3, (Ua, Va, Ub)← ([ua]P2, [va]P2, [ub]P2)

run A(P, (Ua, Va), Ub) (m?, τ?).
Simulation of the oracles
• S(m) ! UDVS-BB.Sign(P,m, (ua, va)).

The distribution of A’s entries is unchanged and we have Pr[F2] = Pr[F1].

Exp3 The algorithm B3 precomputes the signatures given to the adversary A and then uses
his knowledge of the secret key ua or va in the chameleon hash function to answer A’s
signature queries. The algorithm B3 distinguishes two types of forgers:

Type 0: the forgers which
(a) either make a signature query on m such that m = −ua;
(b) or return a forgery (m?, τ?) with τ? = (r?, Q?1, Q

?
2, Q

?
3), such that m? + var

? /∈
{m1, . . . ,mqS(k)}.

Type 1: the other forgers, namely those which
(a) do not make a signature query on m such that m = −ua;
(b) and return a forgery (m?, τ?) with τ? = (r?, Q?1, Q

?
2, Q

?
3), such that m? + var

? =
mi for some i ∈ [[1, qS(k)]].

The adversary A is necessarily of one of these two types and the algorithm B4 picks
uniformly at random a bit β ∈ {0, 1}. This algorithm will be able (at the end of the
simulation) to solve the PR1(qS) problem if the adversary A is of type β.

13

Initialization k
P ← [(q,G1,G2,G3, 〈·, ·〉, ψ), P1, P2], c← 1, `← 0, β

R←− {0, 1}
(ua, va, ub)

R←− [[1, q − 1]]3 ; (Ua, Va, Ub)← ([ua]P2, [va]P2, [ub]P2)

(h1, . . . , hqS(k))
R←− [[1, q]]qS(k)

for i from 1 to qS(k) do
if β = 0 then Ti ← [(ua + hi)

−1]P1 else Ti ← [(va + hi)
−1]P1

run A(P, (Ua, Va), Ub) (m?, τ?).
Simulation of the oracles
• S(m): if β = 0 and [m]P2 = −Ua then `← −m mod q

if β = 0 then r ← (hc −m) · v−1
a mod q, S ← Tc

else r ← (ua +m) · h−1
c mod q, S ← [r−1]Tc

if r = 0 then return ⊥ else c← c+ 1, return (r, S).

In both cases, the signatures produced by B3 are perfectly distributed. We have indeed
〈S,Ua + [m]P2 + [r]Va〉 = 〈Tc, Ua + [hc]P2〉 = 〈P1, P2〉, for β = 0 and 〈S,Ua + [m]P2 +
[r]Va〉 = 〈[r−1]Tc, [r · hc]P2 + [r]Va〉 = 〈P1, P2〉 for β = 1.
In the random experiment Expi, let us denote for i ∈ {3, 4}, Ti the event “A is of type
β”. The algorithm B3 aborts the simulation only if A is of type 1−β. Therefore, we have
Pr[F3|T3] = Pr[F2].

Exp4 B4 replace in the following the public keys given as inputs to A and the precomputed
signatures (hi, Si) by elements coming from the instance of the problem to solve.
Initialization k
P ← [(q,G1,G2,G3, 〈·, ·〉, ψ), P1, P2], c← 1, `← 0, β

R←− {0, 1}
if β = 0 then (Ua, Ub)← (X,Y), va

R←− [[1, q − 1]], Va ← [ub]P2

else (Va, Ub)← (X,Y), ua
R←− [[1, q − 1]], Ua ← [ub]P2

(h1, . . . , hqS(k))← (m1, . . . ,mqS(k))
(S1, . . . , SqS(k))← (R1, . . . , RqS(k))
run A(P, (Ua, Va), Ub) (m?, τ?).

In the random experiment Exp3, if β = 0 (resp. if β = 1) the knowledge of (ua, ub, vb)
(resp. of (va, ub, vb)) is not necessary to answer A’s signature queries. Hence, B4 can still
answer A’s queries and since the distribution of the public keys and the precomputed
signatures is unchanged, we get

Pr[F4|T4] = Pr[F3|T3].

Eventually, when A returns the pair (m?, τ?), with τ? = (r?, Q?1, Q
?
2, Q

?
3), the algorithm

B can solve the instance of the problem PR1(qS(k)):
– if A is of type 1 and returns a forgery on a message m? satisfying the relation

(mi −m?) · (r?)−1 = x mod q or if A is of type 0 and has made a signature query
on a message m such that m = −x, then B4 can retrieve the discrete logarithm of X
in base P2 and it can trivially produce a triple (R,S, T) verifying the equality (1);

– otherwise, B computes m = m? + r?va mod q and stops its execution by outputting
the triple (m,R, S, T) ∈ [[1, q − 1]] × G2 × G1 × G3 where m = m? + r?va mod q
R = Q?3, S = Q?1 and T = Q?2.

End of B = B4’s execution (m?, τ?)
(r?, Q?

1, Q
?
2, Q

?
3)← τ?

if β = 1 and ∃mi, [(mi −m?) · (r?)−1]P2 = Ua do `← (mi −m?) · (r?)−1

if ` 6= 0 then m
R←− [[1, q − 1]] \ {m1, . . . ,mqS(k)} ; r

R←− [[1, q − 1]]
R← [r]P1 ; S ← [r(`+m)−1]P1 ; T ← [r]ψ(Y)

if β = ` = 0 then m← m? + r?va mod q
R← Q?

3 ; S ← Q?
1 ; T ← Q?

2

return (m,R, S, T).

14

Clearly, if the event F4 ∩ T4 occurs, the algorithm B = B4 returns a 4-tuple (m,R, S, T)
which satisfies (1) and since Pr[T4] = 1/2, we get

2 · SuccPR1(qS)
Gen,B + SuccCollision

h,C ≥ SuccUDVS-EF-CMA
UDVS-BB,A .

The algorithm B runs in time less than τ(k)+ qS(k)(Texp(G1)+O(1)), which concludes the
proof.

4.2 Unforgeability and anonymity of the scheme UDVS-BLS

We prove (in the random oracle model) that UDVS-BLS is UDVS-EF-CMA-secure under the
assumption that the problem PR2 is intractable in Gen. It is worth noting that this problem is
at least as hard as the computational bilinear Diffie-Hellman problem underlying the schemes
from [14, 20]. We prove also (again in the random oracle model) that the protocol UDVS-BLS
is UDVS-Ψ -CMA-secure under the assumption that the decisional variant of this problem is
intractable in Gen.

Theorem 2. Let fr ∈ F(N,N) and let Gen be a prime-order-BDH-generator. Let (qS, qV, qH, τ) ∈
F(N,N)4.

1. For all (τ, qS, qV)-UDVS-EF-CMA-adversary A against UDVS-BLS(Gen, fr,OH) where OH is
a qH-random oracle, there exists τ ′ ∈ F(N,N) verifying

τ ′ ≤ τ + (qH + qS + 2qV + 2)(Texp(G1) +O(1))

and a τ ′-PR2-adversary B against Gen such that

SuccPR2
Gen,B ≥

SuccUDVS-EF-CMA
UDVS-BLS,A

(1 + 6 · qS · 2fr)(qV + 1)
.

2. For all (τ, qS, qV)-UDVS-Ψ -CMA-distinguisher A against UDVS-BLS(Gen, fr,OH) where OH

is a qH-random oracle, there exists τ ′ ∈ F(N,N) verifying,

τ ′ ≤ τ + (qH + qS + 2qV + 1)(Texp(G1) +O(1)),

and a τ ′-PR3-distinguisher B against Gen such that

AvanPR3
Gen,B ≥

AvanUDVS-Ψ-CMA
UDVS-BLS,A

2
− qS + qV

2fr
.

Proof. 1. The algorithm B, which takes as input (q,G1,G2,G3, 〈·, ·〉, ψ) output by Gen(k),
X ∈ G1 and (P2, Y, Z) ∈ G2

2 and tries to output (R1, R2) ∈ G1 × G2 such that 〈R1, R2〉 =
[xyz]〈P1, P2〉, where P1 = ψ(P2), X = [x]P1, Y = [y]P2 and Z = [z]P2. Our exact security
reduction relies on two clever techniques from [7, 17]:
– Following a well-known technique due to Coron [7], a random coin with expected value
λ ∈ [0, 1] decides whether B introduces the challenge in the answer to the random oracle
or an element with a known preimage. For the optimal value of λ, this introduce the
(small) loss factor (1 + 6 · qS · 2fr) in the success probability.

15

– Using an approach due to Ogata, Kurosawa and Heng [17], introduced to analyze the
security of Chaums undeniable signatures, we do not need a decisional oracle to simulate
the verification queries. The idea is that, unless UDVS-BLS is not unforgeable, all verifi-
cation queries necessarily involve designated verifier signatures that were obtained from
signing oracles (and can be readily checked) or that are invalid. B’s strategy is to guess
which verification query involves a forged signature and reject signatures involved in all
other queries. This is done at the expense of losing the factor (qV + 1) in B’s probability
of success.

For the ease of presentation, let us (at first) assume that B has an access to a decisional
oracle for the problem PR3 (following Okamoto-Pointcheval’s so called gap-problems [18]).

Exp1 B1 plays the role of the challenger in the experiment ExpUDVS-EF-CMA
UDVS-BLS,A of the definition

2, in the random oracle model. It plugs the bilinear structure underlying its problem
instance in the public parameters P. B1 simulate the random oracle OH by storing the
queries made by A into a list denoted H-List (which contains at most (qH(k) + qS(k) +
qV(k) + 1) 4-tuples). B1 manage a counter c (with initial value 0) and for each signing,
verifying or hashing query, B1 executes the routing Message.
Initialization k

c← 0
P ← [(q,G1,G2,G3, 〈·, ·〉, ψ), P1, P2, nr],

(ua, ub)
R←− [[1, q − 1]]2

(Ua, Ub)← ([ua]P2, [ub]P2)
run A(P, Ua, Ub) (m?, τ?).

Message m
if ∃i ∈ [[1, c]], m = mi

then return i
else c← c+ 1

mc ← m ; Lc ← ε ; ν
R←− [0, 1]

while ν < λ and #Lc ≤ qS(k) do ρ
R←− {0, 1}nr ,

Lc ← Lc ∪ {ρ},
ν

R←− [0, 1]
return c.

The oracle queries are then simulated by B1 in a classical way:
Simulation of the oracles
• OH(m, r): if ∃R, (m, r,R, ?) ∈ H-List

then return R

else α
R←− [[1, q − 1]], i← Message(m)

if r ∈ Li then R← [α]P1 else R← [α]X
H-List← H-List ∪ {(mi, r, R, α)},
return R

• S(m): i← Message(m)
if Li = ∅ then return ⊥

else r
R←− Li ; Li ← Li \ {r}

OH(m, r) ; find (mi, r, R, α) in H-List
S ← [α]Ua

return (r, S)
• V(m, τ): i← Message(m),

(r,Q1, Q2)← τ
OH(m, r) ; find (mi, r, R, α) in H-List
return PR3(R,Ua, Ub, Q1, Q2).

In the random experiment Expi, for i ∈ {1, 2}, let us denote Fi, the event
“m? /∈ QS and UDVS-BLS.DVerify(P,m?, pks, τ

?, pkc, skc) = 1.”
Compared to the definition 2, the distribution of A’s entries is unchanged and the simu-
lation of the oracles OH and V is perfect. Moreover, B1 answers without aborting to all

16

signature queries with probability λqS(k), and therefore we have

Pr[F1] ≥ λqS(k)SuccUDVS-EF-CMA
UDVS-BLS,A (k).

Exp2 B2 replace in the following the public keys Ua and Ub furnished to A by the values Y
and Z of unknown discrete logarithms (in base P2).
Initialization k
P ← [(q,G1,G2,G3, 〈·, ·〉, ψ), P2, nr],
(Ua, Ub)← (Y,Z)
run A(P, Ua, Ub) (m?, τ?).

When A returns the pair (m?, τ?), with τ? = (r?, Q?1, Q
?
2), the algorithm B2 executes a

hash query OH(m?, r?) and gets i ∈ [[0, c]] such that m? = mi and (m?, r?, R, α) in H-List.
The algorithm B2 aborts its execution (by returning ⊥) if r? ∈ Li. Otherwise, B2 returns
the pair ([α−1]Q?1, Q

?
2).

End of B = B5’s execution (m?, τ?)
(r?, Q?

1, Q
?
2)← τ?

i← Message(m)
OH(m, r)
find (mi, r, R, α) in H-List
if r? ∈ Li then return ⊥

else return ([α−1]Q?
1, Q

?
2).

The probability that r? /∈ Li is independent from i and equal to

F (λ) = [λ(1− 2−nr)]qS(k) + (1− λ)
qS(k)−1∑
j=1

[λ(1− 2−nr)]j .

By the simulation, if r? /∈ Li and if the event F2 holds, we have R = [α]X and if τ? is a
valid forgery 〈Q?1, Q?2〉 = 〈P1, P2〉xyzα

?
. Therefore, the pair ([α−1]Q?1, Q

?
2) is the solution of

the problem PR2 instance.
The security analysis shows that B = B2 satisfies

SuccPR2
Gen,B(k) ≥ λqS(k)F (λ)SuccUDVS-EF-CMA

UDVS-BLS,A (k)

and runs in time at most τ ′ ≤ τ + (qH + qS + qV + 1)(Texp(G1) + O(1)) + Texp(G3) while
making at most qV(k) queries to the decisional oracle PR3. An easy computation gives
proves the existence of a value λ0 such that λqS(k)

0 F (λ0) ≥ (1 + 6 · qS · 2fr) (see [7]).
In this reduction, if the decisional oracle for the problem PR3 returns 1 for a 5-tuple
(R, Y, Z,Q1, Q2) associated to a verifying query on a pair (mi, (r,Q1, Q2)) and if r /∈ Li, then
the pair ([α−1]Q1, Q2) is a solution of the problem PR2 and there is no need to continue
the execution of A. By using this remark, it is possible to prove the resistance to forgery of
the scheme to the problem PR2 without using the decisional oracle.

A verifying query (made by A or B at the end of its execution) on a pair (mi, (r,Q1, Q2))
is said special if r does not belong to the list Li. Let us denote A the event: “One special
verifying query is made in the random experiment Exp5”, Ai the event “The first special
verifying query in the experiment Exp5 is the i-th”, for i ∈ [[1, qV(k)]] and AqV(k)+1 the event
“The first special verifying query in the experiment Exp5 is the one on the pair (m?, τ?)”.
We have

A =
qV(k)+1⊔
i=1

Ai et F̃2 ⊆ A.

17

where F̃2 is the event “UDVS-BLS.DVerify(P,m?, pks, τ
?, pkc, skc) = 1, m? = mi /∈ QS and

r? /∈ Li.”
In this variant, the algorithm B picks uniformly at random an integer v ∈ [[1, qV(k) + 1]] at
the beginning of its execution. For each verifying queries on (mi, τ) where τ = (r,Q1, Q2),
B gets the 4-tuple (mi, r, R, α) corresponding to the hash value of (mi, r) and
– if r ∈ Li then B returns 1 if and only if 〈Q1, Q2〉 = 〈ψ(Ua), Ub〉α;
– if r /∈ Li and if the verifying query is not the v-th, then B returns 0;
– if r /∈ Li and if the verifying query is the v-th, B stop A’s execution and returns the pair

([α]Q1, Q2).

If the event Av occurs then the simulation of the oracles done by B until the v-th verifying
query is indistinguishable from the previous one and ([α]Q1, Q2) is actually the solution to
the instance (P2, X, Y, Z) of the problem PR2. Consequently, we have

SuccPR2
Gen,B(k) ≥

qV(k)+1∑
i=1

Pr[Ai] · Pr[i = v] =
1

qV(k) + 1

qV(k)+1∑
i=1

Pr[Ai]

=
Pr[A]

qV(k) + 1

≥ Pr[F̃2]
qV(k) + 1

.

This variant of B does not make any call to the oracle DBDH and its execution time is
increased by at most one exponentiation in the group G3 by each query to the oracle V.
This gives the claimed result.

2. The proof is more or less routine (see [14, 17] for instance) and therefore left to the reader.

Remark 6. If the public verification is desirable in an application (e.g. to design a UMDVS
scheme) or if the anonymity property is not necessary, the unforgeability of the protocol
UDVS-BLS can be reinforced. It is indeed possible to add a fourth element to the signature
(namely Q3 = [t−1]P2 ∈ G2 allowing the public verification) in such a way that the scheme
obtained is really close to the protocol UDVS-BB. Since a designated verifier signature for the
protocol UDVS-BLS can be readily derived from one for this scheme and since the underlying
signature scheme is the same, we get immediately that forging a signature for the latter scheme
is at least as hard as for UDVS-BLS. Under the knowledge-of-exponent-assumption in G2, we
can also prove, in the standard security model, the resistance to forgery of the scheme assuming
only the EF-CMA-security of the underlying signature scheme BLS.

5 Extension of the schemes to the Multi-verifier setting

At Crypto’03 rump session, Desmedt opened the question to allow several designated verifiers
in designated verifier signatures. The first step towards this problem was made in [13] with the
introduction of the multi designated verifiers signature primitive and some concrete realizations
of it. The notion of universal multi designated verifier signatures was naturally proposed shortly
afterwards in [16].

5.1 UDVS-BB

Let n ∈ N. The scheme UDVS-BB can be seen as a “discrete-log two-party ring signatures”
and therefore, following the generic construction from [13], it can readily be extended into a

18

universal n-designated verifier signature schemes: the algorithm VKeyGen remains unchanged
and in the signing algorithm, the verifying public key pkv is simply replaced by the sum of the
n verifying public keys

pkv1 + · · ·+ pkvn = [skv1 + · · ·+ skvn]P2.

Using a multi-party computation and the algorithm UDVS-BB.Fake, the designated verifiers
can cooperate to produce an n-designated verifier signature from pks to (pkv1, . . . , pkvn). This
fact, with the source hiding property of UDVS-BB ensure the same property for the multi-
user protocol. Finally, since the algorithm UDVS-BB.DVerify is public (i.e. does not require the
verifying secret key) the algorithm DVerify is identical in the multi-user setting with the verifying
public key pkv replaced again by the sum of the n verifying public keys pkv1 + · · · + pkvn. In
particular, it is very efficient and does not require interaction between the designated verifiers.
It is worth noting, that in order to avoid well-known rogue key attacks, the users should prove
the knowledge of their secret key (in the registered public key model, for instance).

5.2 UDVS-BLS

The scheme UDVS-BLS is not publicly verifiable and therefore it does not enter in the generic
construction proposed in [13]. However, it is possible to adapt this scheme in order to design
a universal n-designated verifier signature scheme for all integer n ≥ 1. With the previous
notations, suppose that Alice (resp. the n verifiers) has published a public key Ua = [ua]P2

(resp. Ubi = [ubi]P2 for i ∈ [[1, n]]) and that the pair σ = (r, S) ∈ [[1, q − 1]] × G1 is a signature
BLS produced by Alice on a message m. If Cindy wants to designate σ to the set of the n
verifiers, she picks uniformly at random an integer t ∈ [[1, q − 1]] and sets Q0 = [t]S and for
all i ∈ [[1, n]], Qi = [t−1]Ubi . The (n + 1)-tuple τ = (r,Q0, Q1, . . . , Qn) is the multi-designated
verifier signature on m.

The pairing insures the correctness of the scheme since the i-th verifier can check the con-
sistency of the multi-DVS by checking for all j ∈ [[1, n]] \ {i} if the equality 〈ψ(Uj), Qi〉 =
〈ψ(Ui), Qj〉, holds and then ascertain its validity thanks to its knowledge of its secret key by
verifying the equality: 〈Q0, Qi〉 = 〈[ubi]H(m, r), Ua〉.

The security properties of the scheme UDVS-BLS(n) are similar to those of the scheme
UDVS-BLS. In the security reduction of unforgeability, a factor 1/n is lost. This factor corre-
sponds to the bet made by the algorithm B on the public key that will not corrupt the adversary
A. Once this choice has been made, the proof is identical to the one of the theorem 2 and we can
easily prove the unforgeability and the anonymity of this scheme assuming the intractability in
Gen of the problems PR2 and PR3 (respectively).

Acknowledgements

It is a pleasure to acknowledge Fabien Laguillaumie and Benôıt Libert for their great comments
and simplifying suggestions on a preliminary version of this paper. I am also grateful to Willy
Susilo and Rui Zhang for providing a copy of their papers [16, 23]. Finally, I would like to thank
the referee for its careful reading of this paper.

References

1. B. Barak, Y. Lindell, and S. Vadhan, Lower Bounds for Non-Black-Box Zero Knowledge., Proceedings of the
44th IEEE Symposium on Foundations of Computer Science (FOCS 2003) (M. Sudan, ed.), IEEE Computer
Society, 2003, pp. 384–393.

19

2. M. Bellare and A. Palacio, The Knowledge-of-Exponent Assumptions and 3-Round Zero-Knowledge Protocols.,
Advances in Cryptology - Crypto 2004 (M. K. Franklin, ed.), Lect. Notes Comput. Sci., vol. 3152, Springer,
2004, pp. 273–289.

3. M. Bellare and P. Rogaway, Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.,
Proceedings of the First ACM Conference on Computer and Communications Security (D. Denning, R. Pyle,
R. Ganesan, R. Sandhu, and V. Ashby, eds.), ACM Press, 1993, pp. 62–73.

4. D. Boneh and X. Boyen, Short Signatures Without Random Oracles., Advances in Cryptology - Eurocrypt
2004 (C. Cachin and J. Camenisch, eds.), Lect. Notes Comput. Sci., vol. 3027, Springer, 2004, pp. 56–73.

5. D. Boneh, B. Lynn, and H. Shacham, Short Signatures from the Weil Pairing., J. Cryptology 17 (2004),
no. 4, 297–319.

6. D. Chaum and H. van Antwerpen, Undeniable Signatures., Advances in Cryptology - Crypto’89 (G. Bras-
sard, ed.), Lect. Notes Comput. Sci., vol. 435, Springer, 1990, pp. 212–216.

7. J.-S. Coron, Optimal Security Proofs for PSS and Other Signature Schemes., Advances in Cryptology -
Eurocrypt 2002 (L. R. Knudsen, ed.), Lect. Notes Comput. Sci., vol. 2332, Springer, 2002, pp. 272–287.

8. I. B. Damg̊ard, Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks., Advances
in Cryptology - Crypto’91 (J. Feigenbaum, ed.), Lect. Notes Comput. Sci., vol. 576, Springer, 1992, pp. 445–
456.

9. K. Gjøsteen, A New Security Proof for Damg̊ard’s ElGamal., Topics in Cryptology - CT-RSA 2006
(D. Pointcheval, ed.), Lect. Notes Comput. Sci., vol. 3860, Springer, 2006, pp. 150–158.

10. S. Goldwasser, S. Micali, and R. L. Rivest, A Digital Signature Scheme Secure Against Adaptive Chosen-
Message Attacks., SIAM J. Comput. 17 (1988), no. 2, 281–308.

11. M. Jakobsson, K. Sako, and R. Impagliazzo, Designated Verifier Proofs and Their Applications., Advances
in Cryptology - Eurocrypt’96 (U. M. Maurer, ed.), Lect. Notes Comput. Sci., vol. 1070, Springer, 1996,
pp. 143–154.

12. F. Laguillaumie, B. Libert, and J.-J. Quisquater, Universal Designated Verifier Signatures Without Random
Oracles or Non-Black Box Assumptions., Fifth Conference on Security and Cryptography for Networks, SCN
2006, to appear, 2006.

13. F. Laguillaumie and D. Vergnaud, Multi-designated Verifiers Signatures., Information and Communications
Security, Sixth International Conference, ICICS 2004 (J. Lopez, S. Qing, and E. Okamoto, eds.), Lect. Notes
Comput. Sci., vol. 3269, Springer, 2004, pp. 495–507.

14. , Designated Verifier Signatures: Anonymity and Efficient Construction from any Bilinear Map.,
Fourth Conference on Security in Communication Networks, SCN 2004 (C. Blundo and S. Cimato, eds.),
Lect. Notes Comput. Sci., vol. 3352, Springer, 2005, pp. 107–121.

15. H. Lipmaa, G. Wang, and F. Bao, Designated Verifier Signature Schemes: Attacks, New Security Notions
and a New Construction., Automata, Languages and Programming, 32nd International Colloquium, ICALP
2005 (L. Caires and L. Monteiro, eds.), Lect. Notes Comput. Sci., vol. 3580, Springer, 2005, pp. 459–471.

16. C. Y. Ng, W. Susilo, and Y. Mu, Universal Designated Multi Verifier Signature Schemes, International
Workshop on Security in Networks and Distributed Systems, SNDS 2005, IEEE Press, 2005, pp. 305–309.

17. W. Ogata, K. Kurosawa, and S.-H. Heng, The Security of the FDH Variant of Chaum’s Undeniable Signature
Scheme, IEEE Trans. Inf. Theory 52 (2006), no. 5, 2006 – 2017.

18. T. Okamoto and D. Pointcheval, The Gap-Problems: a New Class of Problems for the Security of Crypto-
graphic Schemes., 4th International Workshop on Practice and Theory in Public Key Cryptography, PKC
2001 (K. Kim, ed.), Lect. Notes Comput. Sci., vol. 1992, Springer, 2001, pp. 104–118.

19. V. Shoup, OAEP Reconsidered., J. Cryptology 15 (2002), no. 4, 223–249.
20. R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk, Universal Designated-Verifier Signatures., Advances in

Cryptology - Asiacrypt 2003 (C.-S. Laih, ed.), Lect. Notes Comput. Sci., vol. 2894, Springer, 2003, pp. 523–
542.

21. D. Vergnaud, Approximation diophantienne et courbes elliptiques. Protocoles asymétriques d’authentification
non-transférable., Ph.D. thesis, Université de Caen, november 2006.

22. , New Extensions of Pairing-based Short Signatures into Universal Designated Verifier Signatures.,
33rd International Colloquium on Automata, Languages and Programming, ICALP 2006 (M. Bugliesi, B. Pre-
neel, V. Sassone, and I. Wegener, eds.), Lect. Notes Comput. Sci., vol. 4052, Springer, 2006, pp. 58–69.

23. R. Zhang, J. Furukawa, and H. Imai, Short Signature and Universal Designated Verifier Signature without
Random Oracles., Applied Cryptography and Network Security, Third International Conference, ACNS 2005
(J. Ioannidis, A. D. Keromytis, and M. Yung, eds.), Lect. Notes Comput. Sci., vol. 3531, Springer, 2005,
pp. 483–498.

20

