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Abstract. Identity-Based Encryption (IBE) offers an interesting alternative to PKI-enabled en-
cryption as it eliminates the need for digital certificates. While revocation has been thoroughly
studied in PKIs, few revocation mechanisms are known in the IBE setting. Until quite recently, the
most convenient one was to augment identities with period numbers at encryption. All non-revoked
receivers were thus forced to obtain a new decryption key at discrete time intervals, which places
a significant burden on the authority. A more efficient method was suggested by Boldyreva, Goyal
and Kumar at CCS’08. In their revocable IBE scheme, key updates have logarithmic (instead of
linear in the original method) complexity for the trusted authority. Unfortunately, security could
only be proved in the selective-ID setting where adversaries have to declare which identity will
be their prey at the very beginning of the attack game. In this work, we describe an adaptive-ID
secure revocable IBE scheme and thus solve a problem left open by Boldyreva et al..
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1 Introduction

Introduced by Shamir [35] and conveniently implemented by Boneh and Franklin [9], identity-
based encryption (IBE) aims to simplify key management by using human-intelligible identifiers
(e.g. email addresses) as public keys, from which corresponding private keys are derived by a
trusted authority called Private Key Generator (PKG). Despite its many appealing advantages,
it makes it difficult to accurately control users’ decryption capabilities or revoke compromised
identities. While IBE has been extensively studied using pairings (see [13] and references therein)
or other mathematical tools [20, 10], little attention has been paid to the efficient implementation
of identity revocation until very recently [5].

Related work. In public key infrastructures (PKI), revocation is taken care of either via cer-
tificate revocation lists (CRLs), by appending validity periods to certificates or using involved
combinations of such techniques (e.g. [32, 1, 33, 24, 28]). However, the cumbersome management
of certificates is precisely the burden that identity-based encryption strives to alleviate. Yet, the
private key capabilities of misbehaving/compromised users should be promptly disabled after
their detection. One of the cited reasons for the slow adoption of the IBE technology among
standards is its lack of support for identity revocation. Since only the PKG’s public key and
the recipient’s identity should be needed to encrypt, there is no way to notify senders that a
specific identity was revoked.

To address this issue, Boneh and Franklin [9] suggested that users can periodically receive
new private keys. Current validity periods are then appended to identities upon encryption so
as to add timeliness to the decryption operation and provide automatic identity revocation: to
revoke a specific user, the PKG simply stops issuing new keys for his identity. Unfortunately,
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this solution requires the PKG to perform linear work in the number of registered receivers and
regularly generate fresh private keys for all users, which does not scale well as their number
grows: each non-revoked user must obtain a new key at each period, which demands to prove
his identity to the PKG and establish a secure channel to fetch the key.

Other solutions were suggested [8, 23, 30, 2] to provide immediate revocation but they require
the cooperation of an online semi-trusted party (called mediator) at each decryption, which is
not totally satisfactory either since it necessarily incurs communication between users and the
mediator.

Recently, Boldyreva, Goyal and Kumar [5] (BGK) significantly improved the technique sug-
gested by Boneh and Franklin [9] and reduced the authority’s periodic workload to be logarith-
mic (instead of linear) in the number of users while keeping the scheme efficient for senders and
receivers. Their revocable IBE primitive (or R-IBE for short) uses a binary tree data structure
and also builds on Fuzzy Identity-Based Encryption (FIBE) schemes that were introduced by
Sahai and Waters [34]. Unfortunately, their R-IBE scheme only offers security guarantees in the
relaxed selective-ID model [17, 18] wherein adversaries must choose the target identity ahead of
time (even before seeing the system-wide public key). The reason is that current FIBE systems
are only secure in (a natural analogue of) the selective-ID model. Boldyreva et al. explicitly left
open the problem of avoiding this limitation using their approach.

As noted in [6, 7], selective-ID secure schemes can give rise to fully secure ones, but only un-
der an exponential reduction in the size of the identity space. Also, while a random-oracle-using
[4] transformation was reported [6] to turn any selective-ID secure IBE scheme into an adaptive-
ID secure one, it entails a degradation factor of qH (i.e., the number of random oracle queries)
in the reduction and additionally fails to provide “real-world” security guarantees [16]. In the
standard model, it has even been shown [25] that the strongest flavor of selective-ID security
(i.e., the IND-sID-CCA one that captures chosen-ciphertext adversaries) does not even imply
the weakest form of adaptive-ID security (which is the one-wayness against chosen-plaintext
attacks).

Our Contribution. We describe an IBE scheme endowed with a similar and equally efficient
revocation mechanism as in the BGK system while reaching security in the stronger adaptive-
ID sense (as originally defined by Boneh and Franklin [9]), where adversaries choose the target
identity in the challenge phase. We emphasize that, although relatively loose, the reduction is
polynomial in the number of adversarial queries. Our construction uses the same binary tree
structure as [5] and applies the same revocation technique. Instead of FIBE systems, we utilize
a recently considered variant [31] of the Waters IBE [36]. To obtain a fairly simple security
reduction, we use the property that the simulator is able to compute at least one private key for
each identity. This notably brings out the fact that ordinary (as opposed to fuzzy) IBE systems
can supersede the particular instance of FIBE scheme considered in [5] to achieve revocation.
From an efficiency standpoint, our R-IBE performs essentially as well as the BGK construction.

Organization. Section 2 first recalls the syntax and the security model of the R-IBE primitive.
Section 3 explains the BGK revocation technique that we also use. Our scheme and its security
analysis and then detailed in section 4.

2 Definitions

Model and Security Definitions. We recall the definition of R-IBE schemes and their
security properties as defined in [5].

Definition 1. An identity-based encryption with efficient revocation, or simply Revocable IBE
(R-IBE) scheme is a 7-tuple (S,SK,KU ,DK, E ,D,R) of efficient algorithms with associated
message space M, identity space I and time space T :
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– The Setup algorithm S is run by a key authority3. Given a security parameter λ and a
maximal number of users N , it outputs a master public/secret key pair (mpk,msk), an initial
state st and an empty revocation list RL.

– The stateful Private Key Generation algorithm SK is run by the key authority that takes
as input the system master key pair (mpk,msk), an identity id ∈ I and state st and outputs
a private key did and an updated state st.

– The Key Update Generation algorithm KU is used by the key authority. Given the
master public and secret keys (mpk,msk), a key update time t ∈ T , a revocation list RL and
a state st, it publishes a key update kut.

– The Decryption Key Generation algorithm DK is run by the user. Given a private key
did and a key update kut, it outputs a decryption key did,t to be used during period t or a
special symbol ⊥ indicating that id was revoked.

– The randomized Encryption algorithm E takes as input the master public key mpk, an
identity id ∈ I, an encryption time t ∈ T , and a message m ∈ M and outputs a ciphertext
c. For simplicity and w.l.o.g. we assume that id and t are efficiently computable from c.

– The deterministic Decryption algorithm D takes as input a decryption key did,t and a
ciphertext c, and outputs a message m ∈ M or a special symbol ⊥ indicating that the
ciphertext is invalid.

– The stateful Revocation algorithm R takes as input an identity to be revoked id ∈ I, a
revocation time t ∈ T , a revocation list RL and state st, and outputs an updated revocation
list RL.

Correctness requires that, for any outputs (mpk,msk) of S, any m ∈ M, any id ∈ I and
t ∈ T , all possible states st and revocation lists RL, if id is not revoked by time t, then for
(did, st) ← SK(mpk,msk, id, st), kut ← KU(mpk,msk, t, RL, st), did,t ← DK(did, kut) we have
D(did,t, E(mpk, id, t,m)) = m.

Boldyreva et al. formalized the selective-revocable-ID security property that captures the usual
notion of selective-ID4 security but also takes revocations into account. In addition to a private
key generation oracle SK(.) that outputs private keys for identities of her choosing, the adversary
is allowed to revoke users at will using a dedicated oracleR(., .) (taking as input identities id and
period numbers t) and can obtain key update information (which is assumed to be public) for
any period t via queries KU(t) to another oracle. The following definition extends the security
property expressed in [5] to the adaptive-ID setting.

Definition 2. A R-IBE scheme is revocable-ID secure if any probabilistic polynomial time
(PPT) adversary A has negligible advantage in this experiment:

ExptIND-RID-CPA
A (λ)

(mpk,msk, RL, st)← S(λ, n)
(m0,m1, id

?, t?, s)← ASK(·),KU(·),R(·,·)(find,mpk)
d? R← {0, 1}
c? ← E(mpk, id?, t?,md?)
d← ASK(·),KU(·),R(·,·)(guess, s, c?)
return 1 if d = d? and 0 otherwise.

Beyond m0,m1 ∈M and |m0| = |m1|, the following restrictions are made:

3 We follow [5] and call the trusted authority “key authority” instead of “PKG”.
4 Considered by Canetti, Halevi and Katz [17, 18], this relaxed notion forces the adversary to choose the target

identity before seeing the master public key.
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1. KU(·) and R(·, ·) can be queried on time which is greater than or equal to the time of all
previous queries i.e. the adversary is allowed to query only in non-decreasing order of time.
Also, R(·, ·) cannot5 be queried on time t if KU(·) was queried on t.

2. If SK(·) was queried on identity id? then R(·, ·) must be queried on (id?, t) for some t ≤ t?.

A’s advantage is AdvIND-RID-CPA
A (λ) =

∣∣Pr[ExptIND-RID-CPA
A (λ) = 1]− 1

2

∣∣.
This definition naturally extends to the chosen-ciphertext scenario where the adversary is further
granted access to a decryption oracle D(·) that, on input of a ciphertext c and a pair (id, t), runs
D(did,t, c) to return some m ∈M or ⊥. Of course, D(·) cannot be queried on the ciphertext c?

for the pair (id?, t?).

Bilinear Maps and Hardness Assumptions. We use prime order groups (G,GT ) endowed
with an efficiently computable map e : G×G→ GT such that:

1. e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;
2. e(g, h) 6= 1GT whenever g, h 6= 1G.

In such bilinear groups, we rely on a variant of the (now classical) Decision Bilinear Diffie-
Hellman (DBDH) problem.

Definition 3. Let (G,GT ) be bilinear groups of prime order p > 2λ and g ∈ G. The modified
Decision Bilinear Diffie-Hellman Problem (mDBDH) is to distinguish the distributions
(ga, gb, gc, e(g, g)bc/a) and (ga, gb, gc, e(g, g)d) for random values a, b, c, d R← Z∗p. The advantage
of a distinguisher B is

AdvmDBDH
G,GT (λ) =

∣∣Pr[a, b, c R← Z∗p : B(ga, gb, gc, e(g, g)bc/a) = 1]

− Pr[a, b, c, d R← Z∗p : B(ga, gb, gc, e(g, g)d) = 1]
∣∣.

This problem is equivalent (see [19, Lemma 3.1] for a proof) to the original DBDH problem
which is to tell apart e(g, g)abc from random given (ga, gb, gc).

3 The BGK Construction

The idea of the scheme described by Boldyreva, Goyal and Kumar consists in assigning users to
the leaves of a complete binary tree. Upon registration, the key authority provides them with a
set of distinct private keys (all corresponding to their identity) for each node on the path from
their associated leaf to the root of the tree. During period t, a given user’s decryption key can
be obtained by suitably combining any one of its node private keys with a key update for period
t and associated with the same node of the tree.

At period t, the key authority publishes key updates for a set Y of nodes that contains no
ancestors of revoked users and exactly one ancestor of any non-revoked one (so that, when no
user is revoked, Y contains only the root node as illustrated on the figure where the nodes of
Y are the squares). Then, a user assigned to leaf v is able to form an effective decryption key
for period t if the set Y contains a node on the path from the root to v. By doing so, every
update of the revocation list RL only requires the key authority to perform logarithmic work
in the overall number of users. The size of users’ private keys also logarithmically depends on
the maximal number of users but, when the number of revoked users is reasonably small (as is
likely to be the case in practice since one can simply re-initialize the whole system otherwise),
5 As in [5], we assume that revocations are made effective before that key updates are published at each time

period. Otherwise, A could trivially win the game by corrupting and revoking id? at period t? but after having
queried KU(t?).
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the revocation method is much more efficient than the one initially suggested in [9].
Another attractive feature of this technique is that it can be used for temporary revocation.

When a key is suspected of being compromised, the matching identity can be temporarily
revoked while an investigation is conducted, and then reinstated if necessary.

u1 u2 u3 u4 u5

No user is revoked

u1 u2 u3 u4 u5

User u3 is revoked

The scheme of Boldyreva et al. builds on the fuzzy identity-based encryption (FIBE) prim-
itive [34]. In FIBE systems, identities are seen as sets of descriptive attributes and users’ keys
can decrypt ciphertexts for which a certain threshold (called the “error tolerance”) of attributes
match between the ciphertext and the key. The private key of an identity (i.e., a set of at-
tributes) is generated using a new polynomial (of degree one less than the error tolerance)
whose constant term is part of the master key of the scheme. The revocable IBE scheme of [5]
uses a special kind of fuzzy IBE where ciphertexts are encrypted using the receiver’s identity
and the period number as “attributes”. The decryption key of the receiver has to match both
attributes to decrypt the ciphertext. For each node on the path from the root to its assigned
leaf, the user is given a key attribute that is generated using a new polynomial of degree 1 for
which the constant term is always the master secret. The same polynomials are used, for each
node, to generate key updates. To compute a decryption key for period t, each user thus needs
to combine two key attributes associated with the same node of the tree.

To date, existing FIBE schemes are only provably secure in the selective-ID sense and the
construction of [5] has not been extended to the adaptive-ID model. As we will see, classical
pairing-based IBE systems actually allow instantiating the same underlying revocation mecha-
nism in the adaptive-ID setting.

4 An Adaptive-ID Secure Scheme

4.1 Intuition

We start from the same general idea as Boldyreva et al. but, instead of using fuzzy identity-
based cryptosystems, we build on a recently suggested [31] variant of Waters’ IBE [36] where,
somewhat in the fashion of Gentry’s IBE [26], the simulator is able to compute a decryption
key for any identity in the security proof. In this variant, the master public key consists of
(X = gx, Y, h) ∈ G3 and a vector u = (u0, u1, . . . , un) ∈ Gn+1

1 implementing Waters’ “hashing”
technique that maps strings id = i1 . . . in ∈ {0, 1}n onto Fu(id) = u0 ·

∏n
j=1 u

ij
i . To derive a

private key for the identity id, the authority picks r, s R← Z∗p and sets

did = (d1, d2, d3) =
(
(Y · hr)1/x · Fu(id)s, Xs, r

)
so that e(d1, X) = e(Y, g) · e(h, g)d3 · e(F (id), d2). Ciphertexts are encrypted as

C = (C0, C1, C2, C3) =
(
m · e(Y, g)z, Xz, Fu(id)z, e(g, h)z

)
5



and decrypted by computing m = C0 · e(C2, d2) · Cd33 /e(C1, d1) (the correctness can be checked
by noting that e(d1, X)z = e(Y, g)z · e(h, g)zd3 · e(F (id), d2)z).

We consider a two-level hierarchical extension of the above system where the second level
identity is the period number. The shape of private keys thus becomes (d1, d2, d3, d4) =

(
(Y ·

hr)1/x ·Fu(id)s1 ·Fv(t)s2 , Xs1 , Xs2 , r
)

for some function Fv(t). Since we only need a polynomial
number of time periods, we can settle for the Boneh-Boyen selective-ID secure identity hashing
Fv(id) = vid0 · v1 [6], for some v0, v1 ∈ G, at level 2 (instead of Waters’ technique).

Then, we also assign users to the leaves of a binary tree T. For each node θ ∈ T, the
key authority splits Y ∈ G into new shares Y1,θ, Y2,θ such that Y = Y1,θ · Y2,θ. To derive
users’ private keys, the key authority computes a triple (d1,θ, d2,θ, d3,θ) =

(
(Y1,θ · hr1,θ)1/x ·

Fu(id)s1,θ , Xs1,θ , r1,θ
)

for each node θ on the path from the root to the leaf corresponding to
the user. Key updates are triples (ku1,θ, ku2,θ, ku3,θ) =

(
(Y2,θ · hr2,θ)1/x · Fv(t)s2,θ , Xs2,θ , r2,θ

)
associated with non-revoked nodes θ ∈ T during period t. Users’ decryption keys can be obtained
by combining any two such triples (d1,θ, d2,θ, d3,θ), (ku1,θ, ku2,θ, ku3,θ) for the same node θ.
Revocation is handled as in [5], by having the key authority stop issuing key updates for nodes
outside the set Y.

In the selective-ID sense, the binary tree technique of [5] can be applied to a 2-level extension
of the Boneh-Boyen HIBE by sharing the master secret key in a two-out-of-two fashion, using
new shares for each node. Directly extending the technique to the adaptive-ID setting with
Waters’ IBE is not that simple. In the security reduction of [36], the simulator does not know
the master key or the private key of the target identity. The difficulty that we are faced with is
that, at the first time that a tree node is involved in a private key query or a key update query,
the simulator has to decide which one of the two master key shares it will have to know for that
node. This is problematic when the target identity id? is not known and has not been assigned
a leaf yet: which share should be known actually depends on whether the considered node lies
on the path connecting the target identity to the root of the tree. To address this issue, we used
a variant of the Waters IBE where the simulator knows at least one valid decryption key for
each identity6 and can answer queries regardless of whether nodes are on the path from id? to
the root.

4.2 Description

The scheme uses the same binary tree structure as in [5] and we employ similar notations.
Namely, root denotes the root node of the tree T. If v is a leaf node, we let Path(v) stand for the
set of nodes on the path from v to root. Whenever θ is a non-leaf node, θl and θr respectively
denote its left and right children.

In the description hereafter, we use the same node selection algorithm (called KUNodes) as
in [5]. At each time period, this algorithm determines the smallest subset Y ⊂ T of nodes that
contains an ancestor of all leaves corresponding to non-revoked users. This minimal set precisely
contains nodes for which key updates have to be publicized in such a way that only non-revoked
users will be able to generate the appropriate decryption key for the matching period.

To identify the set Y, KUNodes takes as input the tree T, the revocation list RL and a period
number t. It first marks (in black on the figure) all ancestors of users that were revoked by time
t as revoked nodes. Then, it inserts in Y the non-revoked children of revoked nodes. Its formal
specification is the following:

6 After the completion of the paper, we noticed that a 2-level instance of the original Waters HIBE can be used
and allows for shorter ciphertexts. As will be shown in an updated version of this work, it unfortunately ends
up with an equally loose reduction since the simulator has to guess upfront which private key query (if any)
will involve the target identity.
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KUNodes(T, RL, t)
X,Y ← ∅
∀(vi, ti) ∈ RL

if ti ≤ t then add Path(vi) to X
∀θ ∈ X

if θl 6∈ X then add θl to Y
if θr 6∈ X then add θr to Y

If Y = ∅ then add root to Y
Return Y

As in [5], we assume that the number of time periods tmax is polynomial in the security parameter
λ, so that a degradation of O(1/tmax) in the security reduction is acceptable.

Setup S(λ, n,N): given security parameters λ, n ∈ N and a maximal number of users N ∈
N that the scheme must be prepared for, the key authority defines I = {0, 1}n, T =
{1, . . . , tmax} and does the following.
1. Select bilinear groups (G,GT ) of prime order p > 2λ with g R← G∗.
2. Randomly choose x R← Z∗p, h, Y

R← G∗ as well as two random vectors u = (u0, u1, . . . , un) ∈
G∗n+1 and v = (v0, v1) ∈ G∗2 that define functions Fu : I → G, Fv : T → G such that,
when id = i1 . . . in ∈ I = {0, 1}n,

Fu(id) = u0 ·
n∏
j=1

u
ij
j Fv(t) = vt0 · v1

3. Set the master key as msk := x and initialize a revocation list RL := ∅ and a state st = T
consisting of a binary tree T with N < 2n leaves.

4. Define the master public key to be mpk := (X = gx, Y, h, u, v).
Private Key Generation SK(mpk,msk, id, st): Parse mpk as (X,Y, h, u, v), msk as x and st

as T.
1. Choose an unassigned leaf v from T and associate it with id ∈ {0, 1}n.
2. For all nodes θ ∈ Path(v) do the following:

a. Retrieve Y1,θ from T if it was defined7. Otherwise, choose it at random Y1,θ
R← G, set

Y2,θ = Y/Y1,θ and store the pair (Y1,θ, Y2,θ) ∈ G2 at node θ in st = T.
b. Pick s1,θ, r1,θ

R← Z∗p and set

did,θ = (d1,θ, d2,θ, r1,θ) =
(

(Y1,θ · hr1,θ)1/x · Fu(id)s1,θ , Xs1,θ , r1,θ

)
.

3. Return did = {(θ, did,θ)}θ∈Path(v) and the updated state st = T.
Key Update Generation KU(mpk,msk, t, RL, st): Parse mpk as (X,Y, h, u, v), msk as x and

st as T. For all nodes θ ∈ KUNodes(T, RL, t),
1. Fetch Y2,θ from T if it was previously defined. If not, choose a fresh pair (Y1,θ, Y2,θ) ∈ G2

such that Y = Y1,θ · Y2,θ and store it in θ.
2. Choose s2,θ, r2,θ

R← Z∗p and compute

kut,θ = (ku1,θ, ku2,θ, r2,θ) =
(

(Y2,θ · hr2,θ)1/x · Fv(t)s2,θ , Xs2,θ , r2,θ

)
.

Then, return kut = {(θ, kut,θ)}θ∈KUNodes(T,RL,t) and the updated st = T.

7 To avoid having to store Y1,θ for each node, the authority can derive it from a pseudo-random function of θ
using a shorter seed and re-compute it when necessary.
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Decryption Key Generation DK(mpk, did, kut): Parse did into {(i, did,i)}i∈I and kut as {(j, kut,j)}j∈J

for some sets of nodes I, J ∈ T. If there exists no pair (i, j) ∈ I × J such that i = j,
return ⊥. Otherwise, choose an arbitrary such pair i = j, parse did,i = (d1,i, d2,i, r1,i),
kut,i = (ku1,i, ku2,i, r2,i) and set the updated decryption key as

did,t =
(
dt,1, dt,2, dt,3, dt,4

)
=
(
d1,i · ku1,i, d2,i, ku2,i, r1,i + r2,i

)
=
(

(Y · hdt,4)1/x · Fu(id)s1,i · Fv(t)s2,i , Xs1,i , Xs2,i , dt,4

)
.

Finally, check that did,t satisfies

e(dt,1, X) = e(Y, g) · e(g, h)dt,4 · e(Fu(id), dt2) · e(Fv(t), dt,3) (1)

and return ⊥ if the above condition fails to hold. Otherwise return did,t.
Encryption E(mpk, id, t,m): to encrypt m ∈ GT for id = i1 . . . in ∈ {0, 1}n during period t,

choose z R← Z∗p and compute

C =
(
id, t, C0, C1, C2, C3, C4

)
=
(
id, t, m · e(g, Y )z, Xz, Fu(id)z, Fv(t)z, e(g, h)z

)
.

Decryption D(mpk, did,t, C): Parse C as
(
id, t, C0, C1, C2, C3, C4

)
and the decryption key did,t

as (dt,1, dt,2, dt,3, dt,4). Then, compute and return

m = C0 ·
( e(C1, dt,1)

e(C2, dt,2) · e(C3, dt,3) · Cdt,44

)−1
. (2)

Revocation R(mpk, id, t, RL, st): let v be the leaf node associated with id. To revoke the latter
at period t, add (v, t) to RL and return the updated RL.

Correctness. We know that well-formed decryption keys always satisfy relation (1). If we
raise both members of (1) to the power z ∈ Z∗p (i.e., the encryption exponent), we see that the
quotient of pairings in (2) actually equals e(g, Y )z.

Efficiency. The efficiency of the scheme is comparable to that of the revocable IBE described
in [5]: ciphertexts are only slightly longer (by an extra element of GT ) and decryption is even
slightly faster since it incurs the evaluation of a product of only 3 pairings (against 4 in [5]).
Both schemes feature the same logarithmic complexity in the number of users in terms of private
key size and space/computational cost for issuing key updates.

4.3 Security

The security proof is based on the one of [31] with the difference that we have to consider
the case where the challenge identity is compromised at some point but revoked for the period
during which the challenge ciphertext is created.

Theorem 1. Let us assume that an IND-RID-CPA adversary A runs in time ζ and makes at
most q private key queries over tmax time periods. Then, there exists an algorithm B solving the
mDBDH problem with advantage AdvmDBDH

B (λ) and within running time O(ζ) +O(ε−2 ln δ−1)
for sufficiently small ε and δ. The advantage of A is then bounded by

AdvIND-RID-CPA
A (λ) ≤ 4 · tmax · q2 · (n+ 1) ·

(
4 ·AdvmDBDH(λ) + δ

)
. (3)
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Proof (sketch). The complete proof is deferred to the full version of the paper due to space
limitation but we give its intuition here. We construct a simulator B that is given a tuple
(ga, gb, gc, T ) and uses the adversary A to decide if T = e(g, g)bc/a. The master public key is
prepared as X = ga, h = gb and Y = Xγ ·h−r? for random γ, r? R← Z∗p. The vector v = (v0, v1) is
chosen so that Fv(t) = gβ(t−t?) ·Xα for random values α, β R← Z∗p and where t? R← {1, . . . , tmax}
is chosen at random as a guess for the time period of the challenge phase. Finally, the (n+ 1)-
vector u is chosen so as to have Fu(id) = gJ(id) · XK(id) for some integer-valued functions
J,K : {0, 1}n → Z chosen by the simulator according to Waters’ technique [36].

To be successful, B needs to have J(id?) = 0 in the challenge phase and, by choosing
u such that J(.) is relatively small in absolute value, this will be the case with probability
O(1/q(n+1)). The simulator also hopes that A will indeed make her challenge query for period
t?, which occurs with probability 1/tmax. The security proof relies on the fact that, with non-
negligible probability, B can compute a valid decryption key for each identity id ∈ {0, 1}n. If
J(id) 6= 0, B can do it using the Boneh-Boyen technique [6] while, in the case J(id) = 0, a valid
key did,t for period t is obtained by choosing s1, s2

R← Z∗p and setting

(dt,1, dt,2, dt,3, dt,4) =
(
gγ · Fu(id)s1 · Fv(t)s2 , Xs1 , Xs2 , r?

)
, (4)

which has the required shape since (Y · hr?)1/a = gγ .
In the challenge phase, when A hopefully comes up with a pair (id?, t?) such that J(id?) = 0

and t? is the expected time period, B flips a coin d? R← {0, 1} and constructs the ciphertext C?

as follows:

C?1 = gc C?2 = (gc)K(id?) C?3 = (gc)α C?4 = T

C?0 = md? ·
e(C?1 , dt?,1)

e(C?2 , dt?,2) · e(C?3 , dt?,3) · C?4dt?,4
(5)

where did?,t? = (dt?,1, dt?,2, dt?,3, dt? , 4) is a valid decryption key calculated as per (4) for the
pair (id?, t?). If T actually equals e(g, g)bc/a, C? is easily seen to be a valid encryption of md?

using the encryption exponent z = c/a. If T is random on the other hand (say T = e(g, h)z
′

for
a random z′ ∈R Z∗p), we can check that C?0 = md? · e(Y, g)z · e(g, h)(z−z

′)r? , which means that
md? is perfectly hidden from A’s view as long as r? is so.

We now have to make sure that no information on r? ever leaks during the game. To do so,
we distinguish two kinds of adversaries:

- Type I adversaries choose to be challenged on an identity id? that is corrupted at some point
of the game but is revoked at period t? or before.

- Type II adversaries do not corrupt the target identity id? at any time.

At the outset of the game, the simulator B flips a coin cmode
R← {0, 1} as a guess for the type

of adversarial behavior that it will be faced with. In the expectation of Type I adversary (i.e.,
cmode = 0), B additionally has to guess which private key query will involve the identity id? that
A chooses to be challenged upon. If cmode = 0, it thus draws j? R← {1, . . . , q} at the beginning
of the game and the input idj of the jth private key query happens to be id? with probability
1/q.

Regardless of the value of cmode, for each tree node θ ∈ T, B splits the public key element
Y ∈ G into two node-specific multiplicative shares (Y1,θ, Y2,θ) such that Y = Y1,θ · Y2,θ. That is,
at the first time that a node θ ∈ T is involved in some query, B defines and stores exponents
γ1,θ, γ2,θ, r

?
1,θ, r

?
2,θ such that γ = γ1,θ + γ2,θ, r? = r?1,θ + r?2,θ and defines Y1,θ = Xγ1,θ · h−r

?
1,θ ,

9



Y2,θ = Xγ2,θ · h−r
?
2,θ .

From here on, we assume that B is fortunate in the random guesses that it makes (i.e.,
cmode ∈ {0, 1} and j? R← {1, . . . , q} if cmode = 0). Then, the treatment of A’s queries is the
following. Revocation queries are dealt with by following the specification of the revocation
algorithm that simply inserts the appropriate node trees in the revocation list RL. The way to
answer other queries now depends on the bit cmode.

• If cmode = 0, B uses the following strategy.

- SK(.) queries: let idj be the input of the jth private key query and let v ∈ T be the node
that B assigns to idj .

� If j 6= j?, for each node θ ∈ Path(v), B re-computes Y1,θ = Xγ1,θ · h−r
?
1,θ using the shares

(γ1,θ, γ2,θ, r
?
1,θ, r

?
2,θ). It picks r1,θ, s1,θ

R← Z∗p, defines W = Y1,θ · hr1,θ and calculates

(d1,θ, d2,θ) =
(
Fu(idj)s1,θ ·W

−
K(idj)

J(idj) , Xs1,θ ·W−
1

J(idj)

)
(6)

which is well-defined since J(idj) 6= 0 and can be checked to provide a correctly-shaped
triple didj ,θ = (d1,θ, d2,θ, r1,θ) for node θ if we set ˜s1,θ = s1,θ − w/(aJ(idj)) where w =
logg(W ). Indeed,

W 1/a · Fu(idj) ˜s1,θ = W 1/a · Fu(idj)s1,θ · (gJ(idj) ·XK(idj))
− w
aJ(idj)

= Fu(idj)s1,θ ·W
−
K(idj)

J(idj)

and X ˜s1,θ = Xs1,θ ·W−
1

J(idj) . In this case, for all nodes θ ∈ Path(v), the share r?1,θ remains
perfectly hidden from A’s view.

� If j = j? (and thus idj = id? if B was lucky when choosing j?), for each node θ ∈ Path(v),
B picks a random s1,θ

R← Z∗p and uses the shares (γ1,θ, γ2,θ, r
?
1,θ, r

?
2,θ) to compute a triple

didj ,θ = (d1,θ, d2,θ, r
?
1,θ) where

(d1,θ, d2,θ) = (gγ1,θ · Fu(idj)s1,θ , Xs1,θ)

We see that didj ,θ is well-formed since (Y1,θ · hr
?
1,θ)1/a = gγ1,θ . In this case, the shares

{r?1,θ}θ∈Path(v) are revealed to A as part of didj ,θ.
- KU(.) queries:

� For periods t 6= t?, B runs KUNodes(T, RL, t) to find the right set Y of non-revoked nodes.
For each θ ∈ Y, B re-constructs Y2,θ = Xγ2,θ ·h−r

?
2,θ using the shares (γ1,θ, γ2,θ, r

?
1,θ, r

?
2,θ).

It sets W = Y2,θ · hr2,θ for a random r2,θ
R← Z∗p. Then, it picks s2,θ

R← Z∗p and computes

(ku1,θ, ku2,θ) =
(
Fv(t)s2,θ ·W−

α
β(t−t?) , Xs2,θ ·W−

1
β(t−t?)

)
,

which is well-defined since Fv(t) = gβ(t−t?) · Xα and t 6= t? and, if we define ˜s2,θ =
s2,θ − w/(βa(t− t?)) (with w = logg(W )), we have

W 1/a · Fv(t) ˜s2,θ = W 1/a · Fv(t)s2,θ · (gβ(t−t?) ·Xα)−
w

βa(t−t?)

= Fv(t)s2,θ ·W−
α

β(t−t?)

and X ˜s2,θ = Xs2,θ · W−
1

β(t−t?) . Finally, B returns {(ku1,θ, ku2,θ, r2,θ)}θ∈Y and, for all
nodes θ ∈ Y, the share r?2,θ remains perfectly hidden.
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� For period t = t?, B determines the set Y ∈ T of non-revoked nodes using KUNodes(T, RL, t).
For each θ ∈ Y, B uses the shares (γ1,θ, γ2,θ, r

?
1,θ, r

?
2,θ) to construct kut?,θ as the triple

kut?,θ = (ku1,θ, ku2,θ, r
?
2,θ) where

(ku1,θ, ku2,θ) =
(
gγ2,θ · Fv(t?)s2,θ , Xs2,θ

)
for a random s2,θ

R← Z∗p. This pair has the correct distribution since (Y2,θ ·hr
?
2,θ)1/a = gγ2,θ .

In this case, shares {r?2,θ}θ∈Y are given away.

By inspection, we check that, with non-negligible probability, B never has to reveal two com-
plementary shares r?1,θ, r

?
2,θ of r? for any node θ ∈ T. Let v? be the leaf that B assigns to the

target identity id? (which is also idj? with probability 1/q). For all θ ∈ Path(v?), A never sees
both r?1,θ and r?2,θ because, according to the rules of definition 2, id? must be revoked by period
t? if A decides to corrupt it at some point. Then, no ancestor of v? lies in the set Y determined
by KUNodes at period t?.

• The case cmode = 1 is easier to handle. Recall that, if A indeed behaves as a Type II adversary,
it does not query the private key of id? at any time.

- SK(.) queries: let id be the queried identity. We must have J(id) 6= 0 with non-negligible
probability and B can compute a private key as suggested by relation (6) in the case cmode =
0. In particular, the value r?1,θ does not leak for any θ ∈ Path(v) where v is the leaf associated
with id.

- KU(.) queries are processed exactly as in the case cmode = 0. Namely, B distinguishes the
same situations t 6= t? and t = t? and only reveals r?2,θ, for non-revoked nodes θ ∈ Y, when
generating updates for period t = t?.

Again, the simulator does not reveal both r?1,θ and r?2,θ for any node since r?1,θ is never used to
answer private key queries.

With non-negligible probability, the value r? thus remains independent of A’s view for
either value of cmode ∈ {0, 1}. This completes the outline of the proof, which is more thoroughly
detailed the full paper. ut

As we mentioned earlier, the reduction leaves room for improvement as its quadratic degradation
factor q2 becomes cubic since we must have tmax ≥ q to tolerate a polynomial number O(q)
of revocation queries. Although loose, the reduction is polynomial and thus solves the problem
left open in [5].

Chosen-ciphertext security can be efficiently achieved using the usual techniques [18, 12, 14]
or, since the outlined simulator knows a valid private key for each identity as in [26], in the
fashion of Cramer-Shoup [22].

5 Conclusion

We showed that regular IBE schemes can be used to implement the efficient revocation mecha-
nism suggested by Boldyreva et al. and notably provide the first adaptive-ID secure revocable
IBE. The latter was obtained by sharing the key generation process of a 2-level HIBE system
from the “commutative-blinding family” (initiated with the first scheme of [6]). As another
extension, the same ideas make it possible to construct revocable identity-based broadcast
encryption schemes (using the recent Boneh-Hamburg constructions [11] for instance) in the
selective-ID model.

An open problem is to devise adaptive-ID secure R-IBE systems with a tighter reduction
than what we could obtain. It would also be interesting to see how revocation can be handled in
the context of hierarchical IBE [29, 27], where each entity of the hierarchy should be responsible
for revoking its children.
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