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Abstract. In 1998, Blaze, Bleumer and Strauss introduced a cryptographic primitive called proxy
re-encryption (PRE) in which a proxy can transform – without seeing the plaintext – a ciphertext
encrypted under one key into an encryption of the same plaintext under another key. The concept
has recently drawn renewed interest. Notably, Canetti and Hohenberger showed how to properly
define (and realize) chosen-ciphertext security for the primitive. Their system is bidirectional as
the translation key allows converting ciphertexts in both directions. This paper presents the first
unidirectional proxy re-encryption schemes with chosen-ciphertext security in the standard model
(i.e. without the random oracle idealization). The first system provably fits a unidirectional exten-
sion of the Canetti-Hohenberger security model. As a second contribution, the paper considers a
more realistic adversarial model where attackers may choose dishonest users’ keys on their own. It
is shown how to modify the first scheme to achieve security in the latter scenario. At a moderate ex-
pense, the resulting system provides additional useful properties such as non-interactive temporary
delegations. Both constructions are efficient and rely on mild complexity assumptions in bilin-
ear groups. Like the Canetti-Hohenberger scheme, they meet a relaxed flavor of chosen-ciphertext
security introduced by Canetti, Krawczyk and Nielsen.

1 Introduction

The concept of proxy re-encryption (PRE) dates back to the work of Blaze, Bleumer, and
Strauss in 1998 [11]. The goal of such systems is to securely enable the re-encryption of ci-
phertexts from one key to another, without relying on trusted parties. Recently, Canetti and
Hohenberger [19] described a construction of proxy re-encryption providing chosen-ciphertext
security according to an appropriate definition of the latter notion for PRE systems. Their con-
struction is bidirectional in that any information to translate ciphertexts from Alice to Bob can
also be used to translate from Bob to Alice. This paper deals with the case of unidirectional
PRE schemes and answers the question of how to secure them against chosen-ciphertext attacks
while keeping them efficient. We first achieve this goal in the sense of a natural extension of
the Canetti-Hohenberger security definition to the unidirectional setting. Then, we re-consider
chosen-ciphertext security in a model where weaker assumptions are made on how malicious
parties’ public keys are generated.

1.1 Background

In a PRE scheme, a proxy is given a piece of information that allows turning a ciphertext en-
crypted under a given public key into an encryption of the same message under a different key.
A naive way for Alice to implement such a mechanism is to simply store her private key at the
proxy when she is unavailable: when a ciphertext is heading for her, the proxy decrypts it using
its copy of her secret key and re-encrypts the plaintext using Bob’s public key. The obvious
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problem with this strategy is that the proxy learns the plaintext and Alice’s private key.
In 1998, Blaze, Bleumer and Strauss [11] (whose work is sometimes dubbed BBS) proposed

the first proxy re-encryption scheme where the proxy is kept from knowing plaintexts and secret
keys. It is based on a simple modification of the ElGamal encryption scheme [26]: let (G, ·) be
a group of prime order p and let g be a generator of G; Alice and Bob publish the public keys
X = gx and Y = gy (respectively) and keeps secret their discrete logarithms x and y. To send
a message m ∈ G to Alice, a sender picks uniformly at random an integer r ∈ Zp and transmits
the pair (C1, C2) where C1 = Xr and C2 = m · gr. The proxy is given the re-encryption key y/x
mod p to divert ciphertexts from Alice to Bob via computing (Cy/x1 , C2) = (Y r,m · gr).

This scheme is efficient and semantically secure under the Decision Diffie-Hellman assump-
tion in G. It solves the aforementioned problem since the proxy is unable to learn the plaintext
or secret keys x and y. Unfortunately, Blaze et al. pointed out an inherent limitation: the proxy
key y/x also allows translating ciphertexts from Bob to Alice, which may be undesirable in
situations where trust relationships are not symmetric. They left open the problem of designing
PRE methods without this restriction. Another shortcoming of their scheme is that the proxy
and the delegatee can collude to expose the delegator’s private key x given y/x and y.

In 2005, Ateniese, Fu, Green and Hohenberger [3, 4] showed the first examples of unidirec-
tional proxy re-encryption schemes based on bilinear maps. Moreover, they obtained the master
key security property in that the proxy is unable to collude with delegatees in order to expose
the delegator’s secret. The constructions [3, 4] are also efficient, semantically secure assuming
the intractability of decisional variants of the Bilinear Diffie-Hellman problem [15].

These PRE schemes only ensure chosen-plaintext security, which seems definitely insufficient
for many practical applications. Very recently, Canetti and Hohenberger [19] gave a definition of
security against chosen ciphertext attacks for PRE schemes and described an efficient construc-
tion satisfying this definition. In their model, ciphertexts should remain indistinguishable even
if the adversary has access to a re-encryption oracle (translating adversarially-chosen cipher-
texts) and a decryption oracle (that “undoes” ciphertexts under certain rules). Their security
analysis takes place in the standard model (without the random oracle heuristic [9]). Like the
BBS scheme [11], their construction is bidirectional and they left as an open problem to come
up with a chosen-ciphertext secure unidirectional scheme.

1.2 Related Work

Many papers in the literature – the first one of which being [38] – consider applications where
data encrypted under a public key pkA should eventually be encrypted under a different key
pkB. In proxy encryption schemes [33, 24], a receiver Alice allows a delegatee Bob to decrypt ci-
phertexts intended for her with the help of a proxy by providing them with shares of her private
key. This requires delegatees to store an additional secret for each new delegation. Dodis and
Ivan [24] present efficient proxy encryption schemes based on RSA, the Decision Diffie-Hellman
problem as well as in an identity-based setting [42, 15] under bilinear-map-related assumptions.

Proxy re-encryption schemes are a special kind of proxy cryptosystems where delegatees
only need to store their own decryption key. They find applications in secure e-mail forwarding,
digital rights management (DRM) or distributed storage systems (e.g. [3, 4]). The signature
analogue, also suggested by Blaze, Bleumer and Strauss [11] in 1998, of PRE systems was for-
malized by Ateniese and Hohenberger [5] in 2005. The two techniques were notably combined
[44] to design interoperable DRM systems where digital content can be translated between de-
vices from different DRM domains.

From a theoretical point of view, the first positive obfuscation result for a complex cryp-
tographic functionality was recently presented by Hohenberger, Rothblum, shelat and Vaikun-
tanathan [32]: they proved the existence of an efficient program obfuscator for a family of circuits
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implementing re-encryption.
In [29], Green and Ateniese studied the problem of identity-based PRE and proposed a

unidirectional scheme that can be made chosen-ciphertext secure. Their security results are
presented only in the random oracle model. Also, the recipient of a re-encrypted ciphertext
needs to know who the original receiver was in order to decrypt a re-encryption. In the stan-
dard model, Chu and Tzeng [23] described another identity-based PRE scheme that extends
to provide chosen-ciphertext security. Their scheme is both multi-hop and unidirectional but
fails to provide collusion-resistance (also called master secret security in [3, 4]) as the delegator’s
private key is trivially exposed when a dishonest delegatee and a proxy pool their information.

More recently, Ateniese, Benson and Hohenberger [6] analyzed the notion of ciphertext
anonymity (a.k.a. key privacy) in proxy re-encryption. This notion demands that even the
proxy performing translations be unable to infer useful information on the identities of the
participants between which it re-encrypts ciphertexts.

1.3 Our contributions

In the unidirectional case, this paper aims at achieving chosen-ciphertext security in the stan-
dard model without sacrificing other security properties such as collusion-resistance. While the
scheme of [23] can be modified to satisfy some model of chosen-ciphertext security, it fails to
protect the delegator against colluding delegatees and proxies. In particular, this scheme fails
to satisfy our security modeling for first level ciphertexts. We believe that, as stressed in [3, 4],
the security of delegators against malicious delegatees and proxies should be one of the pursued
goals in the design of unidirectional schemes.

To achieve this goal, we first generalize the work of Canetti and Hohenberger [19] and present
the first construction of chosen-ciphertext secure and collusion-resistant3 unidirectional proxy
re-encryption scheme in the standard model. Although only single-hop (like all known unidi-
rectional schemes that resist collusions), our system is efficient and its security proof requires
a non-interactive (and thus falsifiable [39]) complexity assumption in bilinear groups. It builds
on the first unidirectional scheme from [3, 4], which we briefly recall at the beginning of sec-
tion 3. The technique used by Canetti-Hohenberger to acquire CCA-security does not directly
apply to the latter scheme because, in a straightforward adaptation of [19] to [3], the validity
of translated ciphertexts cannot be publicly checked. To overcome this difficulty, we need to
modify (and actually randomize) the re-encryption algorithm of Ateniese et al. so as to render
the validity of re-encrypted ciphertexts publicly verifiable.

As a second contribution (and a novelty w.r.t. the proceedings version of the paper [37]),
we further strengthen our security model by allowing adversaries to inject their own keys in the
system. A limitation of all known proxy re-encryption systems – even including passively secure
or bidirectional ones [3, 19] – is that their security is analyzed in a model that implicitly makes
the knowledge of secret key (KOSK) assumption [12] and does not capture a scenario where
the generation malicious users’ public keys is left to adversaries themselves. The KOSK model
is frequently used to hedge against certain harmful adversarial behaviors. It typically requires
that, before being introduced in a multi-user system, any adversarially-controlled public key
should be properly registered and knowledge of the matching secret key should be proven to the
certification authority (CA). For the sake of simplicity, security proofs (e.g. [12, 8]) frequently
assume that adversaries merely reveal their private key to a so-called ‘key registration authority’
whenever they create a public key for themselves. As will be discussed in the second part of

3 The earlier version [37] of this paper appeared before we became aware of the independent work [23] that
focuses on the identity-based setting. The present one assumes traditional (i.e., non-identity-based) public
keys and however considers stronger adversarial models: dishonest delegation partners are notably allowed to
collude with proxies.
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section 2.1, this requirement, that amounts to assume some ideal trusted key generation phase,
may be worrisome to rely on in practice. We therefore show how to modify our first scheme
to prove it secure in a more powerful model, called chosen key model, where the adversary
can freely choose her own public keys without honestly following the specification of the key
generation algorithm. In particular, she may even come up with public keys that are calculated
as functions of honest users’ keys and for which she does not know the corresponding secret
keys. To handle queries involving such wicked public keys, we use techniques that were first
introduced for identity-based encryption [13].

Whenever users delegate some of their rights to another party, there is always the chance
that they will either need or want to revoke those rights later on. In [3, 4], Ateniese et al. designed
a unidirectional PRE scheme that allows for temporary delegations: that is, re-encryption keys
can only be used during a restricted time interval outside which translations are not possible
any longer. The latter temporary PRE assumes a trusted server periodically updating public
parameters and also entails the participation of delegatees in each temporary delegation. As
a third contribution, we devise4 a chosen-ciphertext secure scheme with temporary delegation
in the chosen key model. Beyond its security against strong adversaries, one of the advantages
of this new scheme is that temporary delegations remain non-interactive (i.e., no action from
the delegatee is required at each temporary delegation) and do not require to rely on a trusted
server publishing modified parameters at discrete time intervals. We additionally outline how to
optimize the storage at the proxy when re-encryption rights are granted for several consecutive
time periods. Our new scheme also lends itself to extensions such as keyword-controlled delega-
tions, where proxy keys can only re-encrypt ciphertexts that are tagged with specific keywords.

1.4 Roadmap

The paper is organized as follows: we recall the concept of unidirectional proxy re-encryption
and its security model in section 2.1. We review the properties of bilinear maps and the in-
tractability assumption that our scheme relies on in section 2.2. Section 3 describes the main
new scheme, gives the intuition behind its construction and a security proof. We give in sec-
tion 4 the description of the scheme secure in the chosen-key model that additionnaly provides
temporary delegation.

2 Preliminaries

2.1 Model and security notions

This section first recalls the syntactic definition of unidirectional proxy re-encryption suggested
by Ateniese et al. [3, 4]. We then consider an appropriate definition of chosen-ciphertext security
for unidirectional PRE schemes which is directly inferred from the one given by Canetti and
Hohenberger [19] in the bidirectional case. Like [19], we consider security in the replayable CCA
sense [20] where a harmless mauling of the challenge ciphertext is tolerated.

Definition 1. A (single hop) unidirectional PRE scheme consists of a tuple of algorithms
Global-setup, Keygen, ReKeygen, Enc1, Enc2, ReEnc, Dec1, Dec2):

- Global-setup(λ) → par: this algorithm is run by a trusted party that, on input of a security
parameter λ, produces a set par of public parameters to be used by all parties in the scheme.

4 This novel construction improves the first example of chosen-ciphertext secure PRE with temporary delegations
given in the first version [37] of the paper. Like [3, 4], the latter system required interactive delegations and
dynamically changing public parameters.
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- Keygen(λ, par)→ (sk, pk): on input of public parameters par and a security parameter λ, all
parties use this randomized algorithm to generate a private/public key pair (sk, pk).

- ReKeygen(par, ski, pkj) → Rij: given public parameters par, user i’s private key ski and
user j’s public key pkj, this (possibly randomized) algorithm outputs a key Rij that allows
translating second level ciphertexts intended for i into first level ciphertexts encrypted for j.

- Enc1(par, pk,m) → C: on input of public parameters par, a receiver’s public key pk and a
plaintext m, this probabilistic algorithm outputs a first level ciphertext that cannot be re-
encrypted for another party.

- Enc2(par, pk,m) → C: given public parameters par, a public key pk and a plaintext m, this
randomized algorithm outputs a second level ciphertext that can be re-encrypted into a first
level one (intended for a possibly different receiver) using the suitable re-encryption key.

- ReEnc(par, Rij , C) → C ′: this (possibly randomized) algorithm takes as input public param-
eters par, a re-encryption key Rij and a second level ciphertext C encrypted under user
i’s public key. The output is a first level ciphertext C ′ re-encrypted for user j. In a single
hop scheme, C ′ cannot be re-encrypted any further. If the well-formedness of C is publicly
verifiable, the algorithm should output ‘invalid’ whenever C is ill-formed w.r.t. Xi.

- Dec1(par, sk, C)→ m: on input of a private key sk, a first level ciphertext C and system-wide
parameters par, this algorithm outputs a plaintext m ∈ {0, 1}∗ or a message ‘invalid’.

- Dec2(par, sk, C)→ m: given a private key sk, a second level ciphertext C and common public
parameters par, this algorithm returns either a plaintext m ∈ {0, 1}∗ or ‘invalid’.

Moreover, for any common public parameters par, for any message m ∈ {0, 1}∗ and any cou-
ple of private/public key pair (ski, pki), (skj , pkj) these algorithms should satisfy the following
conditions of correctness:

Dec1(par, ski,Enc1(par, pki,m)) = m;
Dec2(par, ski,Enc2(par, pki,m)) = m;

Dec1(par, skj ,ReEnc(par,ReKeygen(par, ski, pkj),Enc2(par, pki,m))) = m.

To lighten notations, we will sometimes omit to explicitly write the set of common public
parameters par, taken as input by all but one of the above algorithms.

Chosen-ciphertext security. The definition of chosen-ciphertext security that we first con-
sider is naturally inspired from the bidirectional case [19] which in turn extends ideas from
Canetti, Krawczyk and Nielsen [20] to the proxy re-encryption setting. For traditional public
key cryptosystems, in this relaxation of the Rackoff-Simon definition [40], an adversary who
can simply turn a given ciphertext into another encryption of the same plaintext is not deemed
successful. In the game-based security definition, the attacker is notably disallowed to ask for
a decryption of a re-randomized version of the challenge ciphertext. This relaxed notion was
argued in [20] to suffice for most practical applications.

Security of second level ciphertexts. This first definition considers a challenger that produces
a number of public keys. As in [19], we do not allow the adversary to adaptively determine
which parties will be compromised. On the other hand, we also allow her to adaptively query
a re-encryption oracle and decryption oracles. A difference with [19] is that the adversary A is
directly provided with re-encryption keys that she is entitled to know (instead of leaving her
adaptively request them as she likes). We also depart from [19], and rather follow [3, 4], in that
we let the target public key be determined by the challenger at the beginning of the game. Unlike
[3, 4], we allow the challenger to reveal re-encryption keys Rij when j is corrupt for honest users
i that differ from the target receiver. We insist that such an enhancement only makes sense for
single-hop schemes (as A would trivially win the game if the scheme were multi-hop).
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Definition 2. A (single-hop) unidirectional PRE scheme is replayable chosen-ciphertext secure
(RCCA) at level 2 if the probability

Pr[(pk?, sk?)← Keygen(λ), {(pkx, skx)← Keygen(λ)}, {(pkh, skh)← Keygen(λ)},
{R?h ← ReKeygen(sk?, pkh)}, {Rh? ← ReKeygen(skh, pk?)},
{Rhh′ ← ReKeygen(skh, pkh′)}, {Rhx ← ReKeygen(skh, pkx)},

(m0,m1, St)← AO1-dec,Orenc
(
pk?, {pkh}, {(pkx, skx)}, {Rh?}, {R?h},

{Rhx}, {Rhh′}
)
,

d? R← {0, 1}, C? = Enc2(md? , pk
?), d′ ← AO1-dec,Orenc(C?, St) :

d′ = d?]

is negligibly (as a function of the security parameter λ) close to 1/2 for any PPT adversary A.
In our notation, St is the state information maintained by A while (pk?, sk?) is the target user’s
key pair generated by the challenger that also chooses other keys for corrupt and honest parties.
For such other honest parties, keys are subscripted by h or h′ and we subscript corrupt keys by
x. The adversary is given access to all non-trivial5 re-encryption keys but those that would allow
re-encrypting from the target user to a corrupt one. In the game, A is said to have advantage ε
if this probability, taken over random choices of A and all oracles, is at least 1/2 + ε. Oracles
O1-dec,Orenc proceed as follows:

– Re-encryption Orenc: on input (pki, pkj , C), where C is a second level ciphertext and pki,
pkj were produced by Keygen, this oracle responds with ‘invalid’ if C is not properly shaped
w.r.t. pki. It returns a special symbol ⊥ if pkj is corrupt and (pki, C) = (pk?, C?). Otherwise,
the re-encrypted first level ciphertext C ′ = ReEnc(ReKeygen(ski, pkj), C) is returned to A.

– First level decryption O1-dec: given a pair (pk, C), where C is a first level ciphertext and
pk was produced by Keygen, this oracle returns ‘invalid’ if C is ill-formed w.r.t. pk. If
the query occurs in the post-challenge phase (a.k.a. “guess” stage as opposed to the “find”
stage), it outputs a special symbol ⊥ if (pk, C) is a Derivative of the challenge pair (pk?, C?).
Otherwise, the plaintext m = Dec1(sk, C) is returned to A. Derivatives of (pk?, C?) are
defined as follows.

If C is a first level ciphertext and pk = pk? or pk belongs to another honest user, we say
that (pk,C) is a Derivative of (pk?, C?) if Dec1(sk, C) ∈ {m0,m1}.

Explicitly providing the adversary with a second level decryption oracle is useless. Indeed,
ciphertexts encrypted under public keys from {pkh} can be re-encrypted for corrupt users given
the set {Rhx}. Besides, second level encryptions under pk? can be translated for other honest
users using {R?h} and the resulting ciphertext can be queried for decryption at the first level.

Remark. A possible enhancement of definition 2 is to allow adversaries to adaptively choose
the target user at the challenge phase within the set of honest players. After having selected
a set of corrupt parties among n players at the beginning, the adversary receives a set of n
public keys, private keys of corrupt users as well as corrupt-to-corrupt, corrupt-to-honest and
honest-to-honest re-encryption keys. When she outputs messages (m0,m1) and the index i? of
a honest user in the challenge step, she obtains an encryption of md? under pki? together with
all honest-to-corrupt re-encryption keys Rij with i 6= i?.

In this setting, a second level decryption oracle is also superfluous for schemes (like ours)
5 A non-trivial re-encryption key is one that the adversary cannot compute on her own. For instance, corrupt-

to-honest proxy keys {Rxh} are trivial since the adversary can compute them using skx.
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where second level ciphertexts can be publicly turned into first level encryptions of the same
plaintext for the same receiver. The scheme that we describe remains secure in this model at
the expense of a probability of failure for the simulator that has to foresee which honest user
will be attacked with probability O(1/n).

Security of first level ciphertexts. The above definition provides adversaries with a second level
ciphertext in the challenge phase. A complementary definition of security captures their inability
to distinguish first level ciphertexts as well. For single-hop schemes, A is granted access to all
re-encryption keys in this definition. Since first level ciphertexts cannot be re-encrypted, there
is indeed no reason to keep attackers from obtaining all honest-to-corrupt re-encryption keys.
The re-encryption oracle becomes useless since all re-encryption keys are available to A. For
the same reason, a second level decryption oracle is also unnecessary. Finally, Derivatives of the
challenge ciphertext are simply defined as encryptions of either m0 or m1 for the same public
key pk?. A single-hop scheme is said RCCA-secure at level 1 if it satisfies this notion.

Master secret security. In [3], Ateniese et al. define another important security requirement
for unidirectional PRE schemes. This notion, termed master secret security, demands that no
coalition of dishonest delegatees be able to pool their re-encryption keys in order to expose
the private key of their common delegator. More formally, the following probability should be
negligible as a function of the security parameter λ.

Pr
[
(pk?, sk?)← Keygen(λ), {(pkx, skx)← Keygen(λ)},
{R?x ← ReKeygen(sk?, pkx)}, {Rx? ← ReKeygen(skx, pk?)},
γ ← A(pk?, {(pkx, skx)}, {R?x}, {Rx?}) : γ = sk?

]
At first glance, this notion might seem too weak in that it does not consider colluding delegatees
who would rather undertake to produce a new re-encryption key R?x′ that was not originally
given and allows re-encrypting from the target user to another malicious party x′. As stressed
in [3] however, all known unidirectional schemes fail to satisfy such a stronger security level. It
remains an open problem to construct systems withstanding these transfer of delegation attacks.

In single-hop schemes, the notion of RCCA security at the first level is easily seen to imply
the master secret security and we will only discuss the former. In the general multi-hop setting,
the notion of master secret security appears to be the most appropriate one. However, no viable
construction of multi-hop unidirectional system is known to date. As mentioned earlier, the
scheme of [23] indeed fails to be master secret secure.
Chosen-ciphertext security in the chosen-key model. In the previous definitions, we
assume a static corruption model as in [19]. In definition 2 as well as in the model of [19], the
challenger generates public keys for all parties and allows the adversary to obtain private keys for
some of them. These models do not capture a scenario where adversaries may generate public
keys on behalf of corrupt parties (possibly non-uniformly or as a function of honest parties’
public keys). All previous PRE systems as well as our first scheme are analyzed in models that
implicitly make the knowledge of secret key (KOSK) assumption according to which users only
publish public keys when they know the underlying private keys. In other settings (such as [12,
8]), similar restrictions are frequently imposed on adversarial behaviors: attackers are allowed to
come up with their own public key but are required to also reveal the matching secret key. This
mirrors the fact that, upon certification of their public key, users should provide certification
authorities (CAs) with a proof of knowledge of their private key.

In the known secret key model, security proofs take advantage of the fact that the simulator
itself knows dishonest users’ secrets. It is tempting to justify this knowledge by arguing that,
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upon key registration, the simulator can rewind the adversary to extract her private key using
the knowledge extractor [7] of the proof. However, attention must be paid to the fact that
rewinding is very problematic in inherently concurrent environments like the Internet. Then,
CAs should mandate users to provide more involved and computationally more expensive proofs
of knowledge (such as [27] in the random oracle model) that guarantee online extractability.
As discussed in [10], current public key infrastructures (PKIs) do not bother to apply such
thorough verifications that would suffice to realize the abstract KOSK model.

In this paragraph, we consider a more realistic model where the adversary can arbitrarily
choose public keys without demonstrating knowledge of the private keys. The only limitation is
that all public keys should fall into some public key space (which is pre-determined by system-
wide parameters shared by all parties in the system). This provides the adversary with much
more flexibility and power in attacking other honest parties in the system. Schemes that are
secure in the known secret key model may not necessarily be secure in the chosen-key model
(although we did not find a strict separation in the context of proxy re-encryption).

Security of second level ciphertexts. The definition of second level security in the chosen-key
model considers a challenger that produces a set HU of honest users’ public keys. As in definition
2, the adversary is allowed to adaptively query a decryption oracle and a re-encryption oracle.
This time however, the latter can be queried on input of adversarially-chosen delegatees’ public
keys. The attacker is again directly provided with all re-encryption keys for which the delegator
and the delegatee are both honest. As another enhancement w.r.t. definition 2, she is granted
access to a delegation oracle that returns re-encryption keys on behalf of honest delegators for
arbitrary delegatees’ public keys. By “arbitrary”, we mean that the adversary can choose any
element of the pre-determined (and publicly recognizable) public key space without necessarily
knowing the corresponding secret key. Such a key may even be invalid if the scheme supports
invalid public keys (for which no private keys exists) that look like well-formed ones. In the next
definition, we also let the target public key be chosen by the adversary (among all public keys
in HU) in the challenge phase.

Definition 3. A (single-hop) unidirectional PRE scheme is replayable chosen-ciphertext secure
in the chosen-key model (RCCA-CK) at level 2 if the probability

Pr[{(pki, ski)← Keygen(λ)}i∈HU , {Rii′ ← ReKeygen(ski, pki′)}i,i′∈HU
(m0,m1, i

?, St)← AO1-dec,Orenc,Odeleg
(
{pki}i∈HU , {Rii′}i,i′∈HU

)
,

d? R← {0, 1}
C? = Enc2(md? , pki?)

d′ ← AO1-dec,Orenc,Odeleg(C?, St) :
d′ = d?]

is negligibly (as a function of the security parameter λ) close to 1/2 for any PPT adversary
A. In our notation, St is the state maintained by A while pki? denotes the public key of the
target user that is chosen by the adversary in the set HU . The adversary A is given access to
all re-encryption keys between honest users. She is also allowed to query any re-encryption key
but those that would allow re-encrypting from the target user i? to some user under her control.
In the game, A is said to have advantage ε if this probability, taken over random choices of A
and all oracles, is at least 1/2 + ε. Oracles O1-dec,Orenc proceed as follows:

– Delegation Odeleg: on input (pki, pk) with, where pki is a public key in HU (and i 6= i? in
any stage) and pk is a public key of A’s choosing (for which she is not required to reveal the
private key), this oracle responds with the re-encryption key ReKeygen(ski, pk). We insist
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that no such query can involve pki? as a delegator at any time.
– Re-encryption Orenc: on input (pki, pkj , C), where C is a second level ciphertext, pki ∈ HU

was part of A’s input and pkj may be an arbitrary public key supplied by A (again without
handing over the matching private key), this oracle responds with ‘invalid’ if C is not prop-
erly shaped w.r.t. pki. It returns a special symbol ⊥ if pkj 6∈ HU and (pki, C) = (pki? , C?).
Otherwise, A obtains the re-encrypted ciphertext C ′ = ReEnc(ReKeygen(ski, pkj), C).

– First level decryption O1-dec: given a pair (pk, C), where C is a first level ciphertext and
pk ∈ HU , this oracle returns ‘invalid’ if C is ill-formed w.r.t. pk. If the query occurs in the
post-challenge phase, it outputs a special symbol ⊥ if (pk,C) is a Derivative of the challenge
pair (pki? , C?). Otherwise, the plaintext m = Dec1(sk, C) is revealed to A. Derivatives of
(pki? , C?) are defined as previously.

If C is a first level ciphertext and pk ∈ HU , we say that (pk, C) is a Derivative of
(pki? , C?) if Dec1(sk, C) ∈ {m0,m1}.

Although more power is granted to the adversary, the above model is still non-adaptive. In a
truly adaptive model, A would be allowed to dynamically corrupt users that are initially honest.
In fact, the scenario of definition 3 is easily seen to be equivalent to a completely similar game
(in particular, delegation and re-encryption queries are treated in the same way) where A first
statically chooses which players she wants to corrupt within a set of n users before being given
all public keys and corrupt users’ private keys. We leave open the problem of handling fully
adaptive adversaries here.

Security of first level ciphertexts. As in the known secret key model, a second definition of secu-
rity captures the inability to distinguish first level ciphertexts as well. For single-hop schemes,
the adversary is granted access to all re-encryption keys in this definition (i.e., this time, even
pki? can be the delegator’s public key when A invokes oracle Odeleg with delegatees’ public
keys of her choosing). As above, the re-encryption oracle becomes useless since all possible
re-encryption keys are made available to A. Again, Derivatives of the challenge ciphertext are
simply defined as encryptions of either m0 or m1 for the same target public key pki? .

In fact the security of first level encryptions can be captured by a simpler definition where
the adversary is challenged on a single honest user’s public key pk0 and is allowed to generate
herself any other public key for which she makes delegation queries or re-encryption queries (the
honest user being the delegator in either case).

2.2 Bilinear Maps and Complexity Assumptions

Groups (G,GT ) of prime order p are called bilinear map groups if there is a mapping e : G×G→
GT with the following properties:

1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. efficient computability for any input pair;
3. non-degeneracy: e(g, h) 6= 1GT whenever g, h 6= 1G.

We shall assume the intractability of a variant, introduced for the first time in [14], of the
Decision Bilinear Diffie-Hellman (DBDH) problem which is, given (ga, gb, gc) with a, b, c R← Z∗p,
to distinguish e(g, g)abc from random elements of GT .

Definition 4 ([14]). The q-weak Decision Bilinear Diffie-Hellman Inversion assump-
tion (q-wDBDHI) posits the computational infeasibility of distinguishing e(g, g)b/a from random
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given (g, ga, g(a2), . . . , g(aq), gb). A distinguisher B (t, ε)-breaks the assumption if it runs in time
t and∣∣Pr[B(g, ga, g(a2), . . . g(aq), gb, e(g, g)b/a) = 1|a, b R← Z∗p]

− Pr[B(g, ga, g(a2), . . . , g(aq), gb, e(g, g)z) = 1|a, b, z R← Z∗p]
∣∣ ≥ ε.

The q-wDBDHI problem is obviously not easier than the q-DBDHI problem [13], where the
challenge is to recognize e(g, g)1/a given (g, ga, . . . , g(aq)) ∈ Gq+1. Dodis and Yampolskiy [25]
showed the generic hardness of q-DBDHI and their result implies the generic computational
infeasibility of q-wDBDHI. Boneh, Boyen and Goh [14] also gave generic intractability results
for a wide class of assumptions that encompasses q-wDBDHI and many others.

To prove our results, we only use the above assumption for constant values of q whereas
this parameter depends on the number of adversarial queries in several earlier applications (e.g.
[25]). In our setting, the intractability of q-wDBDHI can be classified among mild decisional
assumptions (according to the terminology of [18]) as its strength does not depend on the number
of queries allowed to adversaries whatsoever. In some of our schemes, q = 1 even suffices and we
obtain a slightly relaxed variant of the DBDH problem. The 1-wDBDHI assumption is indeed
equivalent to the Squared Decision Bilinear Diffie-Hellman assumption which is the infeasibility
of deciding whether T = e(g, g)a

2b on input of (ga, gb).

2.3 One-time signatures

As an underlying tool for applying the Canetti-Halevi-Katz methodology [22], we need one-time
signatures. Such a primitive consists of a triple of algorithms Sig = (G,S,V) such that, on input
of a security parameter λ, G generates a one-time key pair (ssk, svk) while, for any message M ,
V(σ, svk,M) outputs 1 whenever σ = S(ssk,M) and 0 otherwise.

As in [22], we need strongly unforgeable one-time signatures, which means that no PPT
adversary can create a new signature for a previously signed message (according to [2]).

Definition 5. Sig = (G,S,V) is a strong one-time signature if the probability

AdvOTS = Pr
[

(ssk, svk)← G(λ); (M,St)← F(svk);
σ ← S(ssk,M); (M ′, σ′)← F(M,σ, svk, St) :
V(σ′, svk,M ′) = 1 ∧ (M ′, σ′) 6= (M,σ)

]
,

where St denotes F ’s state information across stages, is negligible for any PPT forger F .

3 A Unidirectional Scheme in the Known Secret Key Model

Our construction is inspired from the first unidirectional scheme suggested in [3, 4] where second
level ciphertexts (A,B) = (Xr,m · e(g, g)r), that are encrypted under the public key X = gx,
can be re-encrypted into first level ciphertexts (e(A,Rxy), B) = (e(g, g)ry,m · e(g, g)r) using the
re-encryption key Rxy = gy/x. Using his private key y s.t. Y = gy, the receiver can then obtain
the message.

The Canetti-Hohenberger method for achieving CCA-security borrows from [22, 17, 34] in
that it appends to the ciphertext a checksum value consisting of an element of G raised to the
random encryption exponent r. In the security proof, the simulator uses the publicly verifiable
validity of ciphertexts in groups equipped with bilinear maps. Unfortunately, the same technique
does not directly apply to secure the unidirectional PRE scheme of [3] against chosen-ciphertext
attacks. The difficulty is that, after re-encryption, level 1 ciphertexts have one component in the
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target group GT and pairings cannot be used any longer to check the equality of two discrete
logarithms in groups G and GT . Therefore, the simulator cannot tell apart well-shaped level 1
ciphertexts from invalid ones.

The above technical issue is addressed by having the proxy replace A with a randomized
pair (A′, A′′) = (R1/t

xy , Ct1) = (gy/(tx), Xrt), for a random “blinding exponent” t R← Z∗p that hides
the re-encryption key in C ′1, in such a way that all ciphertext components but C2 remain in
G. This still allows the second receiver holding y s.t. Y = gy to compute m = C2/e(A′, A′′)1/y.
To retain the publicly verifiable well-formedness of re-encrypted ciphertexts however, the proxy
needs to include Xt in the ciphertext so as to prove the consistency of the encryption exponent
r w.r.t. the checksum value.

Of course, since the re-encryption algorithm is probabilistic, many first level ciphertexts may
correspond to the same second level one. For this reason, we need to tolerate a harmless form
of malleability (akin to those accepted as reasonable in [2, 20, 43]) of ciphertexts at level 1.

3.1 Description

Our system is reminiscent of the public key cryptosystem obtained by applying the Canetti-
Halevi-Katz transform [22] to the second selective-ID secure identity-based encryption scheme
described in [13]6.

Like the Canetti-Hohenberger construction [19], the present scheme uses a strongly unforge-
able one-time signature to tie several ciphertext components altogether and offer a safeguard
against chosen-ciphertext attacks in the fashion of Canetti, Halevi and Katz [22]. For simplicity,
the description below assumes that verification keys of the one-time signature are encoded as
elements from Z∗p. In practice, such verification keys are typically much longer than |p| and a
collision-resistant hash function should be applied to map them onto Z∗p.

– Global-setup(λ): given a security parameter λ, choose bilinear map groups (G,GT ) of prime
order p > 2λ, generators g, u, v R← G and a strongly unforgeable one-time signature scheme
Sig = (G,S,V). The global parameters are

par := {G,GT , g, u, v,Sig}.

– Keygen(λ): user i sets his public key as Xi = gxi for a random xi
R← Z∗p.

– ReKeygen(xi, Xj): given user i’s private key xi and user j’s public key Xj , generate the
unidirectional re-encryption key Rij = X

1/xi
j = gxj/xi .

– Enc1(m,Xi, par): to encrypt a message m ∈ GT under the public key Xi at the first level,
the sender proceeds as follows.

1. Select a one-time signature key pair (ssk, svk) R← G(λ) and set C1 = svk.
2. Pick r, t R← Z∗p and compute

C ′2 = Xt
i C ′′2 = g1/t C ′′′2 = Xrt

i C3 = e(g, g)r ·m C4 = (usvk · v)r

3. Generate a one-time signature σ = S(ssk, (C3, C4)) on (C3, C4).

The ciphertext is Ci =
(
C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ

)
.

6 It was actually shown in [35] that, although the security of the underlying IBE scheme relies on a rather strong
assumption, a weaker assumption such as the one considered here suffices to prove the security of the resulting
public key encryption scheme.
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– Enc2(m,Xi, par): to encrypt a message m ∈ GT under the public key Xi at level 2, the sender
conducts the following steps.

1. Select a one-time signature key pair (ssk, svk) R← G(λ) and set C1 = svk.
2. Choose r R← Z∗p and compute

C2 = Xr
i C3 = e(g, g)r ·m C4 = (usvk · v)r

3. Generate a one-time signature σ = S(ssk, (C3, C4)) on the pair (C3, C4).

The ciphertext is Ci =
(
C1, C2, C3, C4, σ

)
.

– ReEnc(Rij ,Ci): on input of the re-encryption key Rij = gxj/xi and a ciphertext Ci =
(C1, C2, C3, C4, σ), check the validity of the latter by testing the following conditions

e(C2, u
C1 · v) = e(Xi, C4) (1)

V(C1, σ, (C3, C4)) = 1. (2)

If well-formed, Ci is re-encrypted by choosing t R← Z∗p and computing

C ′2 = Xt
i C ′′2 = R

1/t
ij = g(xj/xi)t

−1
C ′′′2 = Ct2 = Xrt

i

The re-encrypted ciphertext is

Cj =
(
C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ

)
.

If ill-formed, Ci is declared ‘invalid’.
– Dec1(Cj , skj): the validity of a level 1 ciphertext Cj is checked by testing if

e(C ′2, C
′′
2 ) = e(Xj , g) (3)

e(C ′′′2 , u
C1 · v) = e(C ′2, C4) (4)

V(C1, σ, (C3, C4)) = 1 (5)

If relations (3)-(5) hold, the plaintext m = C3/e(C ′′2 , C
′′′
2 )1/xj is returned. Otherwise, the

algorithm outputs ‘invalid’.

– Dec2(Ci, ski): if the level 2 ciphertext Ci = (C1, C2, C3, C4, σ) satisfies relations (1)-(2), re-
ceiver i can obtain m = C3/e(C2, g)1/xi . The algorithm outputs ‘invalid’ otherwise.

Outputs of the re-encryption algorithm are perfectly indistinguishable from level 1 ciphertexts
produced by the sender. Indeed, if t̃ = txi/xj , we can write

C ′2 = Xt
i = X t̃

j C ′′2 = g(xj/xi)t
−1

= gt̃
−1

C ′′′3 = Xrt
i = Xrt̃

j .

As in the original scheme described in [3], second level ciphertexts can be publicly turned into
first level ciphertexts encrypted for the same receiver if the identity element of G is used as a
re-encryption key.

In the first level decryption algorithm, relations (3)-(5) guarantee that re-encrypted cipher-
texts have the correct shape. Indeed, since C4 = (uC1 · v)r for some unknown exponent r ∈ Zp,
equality (4) implies that C ′′′2 = C ′r2 . From (3), it comes that e(C ′′2 , C

′′′
2 ) = e(Xj , g)r.

We finally note that first level ciphertexts can be publicly re-randomized by changing
(C ′2, C

′′
2 , C

′′
3 ) into (C ′s2 , C

′′1/s
2 , C ′′′s3 ) for a random s ∈ Z∗p. However, the pairing value e(C ′′2 , C

′′′
2 )

remains constant and, re-randomizations of a given first level ciphertext are publicly detectable.
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3.2 Security

For convenience, we will prove security under an equivalent formulation of the 3-wDBDHI
assumption.

Lemma 1. The 3-wDBDHI problem is equivalent to decide whether T equals e(g, g)b/a
2

or a
random value given (g, g1/a, ga, g(a2), gb) as input.

Proof. Given elements (g, g1/a, ga, g(a2), gb, T ), we can construct a 3-wDBDHI instance by set-
ting (y = g1/a, yA = g, y(A2) = ga, y(A3) = g(a2), yB = gb), which implicitly defines A = a and
B = ab. Then, we have e(y, y)B/A = e(g1/a, g1/a)(ab)/a = e(g, g)b/a

2
. The converse implication is

easily established and demonstrates the equivalence between both problems. ut

Theorem 1. Assuming the strong unforgeability of the one-time signature, the scheme is RCCA-
secure at level 2 under the 3-wDBDHI assumption.

Proof. Let (g,A−1 = g1/a, A1 = ga, A2 = g(a2), B = gb, T ) be a modified 3-wDBDHI instance.
We build an algorithm B deciding if T = e(g, g)b/a

2
out of a successful RCCA adversary A.

Before describing B, we first define an event FOTS and bound its probability to occur.
Let C? = (svk?, C?2 , C

?
3 , C

?
4 , σ

?) denote the challenge ciphertext given to A in the game. Let
FOTS be the event that, at some point, A issues a decryption query for a first level ciphertext
C = (svk?, C ′2, C

′′
2 , C

′′′
2 , C3, C4, σ) or a re-encryption query C = (svk?, C2, C3, C4, σ) where

(C3, C4, σ) 6= (C?3 , C
?
4 , σ

?) but V(σ, svk, (C3, C4)) = 1. In the “find” stage, A has simply no
information on svk?. Hence, the probability of a pre-challenge occurrence of FOTS does not
exceed qO · δ if qO is the overall number of oracle queries and δ denotes the maximal probability
(which by assumption does not exceed 1/p) that any one-time verification key svk is output by G.
In the “guess” stage, FOTS clearly gives rise to an algorithm breaking the strong unforgeability
of the one-time signature. Therefore, the probability Pr[FOTS] ≤ qO/p + AdvOTS, where the
second term accounts for the probability of definition 5, must be negligible by assumption.

We now proceed with the description of B that simply halts and outputs a random bit if FOTS

occurs. In a preparation phase, B generates a one-time signature key pair (ssk?, svk?)← G(λ)
and provides A with public parameters including u = Aα1

1 and v = A−α1svk?

1 · Aα2
2 for random

α1, α2
R← Z∗p. Observe that u and v define a “hash function” F (svk) = usvk · v = A

α1(svk−svk?)
1 ·

Aα2
2 . In the following, we call HU the set of honest parties, including user i? that is assigned the

target public key pk?, and CU the set of corrupt parties. Throughout the game, A’s environment
is simulated as follows.

• Key generation: public keys of honest users i ∈ HU\{i?} are defined as Xi = Axi1 = gaxi

for a randomly chosen xi
R← Z∗p. The target user’s public key is set as Xi? = A

xi?
2 = g(xi?a

2)

with xi?
R← Z∗p. The key pair of a corrupt user i ∈ CU is set as (Xi = gxi , xi), for a random

xi
R← Z∗p, so that (Xi, xi) can be given to A. To generate re-encryption keys Rij from player

i to player j, B has to distinguish several situations:

- If i ∈ HU\{i?} and j = i?, B returns Rii? = A
xi?/xi
1 = gxi?a

2/(axi) which is a valid
re-encryption key.

- If i = i? and j ∈ HU\{i?}, B responds with Ri?j = A
xi/xi?
−1 = g(axi/(xi?a

2)) that has also
the correct distribution.

- If i, j ∈ HU\{i?}, B returns Rij = gxj/xi = g(axj)/(axi).
- If i ∈ HU\{i?} and j ∈ CU , B outputs Rij = A

xj/xi
−1 = gxj/(axi) which is also computable.

• Re-encryption queries: when facing a re-encryption query from user i to user j for a second
level ciphertext Ci = (C1, C2, C3, C4, σ), B returns ‘invalid’ if relations (1)-(2) are not
satisfied.
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- If i 6= i? or if i = i? and j ∈ HU\{i?}, B simply re-encrypts using the re-encryption key
Rij which is available in either case.

- If i = i? and j ∈ CU ,

· If C1 = svk?, B is faced with an occurrence of FOTS and halts. Indeed, re-encryptions
of the challenge ciphertext towards corrupt users are disallowed in the “guess” stage.
Therefore, (C3, C4, σ) 6= (C?3 , C

?
4 , σ

?) since we would have C2 6= C?2 and i 6= i? if
(C3, C4, σ) = (C?3 , C

?
4 , σ

?).
· We are thus left with the case C1 6= svk?, i = i? and j ∈ CU . Given C

1/xi?
2 = Ar2,

from C4 = F (svk)r = (Aα1(svk−svk?)
1 ·Aα2

2 )r, B can compute

Ar1 = (ga)r =

(
C4

C
α2/xi?
2

) 1
α1(svk−svk?)

. (6)

Knowing gar and user j’s private key xj , B picks t R← Z∗p to compute

C ′2 = At1 = gat C ′′2 = A
xj/t
−1 = (g1/a)xj/t C ′′′2 = (Ar1)t = (gar)t

and return Cj = (C1, C
′
2, C

′′
2 , C

′′′
3 , C3, C4, σ) which has the proper distribution. In-

deed, if we set t̃ = at/xj , we have

C ′2 = X t̃
j C ′′2 = g1/t̃ C ′′′2 = Xrt̃

j .

• First level decryption queries: at any time, A may ask for the decryption of a first level
ciphertext Cj = (C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ) under a public key Xj . For such a request,

B returns ‘invalid’ if relations (3)-(5) do not hold. We assume that j ∈ HU since B
can decrypt using the known private key otherwise. Let us first assume that C1 = C?1 =
svk?. If (C3, C4, σ) 6= (C?3 , C

?
4 , σ

?), B is presented with an occurrence of FOTS and halts. If
(C3, C4, σ) = (C?3 , C

?
4 , σ

?), B outputs ⊥ which deems Cj as a Derivative of the challenge pair
(C?, Xi?). Indeed, it must be the case that e(C ′′2 , C

′′′
2 ) = e(g,Xj)r for the same underlying

exponent r as in the challenge phase. We now assume C1 6= svk?.

- If j ∈ HU\{i?}, Xj = gaxj for a known xj ∈ Z∗p. The validity of the ciphertext ensures
that e(C ′′2 , C

′′′
2 ) = e(Xj , g)r = e(g, g)arxj and C4 = F (svk)r = gα1ar(svk−svk?) · ga2rα2 for

some r ∈ Zp. Therefore,

e(C4, A−1) = e(C4, g
1/a) = e(g, g)α1r(svk−svk?) · e(g, g)arα2 (7)

and

e(g, g)r =
(

e(C4, A−1)
e(C ′′2 , C

′′′
2 )α2/xj

) 1
α1(svk−svk?)

(8)

reveals the plaintext m since svk 6= svk?.
- If j = i?, we have Xj = g(xi?a

2) for a known exponent xi? ∈ Z∗p. Since we know that

e(C ′′2 , C
′′′
2 ) = e(Xi? , g)r = e(g, g)a

2rxi?

e(C4, g) = e(g, g)α1ar(svk−svk?) · e(g, g)a
2rα2 ,

B can first obtain

γ = e(g, g)ar =
(

e(C4, g)
e(C ′′2 , C

′′′
2 )α2/xi?

) 1
α1(svk−svk?)

.

14



Together with relation (7), γ in turn uncovers

e(g, g)r =
(
e(C4, A−1)
γα2/xi?

) 1
α1(svk−svk?)

and the plaintext m = C3/e(g, g)r.

In the “guess” stage, B must check that m differs from messages m0,m1 involved in the
challenge query. If m ∈ {m0,m1}, B returns ⊥ according to the RCCA-security rules.

• Challenge: when she decides that the first phase is over, A chooses messages (m0,m1). At
this stage, B flips a coin d? R← {0, 1} and generates the challenge ciphertext C? as

C?1 = svk? C?2 = Bxi? C?3 = md? · T C?4 = Bα2

and σ = S(ssk?, (C?3 , C
?
4 )).

Since Xi? = A
xi?
2 = gxi?a

2
and B = gb, C? is a valid encryption of md? with the random

exponent r = b/a2 if T = e(g, g)b/a
2
. In contrast, if T is random in GT , C? perfectly hides md?

and A cannot guess d? with better probability than 1/2. When A eventually outputs her result
d′ ∈ {0, 1}, B decides that T = e(g, g)b/a

2
if d′ = d? and that T is random otherwise. ut

Theorem 2. Assuming the strong unforgeability of the one-time signature, the scheme is RCCA-
secure at level 1 under the 3-wDBDHI assumption.

Proof. The proof is very similar to the one of theorem 1. We construct an algorithm B that
is given a 3-wDBDHI instance (g,A−1 = g1/a, A1 = ga, A2 = g(a2), B = gb, T ) and uses the
adversary A to decide if T = e(g, g)b/a

2
.

Before describing B, we consider the same event FOTS as in the proof of theorem 1 except that
it can only arise during a decryption query (since there is no re-encryption oracle). Assuming the
strong unforgeability of the one-time signature, such an event occurs with negligible probability
as detailed in the proof of theorem 1. We can now describe our simulator B that simply halts
and outputs a random bit if FOTS ever occurs. Let also C? = (C?1 , C

′
2
?, C ′′2

?, C ′′′2
?, C?3 , C

?
4 , σ

?)
denote the challenge ciphertext at the first level.

Algorithm B generates a one-time key pair (ssk?, svk?)← G(λ) and the same public param-
eters as in theorem 1. Namely, it sets u = Aα1

1 and v = A−α1svk?

1 ·Aα2
2 with α1, α2

R← Z∗p so that

F (svk) = usvk · v = A
α1(svk−svk?)
1 · Aα2

2 . As in the proof of theorem 1, i? identifies the target
receiver. The attack environment is simulated as follows.

• Key generation: for corrupt users i ∈ CU and honest ones i ∈ HU\{i?}, B sets Xi = gxi for
a random xi

R← Z∗p. The target user’s public key is defined as Xi? = A1. For corrupt users
i ∈ CU , Xi and xi are both revealed. All re-encryption keys are computable and given to
A. Namely, Rij = gxj/xi if i, j 6= i?; Ri?j = A

xj
−1 and Rji? = A

1/xj
1 for j 6= i?.

• First level decryption queries: when a ciphertext Cj = (C1, C
′
2, C

′′
2 , C

′′′
2 , C3, C4, σ) is queried

for decryption w.r.t. a public key Xj , B returns ‘invalid’ if relations (3)-(5) do not hold. We
assume that j = i? since B can decrypt using the known private key xj otherwise. We have
C ′2 = At1, C ′′2 = g1/t, C ′′′2 = Art1 for unknown exponents r, t ∈ Z∗p. Since e(C ′′2 , C

′′′
2 ) = e(g, g)ar

and
e(C4, A−1) = e(g, g)α1r(svk−svk?) · e(g, g)arα2 ,

B can obtain

e(g, g)r =
(
e(C4, A−1)
e(C ′′2 , C

′′′
2 )α2

) 1
α1(svk−svk?)
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which reveals the plaintext m = C3/e(g, g)r as long as svk 6= svk?. In the event that
C1 = svk? in a post-challenge query,

- If e(C ′′2 , C
′′′
2 ) = e(C ′′2

?, C ′′′2
?), B returns ⊥, meaning that Cj is simply a re-randomization

(and thus a Derivative) of the challenge ciphertext.

- Otherwise, we necessarily have (C?3 , C
?
4 , σ

?) 6= (C3, C4, σ), which is an occurrence of FOTS

and implies B’s termination.

In the “guess” stage, B must ensure that m differs from messages m0,m1 of the challenge
phase before answering the query.

• Challenge: when the first phase is over, A outputs messages (m0,m1) and B flips a bit
d? R← {0, 1}. Then, it chooses µ R← Z∗p and sets

C ′2
? = Aµ2 C ′′2

? = A
1/µ
−1 C ′′′2

? = Bµ

C?1 = svk? C?3 = md? · T C?4 = Bα2

and σ = S(ssk?, (C?3 , C
?
4 )).

Since Xi? = A1 and B = gb, C? is a valid encryption of md? with the random exponents r = b/a2

and t = aµ whenever T = e(g, g)b/a
2
. When T is random, C? perfectly hides md? and A cannot

guess d? with better probability than 1/2. Eventually, B bets that T = e(g, g)b/a
2

if A correctly
guesses d? and that T is random otherwise. ut

3.3 Efficiency

The first level decryption algorithm can be optimized using ideas from [34, 36]. Namely, veri-
fication tests (3)-(4) can be simultaneously achieved with high confidence by the receiver who
can choose a random α R← Z∗p and test whether

e(C ′2, C
′′
2 · Cα4 )

e(C ′′′2 , usvk · v)α
= e(g, g)xj .

Hence, computing a quotient of two pairings (which is faster than evaluating two independent
pairings [28]) and two extra exponentiations suffice to check the validity of the ciphertext.

It could also be desirable to shorten ciphertexts that are significantly lengthened by one-time
signatures and their public keys. To this end, ideas from Boyen, Mei and Waters [17] allow for
fairly compact ciphertexts as components C1 and σ become unnecessary if the checksum value
C4 is computed using the Waters “hashing” technique [45] applied to a collision-resistant hash
of C3. This improvement in the ciphertext size unfortunately comes at the expense of a long
public key (made of about 160 elements of G as in [45]) and a loose reduction.

In the random oracle model, we can simultaneously keep short public keys and ciphertexts
if we compute C4 = H(C3)r using a random oracle H : {0, 1}∗ → G. By programming the latter
using standard techniques in the security proof, we additionally get a tight security reduction.

It is also worth mentioning that the random oracle model allows dispensing with trusted
setup assumptions for the generation of u, v ∈ G, the discrete logarithms of which must be
safely erased by the trusted party performing the setup in the above description of the scheme.

4 Schemes in the Chosen-Key Model

In this section, we suggest modifications of our first scheme that can be proven secure in the
sense of definition 3, where dishonest users’ public keys can be arbitrarily chosen on-the-fly by
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the adversary invoking the delegation oracle and the re-encryption oracle.
The main construction that we describe allows for temporary delegations: re-encryption keys

are associated with definite time periods during which they can be used to translate ciphertexts.
The simpler case where delegations are permanent is tackled with by merely instantiating the
scheme with a single time period as explained in section 4.2.

4.1 A Non-Interactive Scheme with Temporary Delegation

We describe a scheme supporting temporary delegation. Like temporary unidirectional PRE
suggested in [3, 4, 37]7, it only allows the proxy to re-encrypt messages from A to B during a
limited time period, but takes a different approach. Prior proposals involve a trusted server
that changes system-wide parameters at discrete time intervals: at the beginning of period
i, the server publicizes a group element hi ∈ G that erases the old one hi−1. If the scheme
must be prepared for L time periods, elements h1, . . . , hL can alternatively be generated all at
once at setup time. This removes the need for a trusted server but incurs linear public storage
in the number of time periods. In the random oracle model, the sequence {hi}i=1,...,L can be
derived from a random oracle but, even in this case, schemes of [3, 4, 37] retain an interactive
(albeit simple) delegation protocol where delegatees publish a delegation acceptance value at
the beginning of each period during which they must be able to receive delegations.

We depart from [3, 4, 37] in that we do not assume changing public parameters produced by
a trusted server. Public parameters are fixed for the lifetime of the system and we do not require
the random oracle model either. Also, our delegation mechanism is kept entirely non-interactive
and does not require any action from the delegatee who remains entirely passive: delegation is
achieved via a single message sent by the delegator to the proxy as in section 3.

We assume that the scheme is prepared for a polynomial (in λ) number L of time periods. In
the description hereafter, both encryption algorithms and the re-encryption algorithm all take
the period number ` as additional input.

The scheme mixes the ideas of our first construction with the first identity-based encryption
scheme suggested by Boneh and Boyen [13]. More precisely, the generation of re-encryption keys
is randomized and actually reminiscent of the algorithm deriving decryption keys from identities
in the IBE system (when period numbers are seen as identities). In a nutshell, the translation
key from i to j during period ` ∈ {1, . . . , L} consists of a pair (Aij`, Bij`) = (X1/xi

j · Fi(`)r, Xr
i )

for some r R← Z∗p and where Fi : {1, . . . , L} → G is an identity-hashing function such as the
one used in [13]. The pair (Aij`, Bij`) satisfies e(Xi, Aij`) = e(Xj , g) · e(Fi(`), Bij`). Then, when
ciphertexts are computed as (Xs

i , Fi(`)
s,m · e(g, g)s) at level 2, the underlying idea of the re-

encryption algorithm is to translate them into

(e(Xj , g)s, m · e(g, g)s) =
(
e(Xs

i , Aij`)/e(Fi(`)
s, Bij`), m · e(g, g)s

)
.

In order to preserve the publicly verifiable validity of first level ciphertexts however, the tech-
nique of section 3 must be applied twice to postpone the (implicit) calculation of both e(Xs

i , Aij`)
and e(Fi(`)s, Bij`) until the decryption at level 1.

– Global-setup(λ): is exactly as in section 4. Common parameters consist of

par :=
(
G,GT , g, u, v,Sig

)
.

7 The original version of this paper [37] described a temporary scheme in the same vein as the one suggested by
section 3.2 in [3, 4]. This section re-considers the problem of temporary unidirectional delegation by removing
interaction with the delegatee in the generation of temporary re-encryption keys and avoiding the reliance on
a time server.
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– Keygen(λ): user i sets his public key as a pair pki = (Xi = gxi , Yi = gyi) with (xi, yi)
R← (Z∗p)

2.
Those values implicitly define a function Fi : {1, . . . , L} → G such that Fi(`) = g` · Yi.

– ReKeygen(ski, pkj , `): given user i’s private key ski = (xi, yi), the public key pkj = (Xj , Yj)
of user j and a period number ` ∈ {1, . . . , L}, the delegator i generates a unidirectional
re-encryption key for period ` as

Rij` = (Aij`, Bij`) =
(
X

1/xi
j · Fi(`)r, Xr

i

)
where Xi, Yi are part of i’s key pki, r ∈ Z∗p is a randomly chosen exponent.

– Enc1(m, pki, `, par): to encrypt m ∈ GT under the public key pki = (Xi, Yi) at the first level
during period `, choose s, t1, t2

R← Z∗p and output

C′j = (`, C0, C
′
1, C

′′
1 , C

′′′
1 , C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ)

where

C0 = svk C3 = e(g, g)s ·m C4 = (usvk · v)s σ = S(ssk, (`, C3, C4)),

for a freshly generated one-time key pair (ssk, svk) R← G(λ), and

C ′1 = Xt1
i C ′′1 = (Fi(`) · g)1/t1 C ′′′1 = Xst1

i

C ′2 = Fi(`)t2 C ′′2 = X
1/t2
i C ′′′2 = Fi(`)st2 .

– Enc2(m, pki, `, par): to encrypt m ∈ GT under the public key pki = (Xi, Yi) at level 2, the
sender does the following.
1. Generate a one-time key pair (ssk, svk) R← G(λ) and set C0 = svk.
2. Pick a random exponent s R← Z∗p and compute C as

C = (`, C0, C1, C2, C3, C4, σ) =
(
`, svk, Xs

i , Fi(`)
s, e(g, g)s ·m, (usvk · v)s, σ

)
where σ = S(ssk, (`, C3, C4)).

– ReEnc(Rij`,Ci, `): given the re-encryption key Rij` = (Aij`, Bij`) and a second level cipher-
text Ci = (`, C0, C1, C2, C3, C4, σ), reject Ci if its first component ` does not match Rij`, if
V(C0, (`, C3, C4), σ) 6= 1 or if one of the next equalities fails to hold:

e(Xi, C2) = e(C1, Fi(`)) e(Xi, C4) = e(C1, u
C0 · v). (9)

Otherwise, choose t1, t2
R← Z∗p and output

C′j = (`, C0, C
′
1, C

′′
1 , C

′′′
1 , C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ)

where

C ′1 = Xt1
i C ′′1 = A

1/t1
ij` C ′′′1 = Ct11 = Xst1

i

C ′2 = Fi(`)t2 C ′′2 = B
1/t2
ij` C ′′′2 = Ct22 = Fi(`)st2 .

– Dec1(Cj , skj): given skj = (xj , yj), parse Cj as (`, C0, C
′
1, C

′′
1 , C

′′′
1 , C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ).

Return ‘invalid’ if V(C0, (`, C3, C4), σ) 6= 1 or if these relations are not satisfied.

e(C ′1, C4) = e(C ′′′1 , u
C0 · v) (10)

e(C ′2, C4) = e(C ′′′2 , u
C0 · v) (11)

e(C ′1, C
′′
1 ) = e(Xj , g) · e(C ′2, C ′′2 ). (12)

Otherwise, return m = C3 ·
(
e(C ′′2 , C

′′′
2 )/e(C ′′1 , C

′′′
1 )
)1/xj .
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– Dec2(Ci, ski): parse Ci as Ci = (C0, C1, C2, C3, C4, σ) and ski as (xi, yi). Return ‘invalid’ if
V(C0, (`, C3, C4), σ) 6= 1 or if relation (9) does not hold. Otherwise, returnm = C1/e(C3, g)1/xi .

As in section 4, the correctness of the re-encryption procedure follows from the fact that re-
encryption keys Rij` = (Aij`, Bij`) satisfy

e(Aij`, Xi) = e(X1/xi
j , Xi) · e

(
Fi(`)r, Xi

)
= e(Xj , g) · e(Fi(`), Bij`).

When raising both members to the power s ∈ Z∗p, we find

e(Xs
i , Aij`) = e(Xj , g)s · e

(
Fi(`)s, Bij`

)
.

Since C4 = (uC0 · v)s, where s ∈ Z∗p is the encryption exponent, relations (10)-(11) imply that
C ′′′1 = C ′1

s and C ′′′2 = C ′2
s. From (12), it comes that

e(C ′′1 , C
′′′
1 )

e(C ′′2 , C
′′′
2 )

= e(Xj , g)s.

The scheme is slightly less efficient and features longer ciphertexts than in section 3. On
the other hand, it offers security guarantees in a stronger model. As established by the next
two theorems, its security additionally rests on a weaker intractability assumption which is the
q-wDBDHI assumption with q = 1.

At level 2, the considered security model is a straightforward extension (where the adversary
chooses both a target user i? and a target period `? that the end of the “find” stage) of the
one expressed by definition 3 with simple restrictions: the adversary is not allowed to query
delegations from user i? for the attacked period `?. In addition, she is disallowed to query
the re-encryption of the challenge pair (pki? , C?) during the target period `? or a first level
decryption of its derivatives (the notion of derivative being generalized by imposing that a
second level encryption and its derivatives pertain to the same period number).

Theorem 3. If Sig is a strongly secure one-time signature, the scheme with temporary delega-
tion is RCCA-CK-secure at level 2 under the 1-wDBDHI assumption.

Proof. We show how to solve a 1-wDBDHI instance (g,A = ga, B = gb, T
?= e(g, g)b/a) using an

RCCA adversary A in the chosen key model.
As in previous proofs, we first call FOTS the event the A comes up with a query on a

valid ciphertext including components (svk, `, C3, C4, σ) such that svk = svk? is the same as
in the challenge phase but (`, C3, C4, σ) 6= (`?, C?3 , C

?
4 , σ

?). In the “find” stage, A has simply
no information on svk? so that FOTS occurs with probability at most qO · δ if qO is the overall
number of oracle queries and δ denotes the maximal probability (which does not exceed 1/p)
that any one-time verification key svk is produced by G. In the “guess” stage, FOTS clearly gives
rise to an algorithm breaking the strong unforgeability of the one-time signature. Therefore, the
probability Pr[FOTS] ≤ qO/p + AdvOTS, where AdvOTS denotes the maximal probability of
defeating the one-time signature security, must be negligible by assumption.

We now describe a 1-wDBDHI solver B. In a preparation phase, the latter generates a one-
time key pair (ssk?, svk?) ← G(λ) and provides A with public parameters including u = gα1

and v = g−α1svk? · Aα2 for random α1, α2
R← Z∗p. Observe that u and v define a function

F (svk) = usvk · v = gα1(svk−svk?) · Aα2 . In the model that extends definition 3, B has to guess
upfront the honest user that will be A’s prey. In addition, it must foresee the time period
`? for which the challenge ciphertext will have to be generated. Hence, B draws two integers
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i? R← HU = {1, . . . , N} as `? R← {1, . . . , L}, hoping that the attack will pertain to user i? at
period `? (the probability 1/LN of this event is non-negligible as long as L and N are both
polynomial). The whole attack environment is then emulated as follows:

• Key generation:

- The expected target user’s public key pki? = (Xi? , Yi?) is chosen as Xi? = A = ga,
Yi? = g−`

? · Ayi? for a randomly chosen yi?
R← Z∗p. The corresponding private key ski

includes the unknown exponent x̃i? = a.
- For other users i ∈ HU\{i?}, public keys are chosen as Xi = Axi = gaxi , Yi = gyi , with
xi, yi

R← Z∗p, so that the first element of the underlying secret key is x̃i = axi.
- To generate re-encryption keys Rij` for players i, j ∈ HU and period `, B can first com-

pute X1/x̃i
j which in turn allows for the generation of Rij` for known random exponents

r ∈ Z∗p (alternatively, it can be directly given to the adversary as a meta-key enabling
the generation of keys for all periods). Three situations must be distinguished:

- If i ∈ HU\{i?} and j = i?, B can compute Rii? using X1/x̃i
i? = g1/xi which yields a

correct key since g1/xi = (ga)1/(axi) = X
1/x̃i
i? .

- If i = i? and j ∈ HU\{i?}, B computes Ri?j` using X
1/x̃i?
j = gxj which has the

correct shape since gxj = (gaxj )1/a = X
1/x̃i?
j .

- If i, j ∈ HU\{i?}, X1/x̃i
j = gxj/xi is also computable since x̃i = axi, x̃j = axj .

• Queries:

- Delegation queries: the simulator halts and declares failure if A ever queries a re-
encryption key Ri?j`? for a delegatee j 6∈ HU (which means that B was unfortunate
in its choice of i? and `? at the beginning of the game). Otherwise,

- For a query involving a honest delegator i ∈ HU\{i?} and a delegatee’s public key
pkj = (Xj , Yj) supplied by A (recall that we may have pkj 6= pki for all i ∈ HU , in
which case A does not have to reveal the matching skj), we have Xi = gaxi , Yi = gyi ,
for known values xi, yi ∈ Z∗p, and B uses techniques from [13] to generate re-encryption
keys Rij`. Namely, it chooses r R← Z∗p and outputs

Rij` =
(
gr(`+yi), Xr

i ·X
−1/(`+yi)
j

)
. (13)

If we define r̃ = r− xj
axi(`+yi)

, we observe that Rij` has the required distribution since

X
1/x̃i
j · (g` · Yi)r̃ = X

1/axi
j · (g`+yi)r̃

= X
1/axi
j · (g`+yi)r · (g`+yi)−

xj
axi(`+yi)

= gr(`+yi)

and X r̃
i = Xr

i · X
−1/(`+yi)
j . We observe that, provided ` + yi 6= 0, B can compute

both components of (13) without knowing the delegatee’s private key xj = logg(Xj).
Since yi is chosen at random for i ∈ HU\{i?}, the probability to have `+ yi 6= 0 for
all ` ∈ {1, . . . , L} and all i is at least 1− LN/p, which is overwhelming when L and
N are both polynomial in λ.
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- in the case i = i? and ` 6= `?, let pkj = (Xj , Yj) be the delegatee’s public key supplied
by A. Since Xi? = A = ga and Yi? = g−`

? ·Ayi? for known values yi? , `? ∈ Z∗p, B can
generate re-encryption keys as pairs

Ri?j` =
(

(g` · Yi?)r ·X
− yi?
`−`?

j , Xr
i? ·X

− 1
`−`?

j

)
. (14)

If we set r̃ = r − xj
a(`−`?) , we see that Ri?j` has the proper shape since

X
1/x̃i?

j · (g` · Yi?)r̃

= X
1/a
j · (g`−`

?

·Ayi? )r̃

= X
1/a
j · (g`−`

?

·Ayi? )r · (g`−`
?

)
−

xj
a(`−`?) ·A−

yi? xj
a(`−`?)

= (g`−`
?

·Ayi? )r ·X
− yi?

(`−`?)
j

and X r̃
i? = Xr

i? ·X
−1/(`−`?)
j . Again, the above computation can be carried out without

knowing xj = logg(Xj).

- Re-encryption queries: for any adversarially-chosen public key pkj = (Xj , Yj), B can
compute re-encryption keys for any delegator i ∈ HU\{i?}. It can also compute Ri?j`
on behalf of the target user i? whenever ` 6= `?. We thus assume that i = i? and ` = `?.
If relations (9) do not hold, B returns ‘invalid’. Otherwise,

· If C0 = svk?, we necessarily have an occurrence of FOTS since, after the challenge
phase re-encryptions of C? to users outside HU are not permitted for period `?.

· If C0 6= svk?, i = i? and j 6∈ HU . Given C1 = Xs
i? = As and C4 = F (svk)s, B can

compute gs = (C4/C
α2
1 )1/α1(svk−svk?). Also, we have C2 = (g`

? · Yi?)s = Asyi? . Then,
B picks t1, t2

R← Z∗p to compute

C ′1 = gt1 · (Ayi? )t1

C ′′1 = X
1/t1
j

C ′′′1 = (gs)t1 · Ct12 = (gs)t1 · (Asyi? )t1

and

C ′2 = (Ayi? )t2 C ′′2 = X
1/t2
j C ′′′2 = Ct22 = (Asyi? )t2

and return the re-encrypted ciphertext Cj = (C0, C
′
1, C

′′
1 , C

′′′
1 , C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ)

which satisfies the validity test (10)-(12).

- First level decryption queries: when a ciphertext

Ci = (`, C0, C
′
1, C

′′
1 , C

′′′
1 , C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ)

is queried w.r.t. a public key Xi with i ∈ HU at the first level, we necessarily have
e(C ′′1 , C

′′′
1 )/e(C ′′2 , C

′′′
2 ) = e(Xi, g)s, for an unknown s ∈ Z∗p, if Ci is valid. Since Xi = Axi ,

for a known value xi (which equals 1 if i = i?), and

e(C4, g) = e(g, g)α1s(svk−svk?) · e(A, g)asα2 ,

B obtains

e(g, g)s =
(
e(C4, g) · e(C ′′2 , C ′′′2 )α2xi

e(C ′′1 , C
′′′
1 )α2xi

) 1
α1(C0−svk?)

(15)

which reveals the plaintext m = C3/e(g, g)s as long as svk 6= svk?. In the event that
C0 = svk? after the challenge phase,
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- If ` 6= `?, we have an occurrence of FOTS since ` is signed along with C3 and C4 in
both encryption algorithms.

- If ` = `? and C4 = C?4 , B returns ⊥ to indicate that Ci is a re-randomization (and
thus a Derivative) of the challenge ciphertext.

- Otherwise, we have (C?3 , C
?
4 , σ

?) 6= (C3, C4, σ) and thus another occurrence of FOTS.

Again, when handling post-challenge queries, B only returns m if m 6∈ {m0,m1}.

• Challenge: whenA comes up with messagesm0,m1 ∈ GT and indices i ∈ HU , ` ∈ {1, . . . , L},
B aborts if i 6= i? or ` 6= `?. With probability 1/LN , such an undesirable event is avoided
and, we have g` · Yi = Ayi? . Then, B draws d? R← {0, 1} and constructs the challenge C? as

C?0 = svk? C?1 = B C?2 = Byi? C?3 = md? · T C?4 = Bα2

and σ? = S(ssk?, (C?3 , C
?
4 )). As one can see, C? encrypts md? under pki? with the random

exponent s = b/a if T = e(g, g)b/a whereas A’s view is independent of d? if T is random. As
usual, B outputs 1 (meaning that T = e(g, g)b/a) if A successfully guesses d? and returns 0
otherwise. ut

At level 1, the model does not change and the adversary can still query all re-encryption
keys without restrictions.

Theorem 4. Assuming the strong unforgeability of the one-time signature, the scheme is RCCA-
CK-secure at level 1 under the 1-wDBDHI assumption.

Proof. Let A be a RCCA adversary at level 1. We show an algorithm B that decides if T =
e(g, g)b/a given (g,A = ga, B = gb). Let C? = (`?, C?0 , C

′?
1 , C

′′?
1 , C ′′′?1 , C ′?2 , C

′′?
2 , C ′′′?2 , C?3 , C

?
4 , σ

?)
be the challenge ciphertext. As above, we start by defining an event FOTS which is the same as
in the proof of theorem 3. Assuming the strong security of the one-time signature, this event
comes about with negligible probability as detailed in the proof of prior theorems. We now
describe our simulator B that simply halts and outputs a random bit if FOTS ever happens.

As in the previous proof, the simulator B picks a one-time key pair (ssk?, svk?)← G(λ) and
sets up public parameters as u = gα1 and v = g−α1svk? ·Aα2 , with α1, α2

R← Z∗p, so that we have
F (svk) = usvk · v = gα1(svk−svk?) ·Aα2 . The adversary’s view is then simulated as follows.

• Key generation: B generates a public key pk0 = (X0, Y0) = (A, gy), for a random y R← Z∗p,
so that sk0 = (x̃0, ỹ0) = (a, y) is the implicitly defined secret.

• Delegation queries: at any time, A can output a public key (Xj , Yj) of her choosing and a
time period ` and request B to generate a re-encryption key R0j` on behalf of user 0 acting
as a delegator. Since X0 = A and Y0 = gy for a known value y ∈ Z∗p, B can proceed as in
the proof of theorem 3 by drawing r R← Z∗p and returning

R0j` =
(
gr(`+y), Xr

0 ·X
−1/(`+y)
j

)
. (16)

which has the correct distribution since, if we define r̃ = r − xj
a(`+y) , we have

X
1/x̃0

j · (g` · Y0)r̃ = X
1/a
j · (g`+y)r̃

= X
1/a
j · (g`+y)r · (g`+y)−

xj
a(`+y)

= gr(`+y)
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and X r̃
0 = Xr

0 ·X
−1/(`+y)
j . Both parts of (16) are computable (without knowing the discrete

logarithm xj = logg(Xj)) whenever ` + y 6= 0. Since y is drawn at random, this is the case
for any ` ∈ {1, . . . , L} with probability at least 1− L/p.
• First level decryption queries: when faced with a decryption query for a first level ciphertext

C = (`, C0, C
′
1, C

′′
1 , C

′′′
1 , C

′
2, C

′′
2 , C

′′′
2 , C3, C4, σ) , B returns ‘invalid’ if relations (10)-(12) do

not hold. If they do, we must have e(C ′′1 , C
′′′
1 )/e(C ′′2 , C

′′′
2 ) = e(X0, g)s where s is the unknown

exponent such that C4 = (uC0 · v)s. Therefore, as in the proof of theorem 3, B can compute

e(g, g)s =
(
e(C4, g) · e(C ′′2 , C ′′′2 )α2

e(C ′′1 , C
′′′
1 )α2

) 1
α1(C0−svk?)

(and the plaintext) as long as C0 6= svk?. If C0 = svk? in a post-challenge query,

- If C4 = C?4 , B returns ⊥ to indicate that C is a re-randomization of the challenge
ciphertext.

- Otherwise, we necessarily have an occurrence of FOTS and B terminates.

To comply with replayable CCA security rules after the challenge phase, B must always
check that m 6∈ {m0,m1} before answering the query.

• Challenge: at the challenge step, A outputs messages (m0,m1) and a time period `?. B tosses
a coin d? R← {0, 1}. It chooses t1, µ

R← Z∗p and prepares the challenge C? as

C ′1
? = At1 C ′′1

? = (g`
?+1 · Y0)1/t1 C ′′′1

? = Bt1

C ′2
? = Aµ(`?+y) C ′′2

? = g1/µ C ′′′2
? = Bµ(`?+y)

C?0 = svk? C?3 = md? · T C?4 = Bα2

and σ = S(ssk?, (`?, C?3 , C
?
4 )).

Recall that X0 = A, Y0 = gy and B = gb. Whenever T = e(g, g)b/a, C? is a valid encryption
of md? with the encryption exponent s = b/a and the blinding exponents t1, t2 = aµ. When
T is random, C? leaks no information on md? or the bit d? ∈ {0, 1}. Finally, B bets that
T = e(g, g)b/a if A correctly guesses d? and that T is random otherwise. ut

4.2 A Non-Temporary PRE in the Chosen-Key Model

In settings where delegations should be permanent rather than temporary, one can simply
instantiate the above scheme with a single time period. In this case, the scheme can be further
simplified by defining the functions Fi as constants Fi = Yi for any user i.

4.3 PRE with Windowed Delegation

It may happen that temporary delegations should take place during several consecutive time
periods whereas these periods should be short enough to give fine-time granularity. For instance,
the delegator may want to set up his public key for one-day periods and grant specific decryption
rights during several months. In such situations, the temporary PRE suggested in section 4.1
requires the generation of a new re-encryption key at each time period, and thus incurs re-
encryption keys that have linear length in the duration of the delegation.

By appropriately modifying the scheme using ideas borrowed from forward-secure public
key encryption [21, 14], re-encryption key sizes can be decreased from O(∆L) to O(log2(∆L)),
where ∆L denotes the length of the windowed delegation (i.e., the number periods during which
translation keys should be effective). Each user’s public key now comprises O(logL) additional
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group elements hi,0, hi,1, . . . hi,θ ∈ G, where L = 2θ − 1 is the total number of periods that
the key is prepared for. The scheme described in section 4.1 bears salient resemblance with the
selective-ID secure IBE scheme of Boneh-Boyen [13]: indeed, the function Fi(`) = g` ·Yi applies
the Boneh-Boyen identity hashing by seeing period numbers ` as identities. For such windowed
delegations, the forementioned number theoretic hash function is more convenient to instantiate
as Fi(`) = hi,0 ·

∏θ
k=1 h

`k
i,k, using the binary expansion ` = `1 . . . `θ ∈ {0, 1}θ of `.

We imagine binary tree of height θ + 1 where the root (at depth 0) has label ε. When a
node at depth ≤ θ has label w, its children are labeled with w0 and w1. The leaves of the tree
correspond to time periods in the obvious way, periods being indexed from 0 to L− 1 and stage
` being associated with the leaf labeled by `1 . . . `θ. Let use assume that a delegator i holds a
public key pki = (Xi = gxi , hi,0, hi,1, . . . , hi,θ) and wishes to delegate to user j, whose public
key pkj includes Xj = gxj , during periods {L0 + 1, . . . , L1}. First, to each tree node with label
w = w1 . . . wd at depth d ≤ θ, user i assigns the node key

Rij,w =
(
X

1/xi
j · (hi,0 ·

d∏
k=1

hwki,k )r, Xr
i , h

r
i,d+1, . . . , h

r
i,θ

)
according the Boneh-Boyen-Goh HIBE system [14] (by seeing (w1, . . . , wd) ∈ {0, 1}d as a vector
of binary identities). As in [14], such a node key allows iteratively deriving similar keys for all
w’s descendants until reaching the leaves for which keys only consist of

Rij,` =
(
X

1/xi
j · (hi,0 ·

θ∏
k=1

h`ki,k)
r, Xr

i

)
and actually suffice to re-encrypt ciphertexts during period ` = `1 . . . `θ ∈ {0, 1}θ. To allow
re-encryptions for a window {L0 + 1, . . . , L1} of ∆L = L1−L0 time periods, the delegator only
provides the proxy with the smallest set of node keys that contains an ancestor of each leaf
falling in {L0 +1, . . . , L1} (and no ancestor of leaves outside this interval). Then, the proxy only
has to store O(log2(∆L)) group elements instead of O(∆L) using the method of section 4.1.

The price to pay is that a stronger assumption (i.e., the θ-wDBDHI assumption where
θ = O(logL) > 1) is needed to prove security results in a security model that naturally extends
the one used in 4.1. Namely, at level 2 (the model obviously does not change at level 1), security
is captured by a game where the attacked period `? must be outside the union of all time-
windows for which the adversary has requested delegations from the target user. We omit to
give detailed security proofs here but it is not hard to convince oneself that security in this
game more or less trivially follows from the selective-ID security of the underlying HIBE [14].

4.4 Introducing Warrants and Keywords in Proxy Re-Encryption

It may be desirable for delegators to only permit the re-encryption of ciphertexts that are tagged
with specific keywords. For example, a traveling businessman may want the proxy to only re-
direct incoming encrypted emails to his secretary when the tagged keyword is “urgent”. Rather
than keywords, second level ciphertexts can be tagged with a warrant that specifies conditions
under which re-encryption should be permitted. A natural way to impose such restrictions is to
introduce these warrants or keywords in re-encryption keys in such a way that proxies will be
limited to only translate a particular class of ciphertexts.

The above scheme is actually amenable to provide warrant-based and keyword-based del-
egations. It suffices to replace the Boneh-Boyen [13] identity hashing Fi(`) = g` · Yi with
Waters’ adaptive-ID secure identity hashing [45] Fi : {0, 1}n → G that, on input of n-bit strings
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W = w1 . . . , wn ∈ {0, 1}n, calculates Fi(W ) = Ui,0 ·
∏n
k=1 U

wk
i,k using a random (n + 1)-vector

U i = (Ui,0, Ui,1, . . . , Ui,n) ∈ Gn+1 that supersedes Yi in user i’s public key. To generate a re-
encryption key using a delegatee’s public key pkj = (Xj , U j) and the warrant W , the delegator
i computes

Rij,W = (Aij,W , Bij,W ) = (X1/xi
j · Fi(W )r, Xr

i ).

Such a key only allows translating second level ciphertexts that are calculated as per

C = (W,C0, C1, C2, C3, C4, σ) =
(
W, svk, Xs

i , Fi(W )s, e(g, g)s ·m, (usvk · v)s, σ
)
, (17)

where σ = S(ssk, (W,C3, C4)). The security proofs (in a model that naturally generalizes the
one of the scheme with temporary delegation) rely on the same assumption but with a looser
reduction due to the use of Waters’ technique.

Identity-based techniques and proxy re-encryption can be mixed in several settings. Other
extensions are indeed possible in a natural analogue of the selective-ID security model [13] for
IBE schemes (i.e., a model defined by selective-keyword games where the adversary should
choose the target keyword upfront and before seeing any public key). By borrowing ideas from
the identity-based broadcast encryption with constant-size ciphertexts (derived from the Boneh-
Boyen-Goh [14] hierarchical IBE) suggested in [1], we can construct a keyword-based PRE where
ciphertexts are tagged with multiple keywords. Re-encryption is then permitted as long as the
proxy has a translation key corresponding to at least one of them. In this case, ciphertexts
retain constant (i.e., independent of the number of tagging keywords) size at the expense of
private keys that have quadratic size in the maximal number of keywords that a ciphertext
can be associated with. Using ideas from Sahai-Waters [41], one can also imagine to design
keyword-based PRE systems with error-tolerance: the proxy is allowed to re-encrypt ciphertexts
if it holds a translation key for a keyword being sufficiently close (according to some metric)
to that of the ciphertext. More generally, if ciphertexts are tagged with a set of descriptive
attributes, attribute-based encryption techniques [30] can even be used to enable re-encryption
when ciphertext attributes fit the access structure of the re-encryption key.

5 Conclusions and Open Problems

We presented the first unidirectional PRE realizations with chosen-ciphertext security in the
standard model (i.e., without using the random oracle heuristic). We also refined our security
definitions by allowing adversaries to introduce arbitrary delegatees’ public keys in the system.
To the best of our knowledge, these are the first security results in the so-called chosen key
model for the proxy re-encryption primitive. One of the new schemes additionally allows for
temporary delegations and other extensions.

Many open problems still remain. One of them would be to devise secure schemes in a fully
adaptive corruption model. The very existence of collusion-resistant multi-hop unidirectional
systems dwells a (perhaps even more) challenging open question. Canetti and Hohenberger [19]
also mentioned the problem of securely obfuscating CCA-secure re-encryption. Ateniese, Benson
and Hohenberger [6] raised the one of key-private PRE in the chosen-ciphertext setting. It would
also be interesting to efficiently implement such primitives outside bilinear groups (recent results
[16] in the context of identity-based encryption may be encouraging in these regards).
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