
18.415/6.854 Advanced Algorithms November 7, 1996Euclidean TSP (part I)Lecturer: Michel X. Goemans MITThese notes are based on scribe notes by Marios Papaefthymiou and Mike Kluger-man.1 Euclidean TSPConsider the travelling salesman problem in the plane. Given n points in the plane,we would like to �nd a tour that visits all of them and that minimizes the distancetravelled, where the distance between two points is given by the Euclidean distance.This problem will be denoted by ETSP (Euclidean TSP).In a companion set of notes, we will present very recent algorithms of Arora andMitchell that produce in polynomial time a tour which is within 1+� of the optimum,for any �xed � > 0. In this set of notes, we �rst present some preliminaries and olderrelated results. Before we continue, we should point out that it is not known whetherthe Euclidean TSP is in NP. Even if we are presented with a candidate tour for the\yes-no" version of the problem, we do not know how to avoid computing a possiblyexponential number of decimal digits, in order to calculate the square root requiredfor the Euclidean distance.First, we present an algorithm which generates a path of length no more than pNk(k a constant to be determined) given that the points all lie within a unit square.Here we use the \Strips Method". First, break the square down into pNc horizontalstrips of equal height. The \Salesman's" strategy will then be the following: He willbegin at the left side of the topmost strip and travel to the right along the horizontalline splitting the strip in half. If at any point the salesman reaches a spot where apoint, p, in the problem is located in the strip directly above or below him, he travelsdirectly to p, and back to the center line. When he reaches the end of the line, hetravels along the edge of the square to the middle of the next strip and then travelsleft across the middle line. The salesman goes back and forth in this way until hehas passed through all strips. At the end, the salesman travels from the lower rightcorner to the upper left to �nish the loop (see Figure 1, part a).Analysis: Let1. A = length travelled horizontally across each strip = 1.2. B = distance travelled vertically along edge of square.3. C = worst case distance travelled getting to each point and back.TSP-1
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Figure 1: (a) First path followed by salesman in the strips method. (b) Alternativepath.4. D = distance travelled closing the loop.The total distance,ZSM � pNc A+B +NC +D� pNc 1 + 1 +N2 c2pN +p2= pN(1c + c) + 1 +p2= 2pN +p2 + 1 for c = 1Now, we can improve this method in the following way. We consider another path,as well. The saleman travels along the boundary lines of the strips rather than alongthe middle of the strip, and treats what were the middle lines as the new boundarylines (see Figure 1, part b).The salesman then takes the shorter of this path and the path described above.We can see why this improves our bound by looking at the sum of the lengths of thetwo paths. Nearly each argument in the sum above will double in size. The di�erenceis that the sum of the distance travelled to each point and back will remain the same( c2pN ) (see Figure 2). TSP-2



Figure 2: Distance travelled to each point and back.So the total will be:Z2SM � 2pNc A+ 2B +NC + 2D� 2pNc 1 + 2 +N2 c2pN + 2p2= pN(2c + c) + 2 + 2p2= 2p2pN + 2p2 + 2 for c = p2Thus, one of the two paths has length � p2pN + p2 + 1. The �rst proof of thisp2N bound is due to Few [2]. This has been improved to :984p2pN by Karlo� [3].2 Karp's partitioning schemeWe now present Karp's partitioning algorithm [4] for the Euclidean TSP problem onn points. A deterministic analysis of the algorithm shows that the length of the tourgiven by this algorithm does not exceed the length of the optimum tour by more thana factor of o(pn). A probabilistic analysis of the algorithm shows that if the pointsare uniformly distributed in the unit square, then the length of the tour yielded bythe algorithm approaches the optimum length with probability 1, as the number ofpoints in the plane becomes arbitrarily large.Given n points in [0; 1]2, the algorithm proceeds as follows.Algorithm Partition1. Choose s such that s! � n (s = lgn= lg lgn is a good choice, for example ). Infact, any s such that s! = O(nk) for some k will do.2. Divide the unit square into qn=s vertical strips (see Figure 3). Each strip mustcontain exactly pns points.3. Divide each vertical strip into qn=s horizontal strips, so that every one of then=s rectangles contains s points. TSP-3



4. For each rectangle Qi solve the TSP optimally for the s points inside Qi. Evenbrute-force solutions will cost s! = O(nk) steps.5. For each Qi select a vertex vi. Then construct a tour on fvi j i = 1; : : : ; n=sgof length L no greater than p2pn + 1 + p2. This can be done using doubleSTRIPS, for instance. In fact, any tour of length less than cpn, for a constantc, will do.6. Shortcut the resulting graph to get a tour of length ZKARP .
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Figure 3: Karp's partitioning algorithm.3 Determinisitc Analysis of Karp's AlgorithmIn this section we give a deterministic analysis of Karp's partitioning algorithm. Weshow that the length ZKARP of the tour yielded by the partitioning algorithm doesnot exceed the length ZTSP of the optimal tour by more than an additive factor ofO(qn=s) = o(pn).First, we prove the following claim, that bounds the length Z�i of the locallyoptimum tour in Qi, constructed in Step 4 of the algorithm, in terms of the lengthZi of the edges of the optimum tour in Qi and the perimeter of Qi.TSP-4



Claim 1 Let C be the optimal tour on all n points. Let Zi be the length of the edgesof C in Qi. Let Z�i be the length of the optimal tour in Qi. ThenZ�i � Zi + 32P (Qi);where P (Qi) denotes the perimeter of Qi.Proof: Let's focus on some Qi (see Figure 4). For each edge crossing the boundaryof Qi we de�ne a new boundary point (cfr. A through F on the �gure). There is aneven number of boundary points. We connect all boundary points in their order ofappearance on the boundary with a cycle. This cycle is of length less than or equalto P (Qi). We also add edges which constitute a short matching, i.e. one of length nogreater than (1=2)P (Qi), on the boundary nodes. One of the two ways of selectingevery other edge of the cycle constructed above constitutes such a short matching.The purpose of these additions is to create an eulerian graph. Now, we can short-cutto get a tour on the inside nodes and the boundary nodes. This tour can be furthershort-cut to obtain a tour on the inside nodes only. Clearly, the length l of this toursatis�es Z�i � l� Zi + 32P (Qi);since the total length of the edges in the eulerian graph is at most Zi + P (Qi) +(1=2)P (Qi). 2
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Figure 4: A subrectangle Qi. Its boundary intersections are denoted by A through F.Now, we can prove the following theorem, which provides a performance guaranteefor the partitioning algorithm. TSP-5



Theorem 2 Let ZTSP be the length of the optimal tour on the given n points and letZKARP be the length of the tour yielded by Karp's partitioning algorithm. ThenZTSP � ZKARP � ZTSP +O(qn=s);where s! � n.Proof: By the de�nition of ZKARP and the previous claim we have:ZKARP � n=sXi=1Z�i + L� n=sXi=1Zi + 32 n=sXi=1 P (Qi) +p2qn=s+O(1)= ZTSP + 32 �2qn=s+ 2qn=s�+p2qn=s+O(1)= ZTSP +O(qn=s): 24 Probabilistic Analysis of Karp's AlgorithmIn this section we present a probabilistic analysis of Karp's partitioning algorithm.We state three theorems, one of them along with its proof, and we conclude with twoimportant corollaries about the properties of the solutions yielded by the algorithm.LetX1; : : : ; Xn be n independent random variables uniformly distributed in [0; 1]2.The following theorem gives an upper and a lower bound on the expected length ofthe optimum tour on these n points.Theorem 3 E[TSP (X1; : : : ; Xn)] = �(pn):Proof: For convenience let us denote E[TSP (X1; : : : ; Xn)] by En. Applying thedouble STRIPS method we deduce an upper bound for En:En � p2pn + 1 +p2:We furthermore claim that En � pn=2. First, since any edge incident to Xi haslength at least d(Xi; fX1; : : : ; Xi�1; Xi+1; : : : ; Xng) = minj 6=i jjXj �Xijj, we observethat En � E " nXi=1 d(Xi; fX1; : : : ; Xi�1; Xi+1; : : : ; Xng)#= nXi=1E [d(Xi; fX1; : : : ; Xi�1; Xi+1; : : : ; Xng)]= nE [d(Xn; fX1; : : : ; Xn�1g)] :TSP-6



Since E[Y ] = R10 Pr[Y � y]dy for any nonnegative random variable Y , we can boundthe expectation in the following way:E [d(Xn; fX1; : : : ; Xn�1g)] = Z 10 Pr [d(Xn; fX1; : : : ; Xn�1g) � r] dr� Z 1=p�0 (1� �r2)n�1dr:where we had used the fact that:Pr[d(Xn; fX1; : : : ; Xn�1g) � r jXn] = Pr[mini<n jjXi �Xnjj � r jXn]= Yi<nPr[jjXi �Xnjj � r jXn]� (1� �r2)n�1;for all Xn. The last integral can be seen to be equal to12 �(n)�(n+ 12) ;which is greater than or equal to 12 1pn:Here is a quick way to show that this integral is �( 1pn):Z 1=p�0 (1� �r2)n�1dr � Z 1=p�n0 (1� �r2)n�1dr� Z 1=p�n0 (1� 1n)n�1dr� e�1p�n:It follows that En � n 12pn = pn2 ;thus completing the proof of the theorem. 2We can prove a stronger result than that of Theorem 3. Speci�cally, we can showthat the ratio En=pn is not only bounded but it also approaches a limit �, as thenumber of points n approaches in�nity.Theorem 4 There exists a number � such thatlimn!1 E[TSP (X1; : : : ; Xn)]pn = �:TSP-7



The limit � is known to be in the range 0:625 � � � 0:9204.An even stronger theorem was proven by Beardwood, Halton and Hammersley [1]:Theorem 5 There exists a number � such thatPr " limn!1 TSP (X1; : : : ; Xn)pn = �# = 1:The proofs of Theorems 4 and 5 are omitted.Based on Theorem 2 we can show that Karp's algorithm is optimal in expectedvalue.Corollary 6 1 � ZKARPZTSP � 1 + o(1):Proof: From Theorem 2 we haveZKARP � ZTSP + cpnps :Therefore E[ZKARP ] � E[ZTSP ] + cpnps :From Theorem 3 we have1 � E[ZKARP ]E[ZTSP ] � 1 + cpnpspn=2 = 1 + 2cps = 1 + o(1);since 1=ps! 0 as n!1. 2Based on Theorem 5 we can show that the length of the tour yielded by Karp'salgorithm approaches the optimal length almost surely, as the number of points ap-proaches in�nity.Corollary 7 Pr hlimn!1 ZKARPZTSP = 1i = 1:References[1] J. Beardwood, J. Halton, J. Hammersley, \The shortest path through manypoints", Proc. Cambridge Philos. Soc., 55, 299{327, 1959.[2] L. Few, \The shortest path and shortest road through n points", Mathematika,2, 141{144, 1955.[3] H.J. Karlo�, \How long can a Euclidean Traveling Salesman Tour be", SIAM J.Disc. Math., 2, 91{99, 1989.[4] R. Karp, \Probabilistic Analysis of Partitioning Algorithms for the TravelingSalesman Problem in the plane", Math. of Operations Research, 2, 1977.TSP-8


