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Abstract. We introduce thesmoothed analysis of algorithms, which continuously interpolates be-
tween the worst-case and average-case analyses of algorithms. In smoothed analysis, we measure the
maximum over inputs of the expected performance of an algorithm under small random perturbations
of that input. We measure this performance in terms of both the input size and the magnitude of the
perturbations. We show that the simplex algorithm hassmoothed complexitypolynomial in the input
size and the standard deviation of Gaussian perturbations.
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1. Introduction

The Analysis of Algorithms community has been challenged by the existence of
remarkable algorithms that are known by scientists and engineers to work well

A preliminary version of this article was published in theProceedings of the 33rd Annual ACM
Symposium on Theory of Computing(Hersonissos, Crete, Greece, July 6–8). ACM, New York, 2001,
pp. 296–305.
D. Spielman’s work at M.I.T. was partially supported by an Alfred P. Sloan Foundation Fellowship,
NSF grants No. CCR-9701304 and CCR-0112487, and a Junior Faculty Research Leave sponsored
by the M.I.T. School of Science
S.-H. Teng’s work was done at the University of Illinois at Urbana-Champaign, Boston University,
and while visiting the Department of Mathematics at M.I.T. His work was partially supported by an
Alfred P. Sloan Foundation Fellowship, and NSF grant No. CCR: 99-72532.
Authors’ addresses: D. A. Spielman, Department of Mathematics, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139, e-mail: spielman@math.mit.edu; S.-H. Teng, Department of Computer
Science, Boston University, Boston, MA 02215.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax:+1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0004-5411/04/0500-0385 $5.00

Journal of the ACM, Vol. 51, No. 3, May 2004, pp. 385–463.



386 D. A. SPIELMAN AND S.-H. TENG

in practice, but whose theoretical analyses are negative or inconclusive. The root
of this problem is that algorithms are usually analyzed in one of two ways: by
worst-case or average-case analysis. Worst-case analysis can improperly suggest
that an algorithm will perform poorly by examining its performance under the
most contrived circumstances. Average-case analysis was introduced to provide
a less pessimistic measure of the performance of algorithms, and many practical
algorithms perform well on the random inputs considered in average-case analysis.
However, average-case analysis may be unconvincing as the inputs encountered in
many application domains may bear little resemblance to the random inputs that
dominate the analysis.

We propose an analysis that we callsmoothed analysiswhich can help explain the
success of algorithms that have poor worst-case complexity and whose inputs look
sufficiently different from random that average-case analysis cannot be convinc-
ingly applied. In smoothed analysis, we measure the performance of an algorithm
under slight random perturbations of arbitrary inputs. In particular, we consider
Gaussian perturbations of inputs to algorithms that take real inputs, and we mea-
sure the running times of algorithms in terms of their input size and the standard
deviation of the Gaussian perturbations.

We show that the simplex method has polynomial smoothed complexity. The
simplex method is the classic example of an algorithm that is known to perform
well in practice but which takes exponential time in the worst case [Klee and
Minty 1972; Murty 1980; Goldfarb and Sit 1979; Goldfarb 1983; Avis and Chv´atal
1978; Jeroslow 1973; Amenta and Ziegler 1999]. In the late 1970s and early 1980s
the simplex method was shown to converge in expected polynomial time on var-
ious distributions of random inputs by researchers including Borgwardt, Smale,
Haimovich, Adler, Karp, Shamir, Megiddo, and Todd [Borgwardt 1980; Borgwardt
1977; Smale 1983; Haimovich 1983; Adler et al. 1987; Adler and Megiddo 1985;
Todd 1986]. These works introduced novel probabilistic tools to the analysis of
algorithms, and provided some intuition as to why the simplex method runs so
quickly. However, these analyses are dominated by “random looking” inputs: even
if one were to prove very strong bounds on the higher moments of the distributions
of running times on random inputs, one could not prove that an algorithm performs
well in any particular small neighborhood of inputs.

To bound expected running times on small neighborhoods of inputs, we consider
linear programming problems in the form

maximize z Tx

subject toAx ≤ y , (1)

and prove that for every vectorz and every matrixĀ and vector ¯y , the expectation
over standard deviationσ (maxi ‖(ȳi , ā i )‖) Gaussian perturbationsA andy of Ā
and ȳ of the time taken by a two-phase shadow-vertex simplex method to solve
such a linear program is polynomial in 1/σ and the dimensions ofA.

1.1. LINEAR PROGRAMMING AND THE SIMPLEX METHOD. It is difficult to over-
state the importance of linear programming to optimization. Linear programming
problems arise in innumerable industrial contexts. Moreover, linear programming
is often used as a fundamental step in other optimization algorithms. In a linear
programming problem, one is asked to maximize or minimize a linear function over
a polyhedral region.
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Perhaps one reason we see so many linear programs is that we can solve them
efficiently. In 1947, Dantzig introduced the simplex method (see Dantzig [1951]),
which was the first practical approach to solving linear programs and which re-
mains widely used today. To state it roughly, the simplex method proceeds by
walking from one vertex to another of the polyhedron defined by the inequali-
ties in (1). At each step, it walks to a vertex that is better with respect to the
objective function. The algorithm will either determine that the constraints are
unsatisfiable, determine that the objective function is unbounded, or reach a ver-
tex from which it cannot make progress, which necessarily optimizes the objec-
tive function.

Because of its great importance, other algorithms for linear programming have
been invented. Khachiyan [1979] applied the ellipsoid algorithm to linear program-
ming and proved that it always converged in time polynomial ind, n, andL—the
number of bits needed to represent the linear program. However, the ellipsoid al-
gorithm has not been competitive with the simplex method in practice. In contrast,
the interior-point method introduced by Karmarkar [1984], which also runs in time
polynomial ind, n, andL, has performed very well: variations of the interior point
method are competitive with and occasionally superior to the simplex method in
practice.

In spite of half a century of attempts to unseat it, the simplex method remains
the most popular method for solving linear programs. However, there has been
no satisfactory theoretical explanation of its excellent performance. A fascinating
approach to understanding the performance of the simplex method has been the
attempt to prove that there always exists a short walk from each vertex to the
optimal vertex. The Hirsch conjecture states that there should always be a walk of
length at mostn − d. Significant progress on this conjecture was made by Kalai
and Kleitman [1992], who proved that there always exists a walk of length at most
nlog2 d+2. However, the existence of such a short walk does not imply that the simplex
method will find it.

A simplex method is not completely defined until one specifies itspivot rule—
the method by which it decides which vertex to walk to when it has many to
choose from. There is no deterministic pivot rule under which the simplex method
is known to take a subexponential number of steps. In fact, for almost every deter-
ministic pivot rule there is a family of polytopes on which it is known to take an
exponential number of steps [Klee and Minty 1972; Murty 1980; Goldfarb and Sit
1979; Goldfarb 1983; Avis and Chv´atal 1978; Jeroslow 1973]. (See Amenta and
Ziegler [1999] for a survey and a unified construction of these polytopes). The best
present analysis of randomized pivot rules shows that they take expected time
nO(
√

d)[Kalai 1992; Matoušek et al. 1996], which is quite far from the polynomial
complexity observed in practice. This inconsistency between the exponential worst-
case behavior of the simplex method and its everyday practicality leave us wanting
a more reasonable theoretical analysis.

Various average-case analyses of the simplex method have been performed. Most
relevant to this article is the analysis of Borgwardt [1977, 1980], who proved that the
simplex method with the shadow vertex pivot rule runs in expected polynomial time
for polytopes whose constraints are drawn independently from spherically symmet-
ric distributions (e.g., Gaussian distributions centered at the origin). Independently,
Smale [1983, 1982] proved bounds on the expected running time of Lemke’s self-
dual parametric simplex algorithm on linear programming problems chosen from
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a spherically-symmetric distribution. Smale’s analysis was substantially improved
by Megiddo [1986].

While these average-case analyses are significant accomplishments, it is not clear
whether they actually provide intuition for what happens on typical inputs. Edelman
[1992] writes on this point:

What is a mistake is to psychologically link a random matrix with the
intuitive notion of a “typical” matrix or the vague concept of “any old
matrix.”

Another model of random linear programs was studied in a line of research initi-
ated independently by Haimovich [1983] and Adler [1983]. Their works considered
the maximum over matrices,A, of the expected time taken by parametric simplex
methods to solve linear programs over these matrices in which the directions of the
inequalities are chosen at random. As this framework considers the maximum of
an average, it may be viewed as a precursor to smoothed analysis—the distinction
being that the random choice of inequalities cannot be viewed as a perturbation,
as different choices yield radically different linear programs. Haimovich and Adler
both proved that parametric simplex methods would take an expected linear num-
ber of steps to go from the vertex minimizing the objective function to the vertex
maximizing the objective function, even conditioned on the program being feasible.
While their theorems confirmed the intuitions of many practitioners, they were ge-
ometric rather than algorithmic1 as it was not clear how an algorithm would locate
either vertex. Building on these analyses, Todd [1986], Adler and Megiddo [1985],
and Adler et al. [1987] analyzed parametric algorithms for linear programming un-
der this model and proved quadratic bounds on their expected running time. While
the random inputs considered in these analyses are not as special as the random
inputs obtained from spherically symmetric distributions, the model of randomly
flipped inequalities provokes some similar objections.

1.2. SMOOTHED ANALYSIS OF ALGORITHMS AND RELATED WORK. We intro-
duce thesmoothed analysis of algorithmsin the hope that it will help explain the
good practical performance of many algorithms that worst-case does not and for
which average-case analysis is unconvincing. Our first application of the smoothed
analysis of algorithms will be to the simplex method. We will consider the maxi-
mum overĀ andȳ of the expected running time of the simplex method on inputs
of the form

maximize z Tx

subject to (̄A+G)x ≤ (ȳ + h), (2)

where we letĀ and ȳ be arbitrary andG and h be a matrix and a vector of
independently chosen Gaussian random variables of mean 0 and standard deviation
σ (maxi ‖(ȳi , ā i )‖). If we let σ go to 0, then we obtain the worst-case complexity
of the simplex method; whereas, if we letσ be so large thatG swamps outA, we
obtain the average-case analyzed by Borgwardt. By choosing polynomially small
σ , this analysis combines advantages of worst-case and average-case analysis, and
roughly corresponds to the notion of imprecision in low-order digits.

1Our results in Section 4 are analogous to these results.
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In a smoothed analysis of an algorithm, we assume that the inputs to the algorithm
are subject to slight random perturbations, and we measure the complexity of the
algorithm in terms of the input size and the standard deviation of the perturbations.
If an algorithm has low smoothed complexity, then one should expect it to work well
in practice since most real-world problems are generated from data that is inherently
noisy. Another way of thinking about smoothed complexity is to observe that if an
algorithm has low smoothed complexity, then one must be unlucky to choose an
input instance on which it performs poorly.

We now provide some definitions for the smoothed analysis of algorithms that
take real or complex inputs. For an algorithmA and inputx , let

CA(x )

be a complexity measure ofA on inputx . Let X be the domain of inputs toA, and
let Xn be the set of inputs of sizen. The size of an input can be measured in various
ways. Standard measures are the number of real variables contained in the input
and the sums of the bit-lengths of the variables. Using this notation, one can say
that A has worst-caseC-complexity f (n) if

max
x∈Xn

(CA(x )) = f (n).

Given a family of distributionsµn on Xn, we say thatA has average-caseC-
complexity f (n) underµ if

E
x
µn←Xn

[CA(x )] = f (n).

Similarly, we say thatA hassmoothedC-complexity f(n, σ ) if

max
x∈Xn

E
g

[
CA(x + (σ ‖x‖?) g )

] = f (n, σ ), (3)

where (σ‖x‖?)g is a vector of Gaussian random variables of mean 0 and standard
deviationσ‖x‖? and‖x‖? is a measure of the magnitude ofx , such as the largest
element or the norm. We say that an algorithm haspolynomial smoothed complexity
if its smoothed complexity is polynomial innand 1/σ . In Section 6, we present some
generalizations of the definition of smoothed complexity that might prove useful.
To further contrast smoothed analysis with average-case analysis, we note that the
probability mass in (3) is concentrated in a region of radiusO(σ

√
n) and volume

at mostO(σ
√

n)n, and so, whenσ is small, this region contains an exponentially
small fraction of the probability mass in an average-case analysis. Thus, even an
extension of average-case analysis to higher moments will not imply meaningful
bounds on smoothed complexity.

A discrete analog of smoothed analysis has been studied in a collection of works
inspired by Santha and Vazirani’ssemi-random sourcemodel [Santha and Vazirani
1986]. In this model, an adversary generates an input, and each bit of this input has
some probability of being flipped. Blum and Spencer [1995] design a polynomial-
time algorithm thatk-colors k-colorable graphs generated by this model. Feige
and Krauthgamer [1998] analyze a model in which the adversary is more power-
ful, and use it to show that Turner’s algorithm [Turner 1986] for approximating the
bandwidth performs well on semi-random inputs. They also improve Turner’s anal-
ysis. Feige and Kilian [1998] present polynomial-time algorithms that recover large
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independent sets,k-colorings, and optimal bisections in semi-random graphs. They
also demonstrate that significantly better results would lead to surprising collapses
of complexity classes.

1.3. OUR RESULTS. We consider the maximum overz , ȳ , andā1, . . . , ān of
the expected time taken by a two-phase shadow vertex simplex method to solve
linear programming problems of the form

maximize z Tx

subject to〈aaa i | x 〉 ≤ yi , for 1≤ i ≤ n, (4)

where eachaaa i is a Gaussian random vector of standard deviationσ maxi ‖(ȳi , ā i )‖
centered at ¯a i , and eachyi is a Gaussian random variable of standard deviation
σ maxi ‖(ȳi , ā i )‖ centered at̄yi .

We begin by considering the case in whichy = 1, ‖ā i ‖ ≤ 1, andσ <

1/3
√

d ln n. In this case, our first result, Theorem 4.1, says that for every vector
t the expected size of theshadowof the polytope—the projection of the polytope
defined by the equations (4) onto the plane spanned byt andz—is polynomial in
n, the dimension, and 1/σ . This result is the geometric foundation of our work, but
it does not directly bound the running time of an algorithm, as the shadow relevant
to the analysis of an algorithm depends on the perturbed program and cannot be
specified beforehand as the vectort must be. In Section 3.3, we describe a two-
phase shadow-vertex simplex algorithm, and in Section 5, we use Theorem 4.1 as
a black box to show that it takes expected time polynomial inn, d, and 1/σ in the
case described above.

Efforts have been made to analyze how much the solution of a linear program
can change as its data is perturbed. For an introduction to such analyses, and
an analysis of the complexity of interior point methods in terms of the resulting
condition number, we refer the reader to the work of Renegar [1995b, 1995a, 1994].

1.4. INTUITION THROUGH CONDITION NUMBERS. For those already familiar
with the simplex method and condition numbers, we include this section to provide
some intuition for why our results should be true.

Our analysis will exploit geometric properties of the condition number of a
matrix, rather than of a linear program. We start with the observation that if a
corner of a polytope is specified by the equationAI x = y I , whereI is a d-set,
then the condition number of the matrixAI provides a good measure of how far the
corner is from being flat. Moreover, it is relatively easy to show that ifA is subject
to perturbation, then it is unlikely thatAI has poor condition number. So, it seems
intuitive that if A is perturbed, then most corners of the polytope should have angles
bounded away from being flat. This already provides some intuition as to why the
simplex method should run quickly: one should make reasonable progress as one
rounds a corner if it is not too flat.

There are two difficulties in making the above intuition rigorous: the first is that
even if AI is well conditioned for most setsI , it is not clear thatAI will be well
conditioned for most setsI that are bases of corners of the polytope. The second
difficulty is that even if most corners of the polytope have reasonable condition
number, it is not clear that a simplex method will actually encounter many of these
corners. By analyzing the shadow vertex pivot rule, it is possible to resolve both of
these difficulties.
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The first advantage of studying the shadow vertex pivot rule is that its analysis
comes down to studying the expected sizes of shadows of the polytope. From the
specification of the plane onto which the polytope will be projected, one obtains
a characterization of all the corners that will be in the shadow, thereby avoiding
the complication of an iterative characterization. The second advantage is that
these corners are specified by the property that they optimize a particular objective
function, and using this property one can actually bound the probability that they
are ill-conditioned. While the results of Section 4 are not stated in these terms, this
is the intuition behind them.

Condition numbers also play a fundamental role in our analysis of the shadow-
vertex algorithm. The analysis of the algorithm differs from the mere analysis of
the sizes of shadows in that, in the study of an algorithm, the plane onto which the
polytope is projected depends upon the polytope itself. This correlation of the plane
with the polytope complicates the analysis, but is also resolved through the help of
condition numbers. In our analysis, we view the perturbation as the composition
of two perturbations, where the second is small relative to the first. We show that
our choice of the plane onto which we project the shadow is well-conditioned
with high probability after the first perturbation. That is, we show that the second
perturbation is unlikely to substantially change the plane onto which we project, and
therefore unlikely to substantially change the shadow. Thus, it suffices to measure
the expected size of the shadow obtained after the second perturbation onto the
plane that would have been chosen after just the first perturbation.

The technical lemma that enables this analysis, Lemma 5.3, is a concentration
result that proves that it is highly unlikely that almost all of the minors of a random
matrix have poor condition number. This analysis also enables us to show that it is
highly unlikely that we will need a large “big-M” in phase I of our algorithm.

We note that the condition numbers of theAI s have been studied before in the
complexity of linear programming algorithms. The condition number ¯χA of Vavasis
and Ye [1996] measures the condition number of the worst submatrixAI , and
their algorithm runs in time proportional to ln( ¯χA). Todd et al. [2001] have shown
that for a Gaussian random matrix the expectation of ln( ¯χA) is O(min(d ln n, n)).
That is, they show that it is unlikely that anyAI is exponentially ill-conditioned.
It is relatively simple to apply the techniques of Section 5.1 to obtain a similar
result in the smoothed case. We wonder whether our concentration result that it is
exponentially unlikely that manyAI are even polynomially ill-conditioned could
be used to obtain a better smoothed analysis of the Vavasis–Ye algorithm.

1.5. DISCUSSION. One can debate whether the definition ofpolynomial
smoothed complexityshould be that an algorithm have complexity polynomial in
1/σ or log(1/σ ). We believe that the choice of being polynomial in 1/σ will prove
more useful as the other definition is too strong and quite similar to the notion of
being polynomial in the worst case. In particular, one can convert any algorithm
for linear programming whose smoothed complexity is polynomial ind, n and
log(1/σ ) into an algorithm whose worst-case complexity is polynomial ind, n,
andL. That said, one should certainly prefer complexity bounds that are lower as
a function of 1/σ , d andn.

We also remark that a simple examination of the constructions that provide
exponential lower bounds for various pivot rules [Klee and Minty 1972; Murty
1980; Goldfarb and Sit 1979; Goldfarb 1983; Avis and Chv´atal 1978; Jeroslow
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1973] reveals that none of these pivot rules have smoothed complexity polynomial
in n and subpolynomial in 1/σ . That is, these constructions are unaffected by
exponentially small perturbations.

2. Notation and Mathematical Preliminaries

In this section, we define the notation that will be used in the article. We will also
review some background from mathematics and derive a few simple statements that
we will need. The reader should probably skim this section now, and save a more
detailed examination for when the relevant material is referenced.

—[n] denotes the set of integers between 1 andn, and
([n]

k

)
denotes the subsets of

[n] of sizek.
—Subsets of [n] are denoted by the capital Roman lettersI , J, L , K .Mwill denote

a subset of integers, andK will denote a set of subsets of [n].
—Subsets of IR? are denoted by the capital Roman letters

A, B, P, Q, R, S, T,U,V .
—Vectors in IR? are denoted by bold lower-case Roman letters, such asaaa i , ā i , ã i ,

b i , c i , di ,h , t, q , z ,y .
—Whenever a vector, sayaaa ∈ IRd is present, its components will be denoted by

lower-case Roman letters with subscripts, such asa1, . . . ,ad.
—Whenever a collection of vectors, such asaaa1, . . . ,aaan, are present, the similar

bold upper-case letter, such asA, will denote the matrix of these vectors. For
I ∈ ([n]

k

)
, AI will denote the matrix of thoseaaa i for which i ∈ I .

—Matrices are denoted by bold upper-case Roman letters, such asA, Ā, Ã,B,M
andRω.

—Sd−1 denotes the unit sphere in IRd.
—Vectors inS? will be denoted by bold Greek letters, such asω,ψ, τ .
—Generally speaking, univariate quantities with scale, such as lengths or heights,

will be represented by lower case Roman letters such asc, h, l , r , s, andt . The
principal exceptions are thatκ andM will also denote such quantities.

—Quantities without scale, such as the ratios of quantities with scale or affine
coordinates, will be represented by lower case Greek letters such asα, β, λ, ξ, ζ .
α will denote a vector of such quantities such as (α1, . . . , αd).

—Density functions are denoted by lower case Greek letters such asµ andν.
—The standard deviations of Gaussian random variables are denoted by lower-case

Greek letters such asσ, τ andρ.
—Indicator random variables are denoted by upper case Roman letters, such asA,

B, E, F , V , W, X, Y, andZ
—Functions into the reals or integers will be denoted by calligraphic upper-case

letters, such asF,G,S+,S ′, T .
—Functions into IR? are denoted by upper-case Greek letters, such as8ε,ϒ,9.
—〈x | y〉 denotes the inner product of vectorsx andy .
—For vectorsω andz , we letangle(ω, z ) denote the angle between these vectors

at the origin.
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—The logarithm base 2 is written lg and the natural logarithm is written ln.
—The probability of an eventA is writtenPr [ A], and the expectation of a variable

X is writtenE [X].
—The indicator random variable for an eventA is written[ A].

2.1. GEOMETRICDEFINITIONS. For the following definitions, we letaaa1, . . . ,aaak
denote a set of vectors in IRd.

—Span(aaa1, . . . ,aaak) denotes the subspace spanned byaaa1, . . . ,aaak.
—Aff (aaa1, . . . ,aaak) denotes the hyperplane that is the affine span ofaaa1, . . . ,aaak: the

set of points
∑

i αiaaa i , where
∑

i αi = 1, for all i .
—ConvHull (aaa1, . . . ,aaak) denotes the convex hull ofaaa1, . . . ,aaak.
—Cone(aaa1, . . . ,aaak) denotes the positive cone throughaaa1, . . . ,aaak: the set of points∑

i αiaaa i , for αi ≥ 0.
—4 (aaa1, . . . ,aaad) denotes the simplexConvHull (aaa1, . . . ,aaad).

For a linear program specified byaaa1, . . . ,aaan, y andz , we will say that the linear
program is ingeneral positionif

—The pointsaaa1, . . . ,aaan are in general position with respect toy , which means
that for all I ⊂ ([n]

d ) andx = A−1
I y I , and all j 6∈ I , 〈aaa j | x 〉 6= yj .

—For all I ⊂ ( [n]
d−1), z 6∈ Cone(AI ).

Furthermore, we will say that the linear program is ingeneral position with respect
to a vectort if the set ofλ for which there exists anI ∈ ( [n]

d−1) such that

(1− λ)t + λz ∈ Cone(AI )

is finite and does not contain 0.

2.2. VECTOR AND MATRIX NORMS. The material of this section is principally
used in Sections 3.3 and 5.1. The following definitions and propositions are stan-
dard, and may be found in standard texts on Numerical Linear Algebra.

Definition2.1 (Vector Norms). For a vectorx , we define

—‖x‖ =
√∑

i x2
i .

—‖x‖1 =
∑

i |xi |.
—‖x‖∞ = maxi |xi |.

PROPOSITION2.2 (VECTORSNORMS). For a vectorx ∈ IRd,

‖x‖ ≤ ‖x‖1 ≤
√

d ‖x‖ .
Definition2.3 (Matrix Norm). For a matrixA, we define

‖A‖ def= max
x
‖Ax‖ / ‖x‖ .

PROPOSITION2.4 (PROPERTIES OFMATRIX NORM). For d-by-d matricesA
andB , and a d-vectorx ,

(a) ‖Ax‖ ≤ ‖A‖ ‖x‖.
(b) ‖AB‖ ≤ ‖A‖ ‖B‖.
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(c) ‖A‖ = ‖AT‖.
(d) ‖A‖ ≤ √d maxi ‖aaa i ‖, whereA = (aaa1, . . . ,aaad).
(e) det (A) ≤ ‖A‖d.

Definition2.5 (smin ()). For a matrixA, we define

smin (A)
def= ∥∥A−1

∥∥−1
.

We recall thatsmin (A) is the smallest singular value of the matrixA, and that it is
not a norm.

PROPOSITION2.6 (PROPERTIES OFsmin()). For d-by-d matricesA andB ,

(a) smin (A) = minx ‖Ax‖ / ‖x‖.
(b) smin (B) ≥ smin (A)− ‖A−B‖.

2.3. PROBABILITY. For an event,A, we let [ A] denote the indicator random
variable for the event. We generally describe random variables by their density
functions. Ifx has densityµ, then

Pr [ A(x )]
def=
∫

[ A(x )] µ(x ) dx .

If B is another event, then

Pr
B

[ A(x )]
def= Pr [ A(x )|B(x )]

def=
∫

[B(x )] [ A(x )] µ(x ) dx∫
[B(x )] µ(x ) dx

.

In a context where multiple densities are present, we will use use the notation
Prµ [ A(x )] to indicate the probability ofA whenx is distributed according toµ.

In many situations, we will not know the densityµ of a random variablex , but
rather a functionν such thatν(x ) = cµ(x ) for some constantc. In this case, we
will say thatx has density proportional toν.

The following Propositions and Lemmas will play a prominent role in the proofs
in this article. The only one of these which might not be intuitively obvious is
Lemma 2.11.

PROPOSITION2.7 (AVERAGE≤ MAXIMUM ). Letµ(x, y) be a density function,
and let x and y be distributed according toµ(x, y). If A(x, y) is an event and X(x, y)
is random variable, then

Pr
x,y

[ A(x, y)] ≤ max
x

Pr
y

[ A(x, y)] , and

E
x,y

[X(x, y)] ≤ max
x

E
y

[X(x, y)] ,

where in the right-hand terms, y is distributed in accordance with the induced
distributionµ(x, y).

PROPOSITION2.8 (EXPECTATION ONSUBDOMAIN ). Let x be a random vari-
able and A(x ) an event. Let P be a measurable subset of the domain ofx . Then,

Pr
x∈P

[ A(x )] ≤ Pr [ A(x )] /Pr [x ∈ P] .
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PROOF. By the definition of conditional probability,

Pr
x∈P

[ A(x )] = Pr [ A(x )|x ∈ P]

= Pr [ A(x ) andx ∈ P] /Pr [x ∈ P] , by Bayes’ rule,

≤ Pr [ A(x )] /Pr [x ∈ P] .

LEMMA 2.9 (COMPARING EXPECTATIONS). Let X and Y be nonnegative ran-
dom variables and A an event satisfying(1) X ≤ k, (2) Pr [ A] ≥ 1− ε, and(3)
there exists a constant c such thatE [X|A] ≤ cE [Y|A]. Then,

E [X] ≤ cE [Y] + εk.

PROOF.

E [X] = E [X|A] Pr [ A] + E [X|not(A)] Pr [not(A)]

≤ cE [Y|A] Pr [ A] + εk
≤ cE [Y] + εk.

LEMMA 2.10 (SIMILAR DISTRIBUTIONS). Let X be a nonnegative random vari-
able such that X≤ k. Letν andµ be density functions for which there exists a set
S such that(1) Prν [S] > 1− ε and(2) there exists a constant c≥ 1 such that for
all a ∈ S,ν(a) ≤ cµ(a). Then,

E
ν

[X(a)] ≤ cE
µ

[X(a)] + kε.

PROOF. We write

E
ν

[X] =
∫

a∈S
X(a)ν(a) da +

∫
a6∈S

X(a)ν(a) da

≤ c
∫

a∈S
X(a)µ(a) da + kε

≤ c
∫

a
X(a)µ(a) da + kε

= cE
µ

[X] + kε.

LEMMA 2.11 (COMBINATION LEMMA ). Let x and y be random variables dis-
tributed in accordance withµ(x, y). LetF(x) andG(x, y) be nonnegative functions
andα andβ be constants such that

—∀ε ≥ 0, Prx,y [F(x) ≤ ε] ≤ αε, and

—∀ε ≥ 0, maxx Pry [G(x, y) ≤ ε] ≤ (βε)2,

where in the second line y is distributed according to the induced densityµ(x, y).
Then

Pr
x,y

[F(x)G(x, y) ≤ ε] ≤ 4αβε.



396 D. A. SPIELMAN AND S.-H. TENG

PROOF. Consider anyx and y for whichF(x)G(x, y) ≤ ε. If i is the integer
for which

2iβε < F(x) ≤ 2i+1βε,

thenG(x, y) ≤ 2−i /β. Thus,F(x)G(x, y) ≤ ε, implies that eitherF(x) ≤ 2βε, or
there exists an integeri ≥ 1 for which

F(x) ≤ 2i+1βε and G(x, y) ≤ 2−i /β.

So, we obtain the bound

Pr
x,y

[F(x)G(x, y) ≤ ε]
≤ Pr

x,y
[F(x) ≤ 2βε] +

∑
i≥1

Pr
x,y

[
F(x) ≤ 2i+1βε andG(x, y) ≤ 2−i /β

]
≤ 2αβε +

∑
i≥1

Pr
x,y

[
F(x) ≤ 2i+1βε

]
Pr
x,y

[
G(x, y) ≤ 2−i /β

∣∣F(x) ≤ 2i+1βε
]

≤ 2αβε +
∑
i≥1

Pr
x,y

[
F(x) ≤ 2i+1βε

]
max

x
Pr
y

[
G(x, y) ≤ 2−i /β

]
≤ 2αβε +

∑
i≥1

(
2i+1αβε

) (
2−i
)2
, by Proposition 2.7,

= 2αβε + αβε
∑
i≥1

21−i

= 4αβε.

As we have found this lemma very useful in our work, and we suspect others
may as well, we state a more broadly applicable generalization. Its proof is similar.

LEMMA 2.12 (GENERALIZED COMBINATION LEMMA ). Let x and y be random
variables distributed in accordance withµ(x, y). There exists a function c(a, b)
such that ifF(x) and G(x, y) are nonnegative functions andα, β, a and b are
constants such that

—Prx,y [F(x) ≤ ε] ≤ (αε)a, and

—maxx Pry [G(x, y) ≤ ε] ≤ (βε)b,

where in the second line y is distributed in accordance with the induced density
µ(x, y), then

Pr
x,y

[F(x)G(x, y) ≤ ε] ≤ c(a, b)αβεmin(a,b) lg(1/ε)[a=b],

where[a = b] is 1 if a = b, and0 otherwise.

LEMMA 2.13 (ALMOST POLYNOMIAL DENSITIES). Let k > 0 and let t be a
nonnegative random variable with density proportional toµ(t)tk such that, for
some t0 > 0,

max0≤t≤t0 µ(t)

min0≤t≤t0 µ(t)
≤ c.
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Then,

Pr [t < ε] < c(ε/t0)
k+1.

PROOF. Forε ≥ t0, the lemma is vacuously true. Assumingε < t0,

Pr [t < ε] ≤ Pr [t < ε]

Pr [t < t0]

=
∫ ε

t=0µ(t)tk dt∫ t0
t=0µ(t)tk dt

≤ max0≤t≤t0 µ(t)
∫ ε

t=0 tk dt

min0≤t≤t0 µ(t)
∫ t0

t=0 tk dt

≤ c
εk+1/(k+ 1)

tk+1
0 /(k+ 1)

= c(ε/t0)
k+1.

2.4. GAUSSIANRANDOM VECTORS. For the convenience of the reader, we recall
some standard facts about Gaussian random variables and vectors. These may be
found in Feller [1968, VII.1] and Feller [1971, III.6]. We then draw some corollaries
of these facts and derive some lemmas that we will need later in the article.

We first recall that a univariate Gaussian distribution with mean 0 and standard
deviationσ has density

1√
2πσ

exp(−a2/2σ 2),

and that a Gaussian random vector in IRd centered at a point ¯a with covariance
matrixM has density

1(√
2π
)d

det(M )
exp

(−(aaa − ā)TM −1(aaa − ā)/2
)
.

For positive-definiteM , there exists a basis in which the density can be written

d∏
i=1

1√
2πσi

exp
(−a2

i /2σ
2
i

)
,

whereσ 2
1 ≤ · · · ≤ σ 2

d are the eigenvalues ofM . When all the eigenvalues ofM
are the same and equal toσ , we will refer to the density as aGaussian distribution
of standard deviationσ .

PROPOSITION2.14 (ADDITIVITY OF GAUSSIANS). If aaa1 is a Gaussian random
vector with covariance matrixM 1 centered at a point̄a1 andaaa2 is a Gaussian
random vector with covariance matrixM 2 centered at a point̄a2, thenaaa1+ aaa2 is
the Gaussian random vector with covariance matrixM 1+M 2 centered at̄a1+ā2.

LEMMA 2.15 (SMOOTHNESS OFGAUSSIANS). Letµ(x ) be a Gaussian distri-
bution of standard deviationσ centered at a point̄aaa. Let k≥ 1, let dist (x , āaa) ≤ k
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and letdist (x ,y ) < ε ≤ k. Then,

µ(y )

µ(x )
≥ exp

(−3kε/2σ 2
)
.

PROOF. By translatingāaa, x andy , we may assumēaaa = 0 and‖x‖ ≤ k. We
then have

µ(y )

µ(x )
= exp

(−( ‖y‖2− ‖x‖2 )/2σ 2
)

≥ exp
(−(2ε ‖x‖ + ε2

)
/2σ 2

)
, as‖y‖ ≤ ‖x‖ + ε

≥ exp
(−(2εk+ ε2

)
/2σ 2

)
, as‖x‖ ≤ k

≥ exp
(−3εk/2σ 2

)
asε ≤ k.

PROPOSITION2.16 (RESTRICTIONS OFGAUSSIANS). Letµ be a Gaussian dis-
tribution of standard deviationσ centered at a point̄aaa. Letv be any vector and r
be any real number. Then, the induced distribution

µ(x |v Tx = r )

is a Gaussian distribution of standard deviationσ centered at the projection of̄aaa
onto the plane

{
x : v Tx = r

}
.

PROPOSITION2.17 (GAUSSIAN MEASURE OFHALFSPACES). Letω be any unit
vector inIRd and r any real. Then,(

1√
2πσ

)d ∫
g
[〈ω | g〉 ≤ r ] exp

(−‖g‖2 /2σ 2
)

dg

= 1√
2πσ

∫ t=r

t=−∞
exp

(−t2/2σ 2
)

dt

PROOF. Immediate if one expresses the Gaussian density in a basis contain-
ingω.

The distribution of the square of the norm of a Gaussian random vector is the
Chi-Square distribution. We use the following weak bound on the Chi-Square dis-
tribution, which follows from Equality (26.4.8) of Abramowitz and Stegun [1970].

PROPOSITION2.18 (CHI-SQUARE BOUND). Let x be a Gaussian random vec-
tor in IRd of standard deviationσ centered at the origin. Then,

Pr [‖x‖ ≥ kσ ] ≤ (k2)d/2−1 exp(−k2/2)

2d/2−10(d/2)
. (5)

From this, we derive

COROLLARY 2.19 (A CHI-SQUARE BOUND). Letx be a Gaussian random vec-
tor in IRd of standard deviationσ centered at the origin. Then, for n≥ 3

Pr
[ ‖x‖ ≥ 3

√
d ln nσ

] ≤ n−2.9d.
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Moreover, if n> d ≥ 3, andx 1, . . . ,x n are such vectors, then

Pr
[

max
i
‖x i ‖ ≥ 3

√
d ln nσ

]
≤ n−2.9d+1 ≤ 0.0015

(
n

d

)−1

.

PROOF. Forα = 3
√

ln nσ , we can apply Stirling’s formula [Abramowitz and
Stegun 1970] to (5) to find

Pr
[ ‖x‖ ≥ α√d

] ≤ (α2d)d/2−1 exp(−α2d/2) exp(d/2)
√

d/2

2d/2−1(d/2)d/2
√

2π

= (α2
)d/2−1

exp
(−(α2− 1)d/2

) dd/2−1
√

d

2d/2−1(d/2)d/22
√
π

= (α2
)d/2−1

exp
(−(α2− 1)d/2

) 1√
dπ

≤ (α2
)d/2

exp
(−(α2− 1)d/2

)
= exp

(−(α2− ln(α2)− 1
)
d/2

)
≤ exp(−2.9d ln n)

= n−2.9d,

as

(α2− ln(α2)− 1)= 9 ln(n)− ln(9 lnn)− 1≥ ln(n)(9− ln 9− 1)≥ 5.8 ln(n).

We also prove it is unlikely that a Gaussian random variable has small norm.

PROPOSITION2.20 (GAUSSIAN NEAR POINT OR PLANE ). Let x be a d-
dimensional Gaussian random vector of standard deviationσ centered anywhere.
Then,

(a) For any pointp, Pr [dist (x ,p) ≤ ε] ≤ (min
(
1,
√

e/d
)

(ε/σ )
)d

, and

(b) For a plane H of dimension h,Pr [dist (x , H ) ≤ ε] ≤ (ε/σ )d−h.

PROOF. Let x̄ be the center of the Gaussian distribution, and letBε(p) denote
the ball of radiusε aroundp. Recall that the volume ofBε(p) is

2πd/2εd

d0(d/2)
.

To prove part (a), we bound the probability thatdist (x ,p) ≤ ε by(
1√
2πσ

)d ∫
x∈Bε (p)

exp
(−‖(x − x̄ )‖2 /2σ 2

)
dx

≤
(

1√
2πσ

)d ( 2πd/2εd

d0(d/2)

)
=
( ε
σ

)d 2

d2d/20(d/2)
.

By Proposition 2.21, we have ford ≥ 3

2

d2d/20(d/2)
≤
(e

d

)d/2
.

Applying the inequality 2/(d2d/20(d/2))≤ 1 for all d ≥ 1, we establish (a).
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To prove part (b), we consider a basis in whichd−h vectors are perpendicular to
H , and apply part (a) to the components ofx in the span of those basis vectors.

PROPOSITION2.21 (GAMMA INEQUALITY ). For d ≥ 3

2

d2d/20(d/2)
≤
(e

d

)d/2

PROOF. Ford ≥ 3, we apply the inequality0(x+1)≥ √2π
√

x(x/e)x to show

2

d2d/20(d/2)
≤ 2

d2d/2
√

2π
√

(d − 2)/2

(
2e

d − 2

)(d−2)/2

=
(

exp((d − 2)/2)

dd/2
√

2π
√

(d − 2)/2

)(
d

d − 2

)(d−2)/2

≤
(e

d

)d/2
,

where in the last inequality we used the facts 1+ 2/(d− 2)≤ exp(2/(d − 2)) and
d ≥ 3 implies

√
2π
√

(d − 1)/2> 1.

PROPOSITION2.22 (NONCENTRAL GAUSSIAN NEAR THE ORIGIN). For d ≥ 3,
letx be a d-dimensional Gaussian random vector of standard deviationσ centered
at x̄ . Then, forε ≤ 1/(

√
2e)

Pr
[
‖x‖ ≤

(√
‖x̄‖2+ dσ 2

)
ε

]
≤ (√2eε

)d
.

PROOF. Let λ = ‖x̄‖. We divide the analysis into two cases: (1)λ ≤ √dσ ,
and (2)λ ≥ √dσ .

Forλ ≤ √dσ ,

Pr
[
‖x‖ ≤

(√
λ2+ dσ 2

)
ε
]
≤ Pr

[
‖x‖ ≤

(√
2dσ

)
ε
]
≤
(√

2eε
)d
,

by Part (a) of Lemma 2.20.
For λ >

√
dσ , let Br be the ball of radiusr around the origin. Applying the

assumptionε ≤ 1/(
√

2e) and lettingλ = c
√

dσ for c ≥ 1, we have

Pr
[
‖x‖ ≤

(√
λ2+ dσ 2

)
ε
]
≤ Pr

[
‖x‖ ≤

(√
2λ
)
ε
]

=
(

1√
2πσ

)d ∫
x∈B√2ελ

exp
(−‖(x − x̄ )‖2 /2σ 2

)
dx

≤
(

1√
2πσ

)d ( 2πd/2

d0(d/2)

)
× (√2ελ

)d
exp

(−(1− 1/e)2λ2/2σ 2
)
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≤ (√
2eε

)d λd

dd/2σ d
exp

(−(1− 1/e)2λ2/2σ 2
)

= (√
2eε

)d
exp

(
d(ln c− c2(1− 1/e)2/2)

)
≤ (√

2eε
)d
,

where the second inequality holds becauseε ≤ 1/(
√

2e) and for any pointx ∈
B√2ελ,

exp(−‖(x − x̄ )‖2 /2σ 2) ≤ exp
(−(1−√2ε

)2
λ2/2σ 2

)
≤ exp

(−(1− 1/e)2λ2/2σ 2
)
;

the third inequality follows from Proposition 2.21; and, the last inequality holds
because one can prove that for anyc ≥ 1, lnc− c2(1− 1/e)2/2< 0.

Bounds such as the following on the tails of Gaussian distributions are standard
(see, e.g., Feller [1968, Section VII.1])

PROPOSITION2.23 (GAUSSIAN TAIL BOUND).(σ
x

) exp
(−x2/2σ 2

)
√

2π
≥ 1√

2πσ

∫ ∞
t=x

exp
(−t2/2σ 2

)
dt

≥
(
σ

x
− σ

3

x3

)
exp

(−x2/2σ 2
)

√
2π

.

Using this, we prove:

LEMMA 2.24 (COMPARING GAUSSIAN TAILS ). Letσ ≤ 1 and let

µ(t) = 1√
2πσ

exp
(−t2/2σ 2

)
.

Then, for x≤ 2 and|x − y| ≤ ε,∫∞
t=y µ(t) dt∫∞
t=x µ(t) dt

≥ 1− 8ε

3σ 2
. (6)

PROOF. If y < x, the ratio is greater than 1 and the lemma is trivially true.
Assumingy ≥ x, the ratio is minimized wheny = x + ε. In this case, the lemma
will follow from ∫ x+ε

t=x µ(t) dt∫∞
t=x µ(t) dt

≤ 8ε

3σ 2
. (7)

It follows from part (b) of Proposition 2.25 that the left-hand ratio in (7) is mono-
tonically increasing inx, and therefore is maximized whenx is maximized at 2.
For x = 2, we apply Proposition 2.23 to show

1√
2πσ

∫ ∞
t=x
µ(t) dt ≥

(
σ

2
− σ

3

8

)
exp(−2/σ 2)√

2π
≥ 3σ exp(−2/σ 2)

8
√

2π
.
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We then combine this bound with

1√
2πσ

∫ x+ε

t=x
µ(t) dt ≤ ε exp(−2/σ 2)√

2πσ
,

to obtain∫ x+ε
t=x µ(t) dt∫∞
t=x µ(t) dt

≤
(
ε exp(−2/σ 2)√

2πσ

)(
8
√

2π

3σ exp(−2/σ 2)

)
= 8ε

3σ 2
.

PROPOSITION2.25 (MONOTONICITY OFGAUSSIAN DENSITY). Let

µ(t) = 1√
2πσ

exp
(−t2/2σ 2

)
.

(a) For all a > 0, µ(x)/µ(x + a) is monotonically increasing in x; and,
(b) The following ratio is monotonically increasing in x

µ(x)∫∞
t=x µ(t) dt

PROOF. Part (a) follows from

µ(x)

µ(x + a)
= exp

(
(2ax+ a2)/2σ 2

)
,

and that exp(2ax) is monotonically increasing inx.
To prove part (b) note that for alla > 0∫∞

t=x µ(t) dt

µ(x)
=
∫∞

t=0µ(x + t) dt

µ(x)
≥
∫∞

t=0µ(x + a+ t) dt

µ(x + a)
=
∫∞

t=x+a µ(t) dt

µ(x + a)
,

where the inequality follows from part (a).

2.5. CHANGES OF VARIABLES. The main proof technique used in Section 4
is change of variables. For the reader’s convenience, we recall how a change of
variables affects probability distributions.

PROPOSITION2.26 (CHANGE OFVARIABLES). Lety be a random variable dis-
tributed according to densityµ. If y = 8(x ), thenx has density

µ(8(x ))

∣∣∣∣det
(
∂8(x )

∂x

)∣∣∣∣ .
Recall that|det( ∂y

∂x )| is the Jacobian of the change of variables.
We now introduce the fundamental change of variables used in this article. Let

aaa1, . . . ,aaad be linearly independent points in IRd. We will represent these points
by specifying the plane passing through them and their positions on that plane.
Many studies of the convex hulls of random point sets have used this change
of variables (e.g., see Renyi and Sulanke [1963, 1964], Efron [1965], and Miles
[1971]). We specify the plane containingaaa1, . . . ,aaad byω andr , where‖ω‖ = 1,
r ≥ 0 and〈ω | aaa i 〉 = r for all i . We will not concern ourselves with the issue
thatω is ill-defined if theaaa1, . . . ,aaad are affinely dependent, as this is an event of
probability zero. To specify the positions ofaaa1, . . . ,aaad on the plane specified by
(ω, r ), we must choose a coordinate system for that plane. To choose a canonical
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set of coordinates for each (d− 1)-dimensional hyperplane specified by (ω, r ), we
first fix a reference unit vector in IRd, sayq , and an arbitrary coordinatization of
the subspace orthogonal toq . For anyω 6= −q , we let

Rω

denote the linear transformation that rotatesq toω in the two-dimensional subspace
throughq andω and that is the identity in the orthogonal subspace. UsingRω, we
can map points specified in thed − 1 dimensional hyperplane specified byr and
ω to IRd by

aaa i = Rωb i + rω,

whereb i is viewed both as a vector in IRd−1 and as an element of the subspace
orthogonal toq . We will not concern ourselves with the fact that this map is not
well defined ifq = −ω, as the set ofaaa1, . . . ,aaad that result in this coincidence has
measure zero.

The Jacobian of this change of variables is computed by a famous theorem of
integral geometry due to Blaschke [1935] (for more modern treatments, see Miles
[1971] or Santalo [1976, 12.24]), and actually depends only marginally on the
coordinatizations of the hyperplanes.

THEOREM2.27 (BLASCHKE). For variablesb1, . . . , bd taking values inIRd−1,
ω ∈ Sd−1 and r ∈ IR, let

(aaa1, . . . ,aaad) = (Rωb1+ rω, . . . ,Rωbd + rω)

The Jacobian of this map is∣∣∣∣det
(

∂(aaa1, . . . ,aaad)

∂(ω, r, b1, . . . , bd)

)∣∣∣∣ = (d − 1)!Vol (4 (b1, . . . , bd)) .

That is,

daaa1 · · · daaad = (d − 1)!Vol (4 (b1, . . . , bd)) dω dr db1 · · · dbd

We will also find it useful to specify the plane byω ands, where〈sq | ω〉 = r , so
thatsq lies on the plane specified byω andr . We will also arrange our coordinate
system so that the origin on this plane lies atsq .

COROLLARY 2.28 (BLASCHKE WITH s). For variablesb1, . . . , bd taking val-
ues inIRd−1, ω ∈ Sd−1 and s∈ IR, let

(aaa1, . . . ,aaad) = (Rωb1+ sq , . . . ,Rωbd + sq )

The Jacobian of this map is∣∣∣∣det
(

∂(aaa1, . . . ,aaad)

∂(ω, s, b1, . . . , bd)

)∣∣∣∣ = (d − 1)! 〈ω | q〉Vol (4 (b1, . . . , bd)) .

PROOF. So that we can apply Theorem 2.27, we will decompose the map into
three simpler maps:

(b1, . . . , bd, s,ω)
7→ (

b1+R−1
ω (sq − rω), . . . , bd +R−1

ω (sq − rω), s,ω
)
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7→ (
b1+R−1

ω (sq − rω), . . . , bd +R−1
ω (sq − rω), r,ω

)
7→ (

Rω
(
b1+R−1

ω (sq − rω)
)+ rω, . . . , Rω

(
bd +R−1

ω (sq − rω)
)+ rω

)
= (Rωb1+ sq , . . . , Rωbd + sq )

As sq − rω is orthogonal toω, R−1
ω (sq − rω) can be interpreted as a vector in

the d − 1 dimensional space in whichb1, . . . , bd lie. So, the first map is just a
translation, and its Jacobian is 1. The Jacobian of the second map is∣∣∣∣∂r∂s

∣∣∣∣ = 〈q | ω〉 .
Finally, we note

Vol
(
b1+R−1

ω (sq − rω), . . . , bd +R−1
ω (sq − rω)

) = Vol (b1, . . . , bd) ,

and that the third map is the one described in Theorem 2.27.

In Section 4.2, we will need to representω by c = 〈ω | q〉 andψ ∈ Sd−2, where
ψ gives the location ofω in the cross-section ofSd−1 for which 〈ω | q〉 = c.
Formally, the map can be defined in a coordinate system with first coordinateq by

ω = (c,ψ√1− c2
)
.

For this change of variables, we have:

PROPOSITION2.29 (LATITUDE AND LONGITUDE). The Jacobian of the change
of variables fromω to (c,ψ) is∣∣∣∣det

(
∂(ω)

∂(c,ψ)

)∣∣∣∣ = (1− c2)(d−3)/2.

PROOF. We begin by changingω to (θ,ψ), whereθ is the angle betweenω
and q , andψ represents the position ofω in the d − 2 dimensional sphere of
radius sin(θ ) of points at angleθ to q . To compute the Jacobian of this change
of variables, we choose a local coordinate system onSd−1 at ω by taking the
great circle throughω andq , and then an arbitrary coordinatization of the great
d − 2 dimensional sphere throughω orthogonal to the great circle. In this co-
ordinate system,θ is the position ofω along the first great circle. As thed − 2
dimensional sphere of points at angleθ to q is orthogonal to the great circle at
ω, the coordinates inψ can be mapped orthogonally into the coordinates of the
greatd − 2 dimensional sphere—the only difference being the radii of the sub-
spheres. Thus, ∣∣∣∣det

(
∂(ω)

∂(θ,ψ)

)∣∣∣∣ = sin(θ )d−2.
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FIG. 1. A shadow of a polytope.

If we now letc = cos(θ ), then we find∣∣∣∣det
(
∂(ω)

∂(c,ψ)

)∣∣∣∣ = ∣∣∣∣det
(
∂(ω)

∂(θ,ψ)

)∣∣∣∣ ∣∣∣∣det
(
∂(θ )

∂(c)

)∣∣∣∣
=
(√

1− c2
)d−2 1√

1− c2

=
(√

1− c2
)d−3

.

3. The Shadow Vertex Method

In this section, we will review the shadow vertex method and formally state the
two-phase method analyzed in this article. We will begin by motivating the method.
In Section 3.1, we will explain how the method works assuming a feasible vertex is
known. In Section 3.2, we present a polar perspective on the method, from which
our analysis is most natural. We then present a complete two-phase method in
Section 3.3. For a more complete exposition of the Shadow Vertex Method, we
refer the reader to Borgwardt [1980, Chap. 1].

The shadow-vertex simplex method is motivated by the observation that the
simplex method is very simple in two-dimensions: the set of feasible points form a
(possibly open) polygon, and the simplex method merely walks along the exterior of
the polygon. The shadow-vertex method lifts the simplicity of the simplex method
in two dimensions to higher dimensions. Letz be the objective function of a linear
program and lett be an objective function optimized byx , a vertex of the polytope
of feasible points for the linear program. The shadow-vertex method considers the
shadowof the polytope—the projection of the polytope onto the plane spanned by
z andt (see Figure 1). One can verify that

(1) this shadow is a (possibly open) polygon,
(2) each vertex of the polygon is the image of a vertex of the polytope,
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(3) each edge of the polygon is the image of an edge between two adjacent vertices
of the polytope,

(4) the projection ofx onto the plane is a vertex of the polygon, and
(5) the projection of the vertex optimizingz onto the plane is a vertex of the

polygon.

Thus, if one walks along the vertices of the polygon starting from the image ofx ,
and keeps track of the vertices’ pre-images on the polytope, then one will eventually
encounter the vertex of the polytope optimizingz . Given one vertex of the polytope
that maps to a vertex of the polygon, it is easy to find the vertex of the polytope that
maps to the next vertex of the polygon: fact (3) implies that it must be a neighbor
of the vertex on the polytope; moreover, for a linear program that is in general
position with respect tot , there will bed such vertices. Thus, the method will be
efficient provided that the shadow polygon does not have too many vertices. This
is the motivation for the shadow vertex method.

3.1. FORMAL DESCRIPTION. Our description of the shadow vertex simplex
method will be facilitated by the following definition:

Definition3.1 (optVert). Given vectorsz , aaa1, . . . ,aaan in IRd andy ∈ IRn, we
defineoptVert z (aaa1, . . . ,aaan; y ) to be the set ofx solving

maximize z Tx

subject to 〈aaa i | x 〉 ≤ yi , for 1≤ i ≤ n.

If there are no suchx , either because the program is unbounded or infeasible, we
let optVert z (aaa1, . . . ,aaan; y ) be∅. Whenaaa1, . . . ,aaan andy are understood, we will
use the notationoptVert z .

We note that, for linear programs in general position,optVert z will either be
empty or contain one vertex.

Using this definition, we will give a description of the shadow vertex method
assuming that a vertexx 0 and a vectort are known for whichoptVert t = x 0.
An algorithm that works without this assumption will be described in Section 3.3.
Givent andz , we define objective functions interpolating between the two by

qλ = (1− λ)t + λz .

The shadow-vertex method will proceed by varyingλ from 0 to 1, and tracking
optVertqλ

. We will denote the vertices encountered byx 0,x 1, . . . ,x k, and we
will set λi so thatx i ∈ optVertqλ

for λ ∈ [λi , λi+1].
As our main motivation for presenting the primal algorithm is to develop intuition

in the reader, we will not dwell on issues of degeneracy in its description. We will
present a polar version of this algorithm with a proof of correctness in the next
section.

primal shadow-vertex method
Input:aaa1, . . . ,aaan, y , z , andx 0 andt satisfying{x 0} = optVert t (aaa1, . . . ,aaan; y ).

(1) Setλ0 = 0, andi = 0.

(2) Setλ1 to be maximal such that{x 0} = optVert qλ
for λ ∈ [λ0, λ1].
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FIG. 2. In example (a), optSimp= {{aaa1,aaa2,aaa3}}. In example (b), optSimp= {{aaa1,aaa2,aaa3} , {aaa2,aaa3,
aaa4}}. In example (c), optSimp= ∅,

(3) whileλi+1 < 1,
(a) Seti = i + 1.
(b) Find anx i for which there exists aλi+1 > λi such thatx i ∈ optVert qλ

for λ ∈ [λi , λi+1]. If
no suchx i exists, returnunbounded.

(c) Letλi+1 be maximal such thatx i ∈ optVert qλ
for λ ∈ [λi , λi+1].

(4) returnx i .

Step (b) of this algorithm deserves further explanation. Assuming that the lin-
ear program is in general position with respect tot , each vertexx i will have
exactlyd neighbors, and the vertexx i+1 will be one of these [Borgwardt 1980,
Lemma 1.3]. Thus, the algorithm can be described as a simplex method. While one
could implement the method by examining thesed vertices in turn, more efficient
implementations are possible. For an efficient implementation of this algorithm in
tableau form, we point the reader to the exposition in Borgwardt [1980, Section 1.3].

3.2. POLAR DESCRIPTION. Following Borgwardt [1980], we will analyze the
shadow vertex method from a polar perspective. This polar perspective is natural
provided that allyi > 0. In this section, we will describe a polar variant of the
shadow-vertex method that works under this assumption. In the next section, we
will describe a two-phase shadow vertex method that uses this polar variant to solve
linear programs with arbitraryyi s.

While it is not strictly necessary for the results in this article, we remind the
reader that the polar of a polytopeP = {x : 〈x | aaa i 〉 ≤ 1, ∀i }, is defined to be
{y : 〈x | y〉 ≤ 1, ∀x ∈ P}. This equalsConvHull (0,aaa1, . . . ,aaan). We remark that
P is bounded if and only if0 is in the interior ofConvHull (aaa1, . . . ,aaan). The polar
motivates:

Definition3.2 (optSimp). Forz andaaa1, . . . ,aaan in IRd andy ∈ IRn, yi > 0, we
let optSimpz (aaa1, . . . ,aaan; y ) denote the set ofI ∈ ([n]

d ) such thatAI has full rank,
4 ((aaa i /yi )i∈I ) is a facet ofConvHull (0,aaa1/y1, . . . ,aaan/yn) andz ∈ Cone((aaa i )i∈I ).
When y is understood to be1, we will write optSimpz (aaa1, . . . ,aaan) When
aaa1, . . . ,aaan andy are understood, we will use the notationoptSimpz .

We remark that fory , z and aaa1, . . . ,aaan in general position, the set
optSimpz (aaa1, . . . ,aaan; y ) will be the empty set or contain just one set of indicesI .
For examples, see Figure 2.

The following proposition follows from the duality theory of linear programming:

PROPOSITION3.3 (DUALITY ). For y1, . . . , yn > 0, I ∈ optSimpz (aaa1/y1, . . . ,
aaan/yn) if and only if there exists anx such thatx ∈ optVert z (aaa1, . . . ,aaan; y ) and
〈x | aaa i 〉 = yi , for all i ∈ I .
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We now state the polar shadow vertex method.

polar shadow-vertex method
Input:

—aaa1, . . . ,aaan, z , andy1, . . . , yn > 0,

— I ∈ ([n]
d ) andt satisfyingI ∈ optSimpt (aaa1/y1, . . . ,aaan/yn).

(1) Setλ0 = 0 andi = 0.

(2) Setλ1 to be maximal such that forλ ∈ [λ0, λ1],

I ∈ optSimpqλ
(aaa1/y1, . . . ,aaan/yn).

(3) whileλi+1 < 1,

(a) Seti = i + 1.
(b) Find a j andk for which there exists aλi+1 > λi such that

I ∪ { j } − {k} ∈ optSimpqλ
(aaa1/y1, . . . ,aaan/yn)

for λ ∈ [λi , λi+1]. If no such j andk exist, returnunbounded.
(c) SetI = I ∪ { j } − {k}.
(d) Letλi+1 be maximal such thatI ∈ optSimpt (aaa1/y1, . . . ,aaan/yn) for λ ∈ [λi , λi+1].

(4) returnI .

Thex optimizing the linear program, namelyoptVert z (aaa1, . . . ,aaan; y ), is given
by the equations〈x | aaa i 〉 = yi , for i ∈ I .

Borgwardt [1980, Lemma 1.9] establishes that suchj andk can be found in step
(b) if there exists anε for which optSimpqλi +ε

(aaa1/y1, . . . ,aaan/yn) 6= ∅. That the
algorithm may conclude that the program is unbounded if aj andk cannot be found
in step (b) follows from:

PROPOSITION3.4 (DETECTINGUNBOUNDED PROGRAMS). If there is an i and
an ε > 0 such thatλi + ε < 1 and optSimpqλi +ε

(aaa1/y1, . . . ,aaan/yn) = ∅, then
optSimpz (aaa1/y1, . . . ,aaan/yn) = ∅.

PROOF. The setoptSimpqλi +ε
(aaa1/y1, . . . ,aaan/yn) is empty if and only ifqλi+ε 6∈

Cone(aaa1, . . . ,aaan). The proof now follows from the facts thatCone(aaa1, . . . ,aaan)
is a convex set andqλi+ε is a positive multiple of a convex combination oft and
z .

The running time of the shadow-vertex method is bounded by the number of
vertices in shadow of the polytope defined by the constraints of the linear program.
Formally, this is

Definition3.5 (Shadow). For independent vectorst andz , aaa1, . . . ,aaan in IRd

andy ∈ IRn, y > 0,

Shadowt ,z (aaa1, . . . ,aaan; y )
def=

⋃
q∈Span(t ,z )

{
optSimpq (aaa1/y1, . . . ,aaan/yn)

}
.

If y is understood to be1, we will just writeShadowt ,z (aaa1, . . . ,aaan).
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3.3. TWO-PHASE METHOD. We now describe a two-phase shadow vertex
method that solves linear programs of form

maximize 〈z | x 〉
subject to 〈aaa i | x 〉 ≤ yi , for 1≤ i ≤ n. (LP)

There are three issues that we must resolve before we can apply the polar shadow
vertex method as described in Section 3.2 to the solution of such programs:

(1) the method must know a feasible vertex of the linear program,
(2) the linear program might not even be feasible, and
(3) someyi might be non-positive.

The first two issues are standard motivations for two-phase methods, while the third
is motivated by the polar perspective from which we prefer to analyze the shadow
vertex method. We resolve these issues in two stages. We first relax the constraints
of LP to construct a linear programLP′ such that

(a) the right-hand vector of the linear program is positive, and
(b) we know a feasible vertex of the linear program.

After solvingLP′, we construct another linear program,LP+, in one higher dimen-
sion that interpolates betweenLP andLP′. LP+ has properties (a) and (b), and we
can use the shadow vertex method onLP+ to transform a solution toLP′ into a
solution ofLP.

Our two-phase method first chooses ad-setI to define the known feasible vertex
of LP′. The linear programLP′ is determined byA, z and the choice ofI . However,
the magnitude of the right-hand entries inLP′ depends uponsmin (AI ). To reduce
the chance that these entries will need to be large, we examine several randomly
chosend-sets, and use the one maximizingsmin .

The algorithm then sets

M = 2dlg(maxi ‖yi ,aaa i ‖)e+2,

κ = 2blg(smin (AI ))c, and

y′i =
{

M for i ∈ I√
d M2/4κ otherwise.

These define the programLP′:

maximize 〈z | x 〉
subject to 〈aaa i | x 〉 ≤ y′i , for 1≤ i ≤ n. (LP′)

By Proposition 3.6,AI is a feasible basis forLP′ and optimizes any objective
function of the formAIα, for α > 0. Our two-phase algorithm will solveLP′ by
starting the polar shadow-vertex algorithm at the basisI and the objective function
AIα for a randomly chosenα satisfying

∑
αi = 1 andαi ≥ 1/d2, for all i .

PROPOSITION3.6 (INITIAL SIMPLEX OF LP′ ). For everyα > 0,

I = optSimpAIα

(
aaa1, . . . ,aaan; y ′

)
.
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PROOF. Let x ′ be the solution to the linear system

〈aaa i | x ′〉 = y′i , for i ∈ I .

By Definition 2.3 and Proposition 2.4(a),

‖x ′‖ ≤ ‖y ′I ‖‖A−1
I ‖ ≤ M

√
d‖A−1

I ‖ = M
√

d/smin (AI ) .

So, for alli 6∈ I ,

〈aaa i | x ′〉 ≤ (max
i
‖aaa i ‖)M

√
d/smin (AI ) < M2

√
d/4κ.

Thus, for alli 6∈ I ,

〈aaa i | x ′〉 < y′i ,

and, by Definition 3.2,I = optSimpAIα

(
aaa1, . . . ,aaan; y ′

)
.

We will now define a linear programLP+ that interpolates betweenLP′ andLP.
This linear program will contain an extra variablex0 and constraints of the form

〈aaa i | x 〉 ≤
(

1+ x0

2

)
yi +

(
1− x0

2

)
y′i ,

and−1 ≤ x0 ≤ 1. So, forx0 = 1, we see the original programLP while for
x0 = −1 we getLP′. Formally, we let

a+i =


((y′i − yi )/2,aaa i ) for 1≤ i ≤ n
(1, 0, . . . ,0) for i = 0
(−1, 0, . . . ,0) for i = −1

y+i =


(y′i + yi )/2 for 1≤ i ≤ n
1 for i = 0
1 for i = −1

z+ = (1, 0, . . . ,0),

and we defineLP+ by

maximize 〈z+ | (x0,x )〉
subject to 〈a+i | (x0,x )〉 ≤ y+i , for −1≤ i ≤ n, (LP+)

and we set

y+ def= (y+−1, . . . , y+n ).

By Proposition 3.7,
√

d M/4κ ≥ 1, soy′i ≥ M and y+i > 0, for all i . If LP is
infeasible, then the solution toLP+ will have x0 < 1. If LP is feasible, then the
solution toLP+ will have the form (1,x ) wherex is a feasible point forLP. If we
use the shadow-vertex method to solveLP+ starting from the appropriate initial
vector, thenx will be an optimal solution toLP.

PROPOSITION3.7 (RELATION OF M AND κ ). For M andκ as set by the algo-
rithm,

√
d M/4κ ≥ 1.
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PROOF. By definition,κ ≤ smin (AI ). On the other hand,smin (AI ) ≤ ‖AI ‖ ≤√
d maxi ‖aaa i ‖, by Proposition 2.4(d). Finally,M ≥ 4 maxi ‖aaa i ‖.
We now state and prove the correctness of the two-phase shadow vertex method.

two-phase shadow-vertex method
Input:A = (aaa1, . . . ,aaan), y , z .

(1) LetI = {I1, . . . , I3nd ln n} be a collection of randomly chosen sets in ([n]
d ), and letI ∈ I be the set

maximizingsmin (AI ).

(2) SetM = 2dlg(maxi ‖yi ,aaa i ‖)e+2 andκ = 2blg(smin (AI ))c.

(3) Sety′i =
{

M for i ∈ I√
d M2/4κ otherwise.

(4) Chooseα uniformly at random from{α :
∑
αi = 1 andαi ≥ 1/d2}. Sett ′ = AIα.

(5) Let J be the output of the polar shadow vertex algorithm onLP′ on input I and t ′. If LP′ is
unbounded, then returnunbounded.

(6) Let ζ > 0 be such that

{−1} ∪ J ∈ optSimp(−ζ,z )

(
a+−1/y+−1, . . . ,a

+
n /y+n

)
.

(7) Let K be the output of the polar shadow vertex algorithm onLP+ on input{−1} ∪ J, (−ζ, z ).

(8) Compute (x0,x ) satisfying〈(x0,x ) | a+i 〉 = yi for i ∈ K .

(9) If x0 < 1, returninfeasible. Otherwise, returnx .

The following propositions prove the correctness of the algorithm.

PROPOSITION3.8 (UNBOUNDED PROGRAMS). The following are equivalent:

(a) LP is unbounded;

(b) LP′ is unbounded;

(c) there exists a1> λ > 0 such thatoptSimpλ(1,0)+(1−λ)(−ζ,z )(a
+
−1, . . . ,a

+
n ; y+)

is empty;

(d) for all 1> λ > 0, optSimpλ(1,0)+(1−λ)(−ζ,z )(a
+
−1, . . . ,a

+
n ; y+) is empty.

PROPOSITION3.9 (BOUNDED PROGRAMS). If LP′ is bounded and has solution
J , then

(a) there existsζ0 such that∀ζ > ζ0, {−1}∪J ∈ optSimp(−ζ,z )(a
+
−1, . . . ,a

+
n ; y+);

(b) if LP is feasible, then for K′ ∈ optSimpz (aaa1, . . . ,aaan; y ), there existsξ0 such
that∀ξ > ξ0, {0} ∪ K ′ ∈ optSimp(ξ,z )(a

+
−1, . . . ,a

+
n ; y+); and,

(c) if we use the shadow vertex method to solve LP+ starting from{−1, J} and
objective function(−ζ, z ), then the output of the algorithm will have form
{0} ∪ K ′, where K′ is a solution to LP.

PROOF OFPROPOSITION3.8. LP is unbounded if and only if there exists a vector
v such that〈z | v 〉 > 0 and〈aaa i | v 〉 ≤ 0 for all i . The same holds forLP′,
and establishes the equivalence of (a) and (b). To show that (a) or (b) implies (d),
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observe

〈λ(1, 0)+ (1− λ)(−ζ, z ) | (0, v )〉 = (1− λ) 〈z | v 〉 > 0, (8)〈
a+i | (0, v )

〉 = 〈aaa i | v 〉 , for i = 1, . . . ,n, (9)〈
aaa+0 | (0, v )

〉 = 0, and〈
aaa+−1 | (0, v )

〉 = 0.

To show that (c) implies (a) and (b), note thata+0 anda+−1 are arranged so that if
for somev0 we have 〈

a+i | (v0, v )
〉 ≤ 0, for −1≤ i ≤ n,

thenv0 = 0. This identity allows us to apply (8) and (9) to show (c) implies (a)
and (b).

PROOF OFPROPOSITION3.9. Let J be the solution toLP′ and letx ′ = A−1
J y ′J

be the corresponding vertex. We then have〈
x ′ | aaa i

〉 = y
′
i , for i ∈ J, and〈

x ′ | aaa i
〉 ≤ y

′
i , for i 6∈ J.

Therefore, it is clear that〈
(−1,x ′) | a+i

〉 = y+i , for i ∈ {−1} ∪ J, and〈
(−1,x ′) | a+i

〉 ≤ y+i , for i 6∈ {−1} ∪ J.

Thus,4(a+−1, (a
+
i )i∈J) is a facet ofLP+. To see that there exists aζ0 such that it

optimizes (−ζ, z ) for all ζ > ζ0, first observe that there existαi > 0, for i ∈ J,
such that

∑
i∈J αiaaa i = z . Now, let (−ζ0, z ) =∑i∈J αi a

+
i . Forζ > ζ0, we have

(−ζ, z ) = (ζ − ζ0)a
+
−1+

∑
i∈J

αi a
+
i ,

which proves (−ζ, z ) ∈ Cone(a+−1, (a
+
i )i∈J) and completes the proof of (a).

The proof of (b) is similar.
To prove part (c), letK be as in step (7). Then, there exists aλk such that for all

λ ∈ (λk, 1),

K = optSimp(1−λ)(−ζ,z )+λz+
(
a+−1, . . . ,a

+
n ; y+

)
.

Let (x0,x ) satisfy
〈
(x0,x ) | a+i

〉 = y+i , for i ∈ K . Then, by Proposition 3.3,

(x0,x ) = optVert (1−λ)(−ζ,z )+λz+
(
a+−1, . . . ,a

+
n ; y+

)
.

If x0 < 1, then LP was infeasible. Otherwise, letx ∗ = optVert z (aaa1, . . . ,aaan; y ).
By part (b), there existsξ0 such that for allξ > ξ0,

(1,x ∗) = optVert (ξ,z )

(
a+−1, . . . ,a

+
n ; y+

)
.

For ξ = −ζ + λ/(1− λ), we have

(ξ, z ) = 1

1− λ ((1− λ)(−ζ, z )+ λz+).
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So, asλ approaches 1,ξ = −ζ + λ/(1− λ) goes to infinity and we have

optVert (1−λ)(−ζ,z )+λz+(a
+
−1, . . . ,a

+
n ; y+) = optVert (ξ,z )(a

+
−1, . . . ,a

+
n ; y+),

which implies (x0,x ) = (1,x ∗).

Finally, we bound the number of steps taken in step (7) by the shadow size of a
related polytope:

LEMMA 3.10 (SHADOW PATH OF LP+ ). For aaa+−1, . . . ,aaa
+
n and y+−1, . . . , y+n as

defined in LP+, if {−1} ∪ J = optSimp(−ζ,z )(a
+
−1/y+−1, . . . ,a

+
n /y+n ) for ζ > 0,

then the number of simplex steps made by the polar shadow vertex algorithm while
solving LP+ from initial basis{−1} ∪ J and vector(−ζ, z ) is at most

2+ ∣∣Shadow(0,z ),z+
(
a+1 /y+1 , . . . ,a

+
n /y+n

)∣∣ .
PROOF. We will establish that{−1} ∈ I for the first step only. One can similarly

prove that{0} ∈ I is only true at termination.
Let I ∈ optSimpqλ

(a+−1/y+−1, . . . ,a
+
n /y+n ) have form{−1}∪ L. Asq0 = a+−1 ∈

Cone(A{−1}∪L ), andCone(A{−1}∪L ) is a convex set, we haveqλ′ ∈ Cone(A{−1}∪L )
for all 0 ≤ λ′ ≤ λ. As [λi , λi+1] is exactly the set ofλ optimized by4 (AI ) in the
i th step of the polar shadow vertex method,I must be the initial set.

3.4. DISCUSSION. We note that our analysis of the two-phase algorithm actually
takes advantage of the fact thatκ andM have been set to powers of two. In particular,
this fact will be used to show that there are not too many likely choices forκ and
M . For the reader who would like to drop this condition, we briefly explain how the
argument of Section 5 could be modified to compensate: first, we could consider
settingκ and M to powers of 1+ 1/poly(n, d, 1/σ ). This would still result in a
polynomially bounded number of choices forκ andM . One could then drop this
assumption by observing that allowingκ andM to vary in a small range would not
introduce too much dependency between the variables.

4. Shadow Size

In this section, we bound the expected size of the shadow of the perturbation of a
polytope onto a fixed plane. This is the main geometric result of this article. The
algorithmic results of this article will rely on extensions of this theorem derived in
Section 4.3.

THEOREM4.1 (SHADOW SIZE). Let d≥ 3 and n> d. Letz andt be indepen-
dent vectors inIRd, and letµ1, . . . , µn be Gaussian distributions inIRd of standard
deviationσ centered at points each of norm at most1. Then,

E
aaa1,... ,aaan

[|Shadowt ,z (aaa1, . . . ,aaan) |] ≤ D(n, d, σ ), (10)

where

D(n, d, σ ) = 58, 888, 678nd3

min(σ, 1/3
√

d ln n)6
,

andaaa1, . . . ,aaan have density
∏n

i=1µi (aaa i ).

The proof of Theorem 4.1 will use the following definitions.



414 D. A. SPIELMAN AND S.-H. TENG

Definition4.2 (ang). For a vectorq and a setS, we define

ang(q , S) = min
x∈S

angle(q ,x ) .

If S is empty, we setang(q , ∅) = ∞.

Definition4.3 (angq ). For a vectorq and pointsaaa1, . . . ,aaan in IRd, we define

angq (aaa1, . . . ,aaan) = ang(q , ∂ 4 (optSimpq (aaa1, . . . ,aaan))),

where∂ 4 (optSimpq (aaa1, . . . ,aaan)) is the boundary of4(optSimpq (aaa1, . . . ,aaan)).

These definitions are arranged so that if the ray throughq does not pierce the
convex hull ofaaa1, . . . ,aaan, thenangq (aaa1, . . . ,aaan) = ∞.

In our proofs, we will make frequent use of the fact that it is very unlikely that a
Gaussian random variable is far from its mean. To capture this fact, we define:

Definition4.4 (P). P is the set of (aaa1, . . . ,aaan) for which‖aaa i ‖ ≤ 2, for all i .

Applying a union bound to Corollary 2.19, we obtain

PROPOSITION4.5 (MEASURE OFP).

Pr [(aaa1, . . . ,aaan) ∈ P] ≥ 1− n(n−2.9d) = 1− n−2.9d+1.

PROOF OFTHEOREM4.1. We first observe that we can assumeσ ≤ 1/3√
d ln n—if σ > 1/3

√
d ln n, then we can scale down all the data untilσ =

1/3
√

d ln n. As this could only decrease the norms of the centers of the distribu-
tions, the theorem statement would be unaffected.

Assume without loss of generality thatz andt are orthogonal. Let

q θ = z sin(θ )+ t cos(θ ). (11)

We discretize the problem by using the intuitively obvious fact, which we prove as
Lemma 4.6, that the left-hand of (10) equals

lim
m→∞ E

aaa1,... ,aaan

∣∣∣∣∣∣
⋃

θ∈{ 2π
m ,

2·2π
m ,... ,m·2π

m }
{
optSimpq θ

(aaa1, . . . ,aaan)
}∣∣∣∣∣∣
 .

Let Ei denote the event[
optSimpq2π i /m

(aaa1, . . . ,aaan) 6= optSimpq2π ((i+1) mod m)/m
(aaa1, . . . ,aaan)

]
.

Then, for anym≥ 2 and for allaaa1, . . . ,aaan,∣∣∣∣∣∣
⋃

θ∈{ 2π
m ,

2·2π
m ,... ,m·2π

m }
{
optSimpq θ

(aaa1, . . . ,aaan)
}∣∣∣∣∣∣ =

m∑
i=1

Ei (aaa1, . . . ,aaan).
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We bound this sum by

E

[
m∑

i=1

Ei

]
= E

P

[∑
i

Ei

]
Pr [ P] + E

P̄

[∑
i

Ei

]
Pr
[
P̄
]

≤ E
P

[∑
i

Ei

]
+
(

n

d

)
n−2.9d+1

≤ E
P

[∑
i

Ei

]
+ 1.

Thus, we will focus on boundingEP
[∑

i Ei
]
.

Observing thatEi implies [angq2π i /m
(aaa1, . . . ,aaan) ≤ 2π/m], and applying lin-

earity of expectation, we obtain

E
P

[∑
i

Ei

]
=

m∑
i=1

Pr
P

[Ei ]

≤
m∑

i=1

Pr
P

[
angq2π i /m

(aaa1, . . . ,aaan) <
2π

m

]
≤ 2π

9, 372, 424nd3

σ 6
, by Lemma 4.7,

≤ 58, 888, 677nd3

σ 6
.

LEMMA 4.6 (DISCRETIZATION IN LIMIT ). Letz andt be orthogonal vectors in
IRd, and letµ1, . . . , µn be nondegenerate Gaussian distributions. Then,

E
aaa1,... ,aaan

[∣∣∣∣∣ ⋃
q∈Span(z ,t )

{
optSimpq (aaa1, . . . ,aaan)

}∣∣∣∣∣
]
=

lim
m→∞ E

aaa1,... ,aaan

∣∣∣∣∣∣
⋃

θ∈{ 2π
m ,

2·2π
m ,... ,m·2π

m }
{
optSimpq θ

(aaa1, . . . ,aaan)
}∣∣∣∣∣∣
 , (12)

whereq θ is as defined in(11).

PROOF. For aI ∈ ([n]
d ), let

FI (aaa1, . . . ,aaan) =
∫
θ

[
optSimpq θ

(aaa1, . . . ,aaan) = I
]

dθ .

The left- and right-hand sides of (12) can differ only if there exists aδ > 0 such
that for allε > 0,

Pr
aaa1,... ,aaan

[
∃I
∣∣∣ I = optSimpq θ

(aaa1, . . . ,aaan) for someθ , and
FI (aaa1, . . . ,aaan) < ε

]
≥ δ.



416 D. A. SPIELMAN AND S.-H. TENG

As there are only finitely many choices forI , this would imply the existence of a
δ′ and a particularI such that for allε > 0,

Pr
aaa1,... ,aaan

[
I = optSimpq θ

(aaa1, . . . ,aaan) for someθ , and
FI (aaa1, . . . ,aaan) < ε

]
≥ δ′.

As FI (aaa1, . . . ,aaan) = FI (AI ) given thatI = optSimpq θ
(aaa1, . . . ,aaan) for someθ ,

this implies that for allε > 0,

Pr
aaa1,... ,aaan

[
I = optSimpq θ

(AI ) for someθ , and
FI (AI ) < ε

]
≥ δ′. (13)

Note thatI = optSimpq θ
(AI ) if and only if q θ ∈ Cone(AI ). Now, let

G(AI ) =
∫
θ

[q θ ∈ Cone(AI )](ang(q θ , ∂ 4 (AI ))/π ) dθ .

As G(AI ) ≤ FI (AI ), (13) implies that for allε > 0

Pr
aaa1,... ,aaan

[
I = optSimpq θ

(aaa1, . . . ,aaan) for someθ , and
G(AI ) < ε

]
≥ δ′.

However,G is a continuous function, and therefore measurable, so this would imply

Pr
aaa1,... ,aaan

[
I = optSimpq θ

(aaa1, . . . ,aaan) for someθ , and
G(AI ) = 0

]
≥ δ′,

which is clearly false as the set ofAI satisfying

—G(AI ) = 0, and
—∃θ : optSimpq θ

(aaa1, . . . ,aaan) = {AI }
has codimension 1, and so has measure zero under the product distribution of
nondegenerate Gaussians.

LEMMA 4.7 (ANGLE BOUND). Let d ≥ 3 and n > d. Let q be any unit
vector and letµ1, . . . , µn be Gaussian measures inIRd of standard deviation
σ ≤ 1/3

√
d ln n centered at points of norm at most1. Then,

Pr
P

[angq (aaa1, . . . ,aaan) < ε] ≤ 9, 372, 424nd3

σ 6
ε,

whereaaa1, . . . ,aaan have density
n∏

i=1

µi (aaa i ).

The proof will make use of the following definition:

Definition4.8 (P j
I ). For a I ∈ ([n]

d ) and j ∈ I , we defineP j
I to be the set of

aaa1, . . . ,aaad satisfying

(1) For allq , if optSimpq (aaa1, . . . ,aaan) 6= ∅, thens ≤ 2, wheres is the real number
for whichsq ∈ 4(optSimpq (aaa1, . . . ,aaan)),

(2) dist (aaa i ,aaak) ≤ 4, for i, k ∈ I − { j },
(3) dist (aaa j ,Aff (AI−{ j })) ≤ 4, and
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(4) dist (aaa⊥j ,aaa i ) ≤ 4, for all i ∈ I − { j }, whereaaa⊥j is the orthogonal projection of
aaa j ontoAff (AI−{ j }).

PROPOSITION4.9 (P ⊂ P j
I ). For all j , I , P ⊂ P j

I .

PROOF. Parts (2), (3), and (4) follow immediately from the restrictions‖aaa i ‖ ≤
2. To see why part (1) is true, note thatsq lies in the convex hull ofaaa1, . . . ,aaan, and
so its norm,s, can be at most maxi ‖aaa i ‖ ≤ 2, for (aaa1, . . . ,aaan) ∈ P.

PROOF OFLEMMA 4.7. Applying a union bound twice, we write

Pr
P

[angq (aaa1, . . . ,aaan) < ε]

≤
∑

I

Pr
P

[
optSimpq (aaa1, . . . ,aaan) = I and
ang(q , ∂ 4 (AI )) < ε

]

≤
∑

I

d∑
j=1

Pr
P

[
optSimpq (aaa1, . . . ,aaan) = I and
ang(q ,4 (AI−{ j }

)
) < ε

]

≤
∑

I

d∑
j=1

Pr
P j

I

[
optSimpq (aaa1, . . . ,aaan) = I and
ang(q ,4 (AI−{ j }

)
) < ε

]/
Pr
P j

I

[ P]

(by Proposition 2.8)

≤
∑

I

d∑
j=1

Pr
P j

I

[
optSimpq (aaa1, . . . ,aaan) = I and
ang(q ,4 (AI−{ j }

)
) < ε

]/
Pr [ P]

(by P ⊂ P j
I )

≤ 1

1− n−2.9d+1

∑
I

d∑
j=1

Pr
P j

I

[
optSimpq (aaa1, . . . ,aaan) = I and
ang(q ,4 (AI−{ j }

)
) < ε

]
(by Proposition 4.5)

≤ 1

1− n−2.9d+1

d∑
j=1

∑
I

Pr
P j

I

[
optSimpq (aaa1, . . . ,aaan) = I and
ang

(
q ,4 (AI−{ j }

))
< ε,

]
,

by changing the order of summation.
We now expand the inner summation using Bayes’ rule to get∑

I

Pr
P j

I

[
optSimpq (aaa1, . . . ,aaan) = I and
ang

(
q ,4 (AI−{ j }

))
< ε

]
=
∑

I

Pr
P j

I

[optSimpq (aaa1, . . . ,aaan) = I ] ·

Pr
P j

I

[
ang

(
q ,4 (AI−{ j }

))
< ε

∣∣
optSimpq (aaa1, . . . ,aaan) = I

]
(14)

As optSimpq (aaa1, . . . ,aaan) is a set of size zero or one with probability 1,∑
I

Pr [optSimpq (aaa1, . . . ,aaan) = I ] ≤ 1;
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from which we derive∑
I

Pr
P j

I

[optSimpq (aaa1, . . . ,aaan) = I ]

≤
∑

I

Pr [optSimpq (aaa1, . . . ,aaan) = I ]
/

Pr
[
P j

I

]
(by Proposition 2.8)

≤ 1

1− n−2.9d+1

∑
I

Pr [optSimpq (aaa1, . . . ,aaan) = I ]

(by P ⊂ P j
I and Proposition 4.5)

≤ 1

1− n−2.9d+1
.

So,

(14)≤ 1

1− n−2.9d+1
.max

I
Pr
P j

I

[
ang

(
q ,4 (AI−{ j }

))
< ε

∣∣
optSimpq (aaa1, . . . ,aaan) = I

]
.

Plugging this bound in to the first inequality derived in the proof, we obtain the
bound of

Pr
P

[angq (aaa1, . . . ,aaan) < ε]

≤ d

(1− n−2.9d+1)2
max

j,I
Pr
P j

I

[
ang

(
q ,4 (AI−{ j }

))
< ε

∣∣
optSimpq (aaa1, . . . ,aaan) = I

]
≤ d

9, 372, 424nd3

σ 6
ε, by Lemma 4.11,d ≥ 3 andn ≥ d + 1,

= 9, 372, 424nd3

σ 6
ε.

Definition4.10 (Q). We defineQ to be the set of (b1, . . . , bd) ∈ IRd−1 satis-
fying

(1) dist (b1,Aff (b2, . . . , bd)) ≤ 4,
(2) dist (b i , b j ) ≤ 4 for all i, j ≥ 2,

(3) dist (b⊥1 , b i ) ≤ 4 for all i ≥ 2, whereb⊥1 is the orthogonal projection ofb1
ontoAff (b2, . . . , bd), and

(4) 0 ∈ 4 (b1, . . . , bd).

LEMMA 4.11 (ANGLE BOUND GIVEN OPTSIMP). Let µ1, . . . , µn be Gaussian
measures inIRd of standard deviationσ ≤ 1/3

√
d ln n centered at points of norm

at most1. Then

Pr
P1

1,... ,d

[
ang(q ,4 (aaa2, . . . ,aaad)) < ε

∣∣
optSimpq (aaa1, . . . ,aaan) = {1, . . . ,d}

]
≤ 9, 371, 990nd2ε

σ 6
, (15)
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whereaaa1, . . . ,aaan have density

n∏
i=1

µi (aaa i ).

PROOF. We begin by making the change of variables fromaaa1, . . . ,aaad toω, s,
b1, . . . , bd described in Corollary 2.28, and we recall that the Jacobian of this
change of variables is

(d − 1)! 〈ω | q〉Vol (4 (b1, . . . , bd)) .

As this change of variables is arranged so thatsq ∈ 4 (aaa1, . . . ,aaad) if and only if
0 ∈ 4 (b1, . . . , bd), the condition thatoptSimpq (aaa1, . . . ,aaan) = {1, . . . ,d} can be
expressed as

[0 ∈ 4 (b1, . . . , bd)]
∏
j>d

[〈ω | aaa j 〉 ≤ 〈ω | sq〉].

Letx be any point on4 (aaa2, . . . ,aaad). Given thatsq ∈ 4 (aaa1, . . . ,aaad), conditions
(3) and (4) for membership inP1

1,... ,d imply that

dist (sq ,x )≤ dist (aaa1,x )≤
√

dist (aaa1,Aff (aaa2, . . . ,aaad))2+ dist
(
aaa⊥1 ,x

)2≤ 4
√

2,

whereaaa⊥1 is the orthogonal projection ofaaa1 ontoAff (aaa2, . . . ,aaad). So, Lemma 4.12
implies

ang(q ,4 (aaa2, . . . ,aaad)) ≥ dist (sq ,Aff (aaa2, . . . ,aaad)) 〈ω | q〉
2+ 4

√
2

= dist (0,Aff (b2, . . . , bd)) 〈ω | q〉
2+ 4

√
2

.

Finally, observe that (aaa1, . . . ,aaad) ∈ P1
1,...,d is equivalent to the conditionss ≤ 2

and (b1, . . . , bd) ∈ Q, given thatoptSimpq (aaa1, . . . ,aaad) = {1, . . . ,d}. Now, the
left-hand side of (15) can be bounded by

Pr
ω,s≤2

(b1,... ,bd)∈Q

[
dist (0,Aff (b2, . . . , bd)) 〈ω | q〉

2+ 4
√

2
< ε

]
, (16)

where the variables have density proportional to

〈ω | q〉Vol (4 (b1, . . . , bd)) ·(∏
j>d

∫
aaa j

[〈ω | aaa j 〉 ≤ s〈ω | q〉]µ j (aaa j ) daaa j

)
d∏

i=1

µi (Rωb i + sq ).

As Lemma 4.13 implies

Pr
ω,s≤2

(b1,... ,bd)∈Q

[dist (0,Aff (b2, . . . , bd)) < ε] ≤ 900e2/3d2ε

σ 4
,
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and Lemma 4.16 implies

max
s≤2,b1,... ,bd∈Q

Pr
ω

[〈ω | q〉 < ε] <

(
340nε

σ 2

)2

,

we can apply Lemma 2.11 to prove

(16)≤ 4 · (2+ 4
√

2) ·
(

900e2/3d2

σ 4

)(
340n

σ 2

)
ε ≤ 9, 371, 990nd2ε

σ 6
.

LEMMA 4.12 (DIVISION INTO DISTANCE AND ANGLE). Let x be a vector, let
0< s ≤ 2, and letq andω be unit vectors satisfying

(a) 〈ω | x − sq〉 = 0, and

(b) dist (x , sq ) ≤ 4
√

2.

Then,

angle(q ,x ) ≥ dist (x , sq ) 〈ω | q〉
2+ 4

√
2

.

PROOF. Let r = x − sq . Then, (a) implies

〈ω | q〉2+
〈

r

‖r‖
∣∣∣q〉2

≤ ‖q‖ = 1;

so,

〈r | q〉 ≤
√

1− 〈ω | q〉2 ‖r‖ .
Let h be the distance fromx to the ray throughq . Then,

h2+ 〈r | q〉2 = ‖r‖2 ;

so,

h ≥ 〈ω | q〉 ‖r‖ = 〈ω | q〉 dist (x , sq )

Now,

angle(q ,x ) ≥ sin(angle(q ,x )) = h

‖x‖
≥ h

s+ dist (x , sq )
≥ h

2+ 4
√

2
≥ 〈ω | q〉 dist (x , sq )

2+ 4
√

2
.

4.1. DISTANCE. The goal of this section is to prove it is unlikely that0 is near
∂ 4 (b1, . . . , bd).

LEMMA 4.13 (DISTANCE BOUND). Let q be a unit vector and letµ1, . . . , µn

be Gaussian measures inIRd of standard deviationσ ≤ 1/3
√

d ln n centered at
points of norm at most1. Then,

Pr
ω,s≤2

(b1,... ,bd)∈Q

[dist (0,Aff (b2, . . . , bd)) < ε] ≤ 900e2/3d2ε

σ 4
, (17)
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where the variables have density proportional to

〈ω | q〉Vol (4 (b1, . . . , bd)) ·(∏
j>d

∫
aaa j

[〈ω | aaa j 〉 ≤ s〈ω | q〉]µ j (aaa j ) daaa j

)
d∏

i=1

µi (Rωb i + sq ).

PROOF. Note that if we fixω ands, then the first and third terms in the density
become constant. For any fixed plane specified by (ω, s), Proposition 2.16 tells us
that the induced density onb i remains a Gaussian of standard deviationσ and is
centered at the projection of the center ofµi onto the plane. As the origin of this
plane is the pointsq , ands ≤ 2, these induced Gaussians have centers of norm at
most 3. Thus, we can use Lemma 4.14 to bound the left-hand side of (17) by

max
ω,s≤2

Pr
(b1,... ,bd)∈Q

[dist (0,Aff (b2, . . . , bd)) < ε] ≤ 900e2/3d2ε

σ 4
.

LEMMA 4.14 (DISTANCE BOUND IN PLANE ). Let µ1, . . . , µd be Gaussian
measures inIRd−1. of standard deviationσ ≤ 1/3

√
d ln n centered at points of

norm at most3. Then

Pr
b1,... ,bd∈Q

[dist (0,Aff (b2, . . . , bd)) < ε] ≤ 900e2/3d2ε

σ 4
, (18)

whereb1, . . . , bd have density proportional to

Vol (4 (b1, . . . , bd))
d∏

i=1

µi (b i ).

PROOF. In Lemma 4.15, we will prove that it is unlikely thatb1 is close to
Aff (b2, . . . , bd). We will exploit this fact by proving that it is unlikely that0
is much closer thanb1 to Aff (b2, . . . , bd). We do this by fixing the shape of
4 (b1, . . . , bd), and then considering slight translations of this simplex. That is, we
make a change of variables to

h = 1

d

d∑
i=1

b i

di = h − b i , for i ≥ 2.

The vectorsd2, . . . ,dd specify the shape of the simplex, andh specifies its location.
As this change of variables is a linear transformation, its Jacobian is constant. For
convenience, we also defined1 = h − b1 = −

∑
i≥2 di . (see Figure 3.)

It is easy to verify that

0 ∈ 4 (b1, . . . , bd) ⇔ h ∈ 4 (d1, . . . ,dd) ,
dist (0,Aff (b2, . . . , bd)) = dist (h,Aff (d2, . . . ,dd)) ,

dist (b1,Aff (b2, . . . , bd)) = dist (d1,Aff (d2, . . . ,dd)) , and
Vol (4 (b1, . . . , bd)) = Vol (4 (d1, . . . ,dd)) .

Note that the relation betweend1 andd2, . . . ,dd guarantees0 ∈ 4 (d1, . . . ,dd)
for all d2, . . . ,dd. So, (b1, . . . , bd) ∈ Q if and only if (d1, . . . ,dd) ∈ Q and
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FIG. 3. The change of variables in Lemma 4.14.

h ∈ 4 (d1, . . . ,dd). As d1 is a function ofd2, . . . ,dd, we let Q′ be the set of
d2, . . . ,dd for which (d1, . . . ,dd) ∈ Q.

So, the left-hand side of (18) equals

Pr
(d2,... ,dd)∈Q′
h∈4(d1,... ,dd)

[dist (h,Aff (d2, . . . ,dd)) < ε] ,

whereh, d2, . . . ,dd have density proportional to

Vol (4 (d1, . . . ,dd))
d∏

i=1

µi (h − di ). (19)

Similarly, Lemma 4.15 can be seen to imply

Pr
(d2,... ,dd)∈Q′
h∈4(d1,... ,dd)

[dist (d1,Aff (d2, . . . ,dd)) < ε]

≤
(
ε3 exp(2/3)d

σ 2

)3

≤
(
ε3 exp(2/3)d

σ 2

)2

(20)

under density proportional to (19). We take advantage of (20) by proving

max
d2,... ,dd∈Q′

Pr
h∈4(d1,... ,dd)

[
dist (h,Aff (d2, . . . ,dd))

dist (d1,Aff (d2, . . . ,dd))
< ε

]
<

75dε

σ 2
, (21)

whereh has density proportional to

d∏
i=1

µi (h − di ).

Before proving (21), we point out that using Lemma 2.11 to combine (20) and
(21), we obtain

Pr
(d2,... ,dd)∈Q′
h∈4(d1,... ,dd)

[dist (h,Aff (d2, . . . ,dd) < ε)] ≤ 900e2/3d2ε

σ 4
,

from which the lemma follows.
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To prove (21), we let

Uε =
{

h ∈ 4 (d1, . . . ,dd) :
dist (h,Aff (d2, . . . ,dd))

dist (d1,Aff (d2, . . . ,dd))
≥ ε

}
,

and we setν(h) =∏d
i=1µi (h − di ). Under this notation, the probability in (21) is

equal to

(ν(U0)− ν(Uε))/ν(U0).

To bound this ratio, we construct an isomorphism fromU0 to Uε . The natural
isomorphism, which we denote8ε , is the map that contracts the simplex by a
factor of (1− ε) at d1. To use this isomorphism to compare the measures of the
sets, we use the facts that ford1, . . . ,dd ∈ Q andh ∈ 4 (d1, . . . ,dd),

—‖h − di ‖ ≤ maxi, j ‖di − d j ‖ ≤ 4
√

2, so the distance fromh − di to the center
of its distribution is at most‖h − di ‖ + 3≤ 4

√
2+ 3;

—dist (h,8ε(h)) ≤ εmaxi dist (d1, di ) ≤ 4
√

2ε

to apply Lemma 2.15 to show that for allh ∈ 4 (d1, . . . ,dd),

µi (8ε(h)− di )

µi (h − di )
≥ exp

(
−3 · 4√2(4

√
2+ 3)ε

2σ 2

)
= exp

(
− (48+ 18

√
2)ε

σ 2

)
.

So,

min
h∈4(d1,... ,dd)

ν(8ε(h))

ν(h)
= min

h∈4(d1,... ,dd)

d∏
i=1

µi (8ε(h)− di )

µi (h − di )

≥ exp

(
− (48+ 18

√
2)dε

σ 2

)
≥ 1− (48+ 18

√
2)dε

σ 2
. (22)

As the Jacobian ∣∣∣∣∂8ε(h)

∂h

∣∣∣∣ = (1− ε)d ≥ 1− dε,

using the change of variablesx = 8ε(h) we can compute

ν(Uε) =
∫

x∈Uε

ν(x ) dx

=
∫

h∈U0

ν(8ε(h))

∣∣∣∣∂8ε(h)

∂h

∣∣∣∣ dh

≥ (1− dε)
∫

h∈U0

ν(8ε(h)) dh . (23)
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So,

ν(Uε)

ν(U0)
≥ (1− dε)

∫
h∈U0

ν(8ε(h)) dh∫
h∈U0

ν(h) dh
by (23)

≥ (1− dε)

(
min

h∈4(d1,... ,dd)

ν(8ε(h))

ν(h)

) ∫
h∈U0

dh∫
h∈U0

dh

≥ (1− dε)

(
1− (48+ 18

√
2)dε

σ 2

)
by (22)

≥ 1− 75dε

σ 2
, asσ ≤ 1.

(21) now follows from (ν(U0)− ν(Uε))/ν(U0) < 75dε
σ 2 .

LEMMA 4.15 (HEIGHT OFSIMPLEX ). Letµ1, . . . , µd be Gaussian measures in
IRd−1 of standard deviationσ ≤ 1/3

√
d ln n centered at points of norm at most3.

Then

Pr
b1,... ,bd∈Q

[dist (b1,Aff (b2, . . . , bd) < ε)] ≤
(

3ε e2/3d

σ 2

)3

,

whereb1, . . . , bd have density proportional to

Vol (4 (b1, . . . , bd))
d∏

i=1

µi (b i ).

PROOF. We begin with a simplifying change of variables. As in Theorem 2.27,
we let

(b2, . . . , bd) = (Rτc2+ tτ , . . . ,Rτcd + tτ ) ,

whereτ ∈ Sd−2 andt ≥ 0 specify the plane throughb2, . . . , bd, andc2, . . . , cd ∈
IRd−2 denote the local coordinates of these points on that plane. Recall that the
Jacobian of this change of variables isVol (4 (c2, . . . , cd)). Let l = −〈τ | b1〉,
and letc1 denote the coordinates in IRd−2 of the projection ofb1 onto the plane
specified byτ andt . (See Figure 4.) Note thatl ≥ 0. In this notation, we have

dist (b1,Aff (b2, . . . , bd)) = l + t.

The Jacobian of the change fromb1 to (l , c1) is 1 as the transformation is just an
orthogonal change of coordinates. The conditions for (b1, . . . , bd) ∈ Q translate
into the conditions

(a) dist
(
c i , c j

) ≤ 4 for all i 6= j ;
(b) (l + t) ≤ 4; and
(c) 0 ∈ 4 (b1, . . . , bd).

Let R denote the set ofc1, . . . , cd satisfying the first condition. As the lemma is
vacuously true forε ≥ 4, we will drop the second condition and note that doing so
cannot decrease the probability that (t + l ) < ε. Thus, our goal is to bound

Pr
τ ,t,l ,(c1,... ,cd)∈R

[(l + t) < ε] , (24)
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FIG. 4. The change of variables in Lemma 4.15.

where the variables have density proportional to2

[0 ∈ 4 (b1, . . . , bd)] Vol (4 (b1, . . . , bd)) Vol (4 (c2, . . . , cd))
d∏

i=1

µi (b i ).

AsVol (4 (b1, . . . , bd)) = (l+t)Vol (4 (c1, . . . , cd)) /d, this is the same as having
density proportional to

(l + t) [0 ∈ 4 (b1, . . . , bd)] Vol (4 (c2, . . . , cd))2
d∏

i=1

µi (b i ).

Under a suitable system of coordinates, we can expressb1 = (−l , c1) andb i =
(t, c i ) for i ≥ 2. The key idea of this proof is that multiplying the first coordinates
of these points by a constant does not change whether or not0 ∈ 4 (b1, . . . , bd);
so, we can determine whether0 ∈ 4 (b1, . . . , bd) from the data (l/t, c1, . . . , cd).
Thus, we will introduce a new variableα, setl = αt , and letS denote the set of
(α, c1, . . . , cd) for which 0 ∈ 4 (b1, . . . , bd) and (c1, . . . , cd) ∈ R. This change
of variables froml to α incurs a Jacobian of∂l

∂α
= t , so (24) equals

Pr
τ ,t,(α,c1,... ,cd)∈S

[(1+ α)t < ε] ,

2 While we keep terms such asb1 in the expression of the density, they should be interpreted as
functions ofτ , t, l , c1, . . . , cd.
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where the variables have density proportional to

t2(1+ α)Vol (4 (c2, . . . , cd))2µ1(−αt, c1)
d∏

i=2

µi (t, c i ).

We upper bound this probability by

max
τ ,(α,c1,... ,cd)∈S

Pr
t

[(1+ α)t < ε] ≤ max
τ ,(α,c1,... ,cd)∈S

Pr
t

[max(1, α)t < ε] ,

wheret has density proportional to

t2µ1(−αt, c1)
d∏

i=2

µi (t, c i ).

For c1, . . . , cd fixed, the points (−αt, c1), (t, c2), . . . , (t, cd) become univariate
Gaussians of standard deviationσ and mean of absolute value at most 3. Let
t0 = σ 2/(3 max(1, α)d). Then, fort in the range [0, t0], −αt is at most 3+ αt0
from the mean of the first distribution andt is at most 3+ t0 from the means of
the other distributions. We will now observe that ift is restricted to a sufficiently
small domain, then the densities of these Gaussians will have bounded variation.
In particular, Lemma 2.15 implies that

maxt∈[0,t0] µ1(−αt, c1)
∏d

i=2µi (t, c i )

mint∈[0,t0] µ1(−αt, c1)
∏d

i=2µi (t, c i )

≤ exp
(
3(3+ αt0)αt0/2σ

2
) d∏

i=2

exp
(
3(3+ t0)t0/2σ

2
)

≤ exp
(
9αt0/2σ

2
)( d∏

i=2

exp
(
9t0/2σ

2
))· exp

(
3
(
αt0
)2
/2σ 2

)( d∏
i=2

exp
(
3t2

0/2σ
2
))

≤ exp(3/2d)

(
d∏

i=2

exp(3/2d)

)
· exp

(
σ 2/6d2

) ( d∏
i=2

exp(σ 2/6d2)

)
≤ exp(3/2) · exp(1/6d)
≤ exp(2).

Thus, we can now apply Lemma 2.13 to show that

Pr
t

[t < ε] < e2

(
3ε(max(1, α)d

σ 2

)3

,

from which we conclude

Pr
t

[max(1, α)t < ε] <

(
3εe2/3d

σ 2

)3

.

4.2. ANGLE OFq TOω.

LEMMA 4.16 (ANGLE OFINCIDENCE). Let d ≥ 3 and n> d. Letµ1, . . . , µn
be Gaussian densities inIRd of standard deviationσ centered at points of norm at
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most1. Let s≤ 2 and let(b1, . . . , bd) ∈ Q. Then,

Pr
ω

[〈ω | q〉 < ε] <

(
340εn

σ 2

)2

, (25)

whereω has density proportional to

〈ω | q〉
(∏

j>d

∫
aaa j

[〈
ω | aaa j

〉 ≤ s 〈ω | q〉]µ j (aaa j ) daaa j

)
d∏

i=1

µi (Rωb i + sq ).

PROOF. First note that the conditions for (b1, . . . , bd) to be inQ imply that for
1≤ i ≤ d, b i has norm at most

√
(4)2+ (4)2 = 4

√
2 by properties (1), (3) and (4)

of Q.
As in Proposition 2.29, we changeω to (c,ψ), wherec = 〈ω | q〉 andψ ∈ Sd−2.

The Jacobian of this change of variables is

(1− c2)(d−3)/2.

In these variables, the bound follows from Lemma 4.17.

LEMMA 4.17 (ANGLE OFINCIDENCE, II). Let d ≥ 3 and n > d. Let
µd+1, . . . , µn be Gaussian densities inIRd of standard deviationσ centered at
points of norm at most1. Let s≤ 2, and letb1, . . . , bd each have norm at most
4
√

2. Letψ ∈ Sd−2. Then

Pr [c < ε] <

(
340εn

σ 2

)2

,

where c has density proportional to

(1− c2)(d−3)/2 · c ·(∏
j>d

∫
aaa j

[〈ωψ,c | aaa j 〉 ≤ s〈ωψ,c | q〉]µ j (aaa j ) daaa j

)
d∏

i=1

µi (Rωψ,cb i + sq ). (26)

PROOF. Let

ν1(c) = (1− c2)(d−3)/2,

ν2(c) =
∏
j>d

∫
aaa j

[〈ωψ,c | aaa j 〉 ≤ s〈ωψ,c | q〉]µ j (aaa j ) daaa j , and

ν3(c) =
d∏

i=1

µi (Rωψ,cb i + sq ).

Then, the density ofc is proportional to

(26)= c · ν1(c)ν2(c)ν3(c).

Let

c0 = σ 2

240n
. (27)
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We will show that, forc between 0 andc0, the density will vary by a factor no
greater than 2. We begin by lettingθ0 = π/2 − arccos(c0), and noticing that a
simple plot of the arccos function revealsc0 < 1/26 implies

θ0 ≤ 1.001c0. (28)

So, asc varies in the range [0, c0], ωψ,c travels in an arc of angle at mostθ0 and
therefore travels a distance at mostθ0. Asc = 〈q | ωψ,c〉, we can apply Lemma 4.18
to show

min0≤c≤c0 ν2(c)

max0≤c≤c0 ν2(c)
≥ 1− 8n(1+ s)θ0

3σ 2
≥ 1− 24nθ0

3σ 2
≥ 1− 1.001

30
, (29)

by (27) and (28).
We similarly note that asc varies between 0 andc0, the pointRωψ,cb i +sq moves

a distance of at most

θ0 ‖b i ‖ ≤ 4
√

2θ0.

As this point is at distance at most

1+ s+ ‖b i ‖ ≤ 4
√

2+ 3

from the center ofµi , Lemma 2.15 implies

min0≤c≤c0 µi (Rωψ,cb i + sq )

max0≤c≤c0 µi (Rωψ,cb i + sq )
≥ exp

(−(3(4
√

2+ 3)4
√

2θ0)/2σ
2
)

≥ exp
(−147θ0/σ

2
)
.

So,

min0≤c≤c0 ν3(c)

max0≤c≤c0 ν3(c)
≥ exp

(−147dθ0/σ
2
) ≥ exp(−148/240), (30)

by (27) and (28) andd ≤ n.
Finally, we note that

1≥ ν1(c) = (1− c2)(d−3)/2 ≥ (1− 1/26d)(d−3)/2 ≥
(

1− 1

52

)
. (31)

So, combining Eqs. (29), (30), and (31), we obtain

min0≤c≤c0 ν1(c)ν2(c)ν3(c)

max0≤c≤c0 ν1(c)ν2(c)ν3(c)
≥
(

1− 1

52

)
e−

148
240

(
1− 1.001

30

)
≥ 1/2.

We conclude by using Lemma 2.13 to show

Pr
c

[c < ε] ≤ 2(ε/c0)
2 = 2

(
240εn

σ 2

)2

≤
(

340εn

σ 2

)2

.

LEMMA 4.18 (POINTS UNDER PLANE ). For n > d, let µd+1, . . . , µn be
Gaussian distributions inIRd of standard deviationσ centered at points of norm at
most1. Let s≥ 0 and letω1 andω2 be unit vectors such that〈ω1 | q〉 and〈ω2 | q〉
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are nonnegative. Then,∏
j>d

∫
aaa j

[〈ω2 | aaa j 〉 ≤ s〈ω2 | q〉]µ j (aaa j ) daaa j∏
j>d

∫
aaa j

[〈ω1 | aaa j 〉 ≤ s〈ω1 | q〉]µ j (aaa j ) daaa j
≥ 1− 8n(1+ s) ‖ω1− ω2‖

3σ 2
.

PROOF. As the integrals in the statement of the lemma are just the integrals of
Gaussian measures over half-spaces, they can be reduced to univariate integrals. If
µ j is centered at ¯a j , then∫

aaa j

[〈ω1 | aaa j 〉 ≤ s 〈ω1 | q〉]µ j (aaa j ) daaa j

=
(

1√
2πσ

)d ∫
aaa j

[〈ω1 | aaa j 〉 ≤ s 〈ω1 | q〉] exp
(−‖aaa j − ā j ‖2/2σ 2

)
daaa j

=
(

1√
2πσ

)d ∫
g j

[〈ω1 | g j + ā j 〉 ≤ s〈ω1 | q〉] exp
(−‖g j ‖2/2σ 2

)
dg j

(settingg j = aaa j − ā j )

=
(

1√
2πσ

)d ∫
g j

[〈ω1 | g j 〉 ≤ 〈ω1 | sq − ā j 〉] exp
(−‖g j ‖2/2σ 2

)
dg j

= 1√
2πσ

∫ t=〈ω1|sq−ā j 〉

t=−∞
exp

(−t2/2σ 2
)

dt

(by Proposition 2.17)

= 1√
2πσ

∫ t=∞

t=−〈ω1|sq−ā j 〉
exp

(−t2/2σ 2
)

dt .

As ‖ā j ‖ ≤ 1, we know

−〈ω1 | sq − ā j 〉 = −〈ω1 | sq〉 + 〈ω1 | ā j 〉 ≤ 〈ω1 | ā j 〉 ≤ 1. (32)

Similarly,

| − 〈ω1 | sq − ā j 〉 + 〈ω2 | sq − ā j 〉| = | − 〈ω1− ω2 | sq − ā j 〉|
≤ ‖ω1− ω2‖‖sq − ā j ‖
≤ ‖ω1− ω2‖(s+ 1). (33)

Thus, by applying Lemma 2.24 to (32) and (33), we obtain∫
aaa j

[〈ω2 | aaa j 〉 ≤ s〈ω2 | q〉]µ j (aaa j ) daaa j∫
aaa j

[〈ω1 | aaa j 〉 ≤ s〈ω1 | q〉]µ j (aaa j ) daaa j
=
∫ t=∞

t=−〈ω2|sq−ā j 〉 exp(−t2/2σ 2) dt .∫ t=∞
t=−〈ω1|sq−ā j 〉 exp(−t2/2σ 2) dt .

≥
(

1− 8(1+ s)‖ω1− ω2‖
3σ 2

)
.
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Thus,∏
j>d

∫
aaa j

[〈ω2 | aaa j 〉 ≤ s〈ω2 | q〉]µ j (aaa j ) daaa j∏
j>d

∫
aaa j

[〈ω1 | aaa j 〉 ≤ s〈ω1 | q〉]µ j (aaa j ) daaa j
≥
(

1− 8(1+ s)‖ω1− ω2‖
3σ 2

)n−d

≥
(

1− 8n(1+ s)‖ω1− ω2‖
3σ 2

)
.

4.3. EXTENDING THE SHADOW BOUND. In this section, we relax the restrictions
made in the statement of Theorem 4.1. The extensions of Theorem 4.1 are needed
in the proof of Theorem 5.1.

We begin by removing the restrictions on where the distributions are centered in
the shadow bound.

COROLLARY 4.19 (‖aaa i ‖ FREE). Letz andt be unit vectors and letaaa1, . . . ,aaan

be Gaussian random vectors inIRd of standard deviationσ ≤ 1/3
√

d ln n centered
at pointsā1, . . . , ān. Then,

E [Shadowz ,t (aaa1, . . . ,aaan)] ≤ D
(

d, n,
σ

max(1,maxi ‖ā‖)
)
,

whereD(d, n, σ ) is as given in Theorem4.1.

PROOF. Letk = maxi ‖ā i ‖. Assume without loss of generality thatk ≥ 1, and
letb i = aaa i /k for all i . Then,b i is a Gaussian random variable of standard deviation
(σ/k) centered at a point of norm at most 1. So, Theorem 4.1 implies

E [Shadowz ,t (b1, . . . , bn)] ≤ D
(
d, n,

σ

k

)
.

On the other hand, the shadow of the polytope defined by theb i s can be seen to
be a dilation of the polytope defined by theaaa i s: the division of theb i s by a factor
of k is equivalent to the multiplication ofx by k. So, we may conclude that for all
aaa1, . . . ,aaan,

|Shadowz ,t (aaa1, . . . ,aaan) | = |Shadowz ,t (b1, . . . , bn) |.
COROLLARY 4.20 (GAUSSIANSFREE). Let z and t be unit vectors and

let aaa1, . . . ,aaan be Gaussian random vectors inIRd with covariance matrices
M 1, . . . ,M n centered at points̄a1, . . . , ān, respectively. If the eigenvalues of
eachM i lie betweenσ 2 and1/9d ln n, then

E [Shadowz ,t (aaa1, . . . ,aaan)] ≤ D
(

d, n,
σ

1+maxi ‖ā‖
)
+ 1,

whereD(d, n, σ ) is as given in Theorem4.1.

PROOF. By Proposition 2.14, eachaaa i can be expressed as

aaa i = ā i + g i + g̃ i ,

whereg̃ i is a Gaussian random vector of standard deviationσ centered at the origin
andg i is a Gaussian random vector centered at the origin with covariance matrix
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M 0
i =M i−σ 2I , each of whose eigenvalues is at most 1/9d ln n. Letã i = ā i+g i .

If ‖ã i ‖ ≤ 1+ ‖ā i ‖ for all i , then we can apply Corollary 4.19 to show

E
g̃1,... ,g̃n

[Shadowz ,t (aaa1, . . . ,aaan)]

≤ D
(

d, n,
σ

max(1,maxi ‖ã‖)
)
≤ D

(
d, n,

σ

1+maxi ‖ā‖
)
.

On the other hand, Corollary 2.19 implies

Pr
g1,... ,gn

[∃i : ‖ã i ‖ > 1+ ‖ā i ‖] ≤ 0.0015

(
n

d

)−1

.

So, using Lemma 2.9 andShadowz ,t (aaa1, . . . ,aaan) ≤ ( n
d ), we can show

E
g̃1,... ,g̃n

[
E

g1,... ,gn

[Shadowz ,t (aaa1, . . . ,aaan)]

]
≤ D

(
d, n,

σ

1+maxi ‖ā‖
)
+ 1,

from which the Corollary follows.

COROLLARY 4.21 (yi FREE). Let y ∈ IRn be a positive vector. Letz and t
be unit vectors and letaaa1, . . . ,aaan be Gaussian random vectors inIRd with co-
variance matricesM 1, . . . ,M n centered at points̄a1, . . . , ān, respectively. If the
eigenvalues of eachM i lie betweenσ 2 and1/9d ln n, then

E [Shadowz ,t (aaa1, . . . ,aaan) ; y ]

≤ D
(

d, n,
σ

(1+maxi ‖ā i ‖)(maxi yi )/(mini yi )

)
+ 1,

whereD(d, n, σ ) is as given in Theorem4.1.

PROOF. Nothing in the statement is changed if we rescale theyi s. So, assume
without loss of generality that mini yi = 1.

Let b i = aaa i /yi . Thenb i is a Gaussian random vector with covariance matrix
M i /y2

i centered at a point of norm at most‖aaa i ‖/yi ≤ ‖aaa i ‖. Then, the eigenvalues
of eachM i lie betweenσ 2/y2

i and 1/(9d ln ny2
i ) ≤ 1/9d ln n, so we may complete

the proof by applying Corollary 4.20.

5. Smoothed Analysis of a Two-Phase Simplex Algorithm

In this section, we will analyze the smoothed complexity of the two-phase shadow-
vertex simplex method introduced in Section 3.3. The analysis of the algorithm
will use as a black-box the bound on the expected sizes of shadows proved in the
previous section. However, the analysis is not immediate from this bound.

The most obvious difficulty in applying the shadow bound to the analysis of an
algorithm is that, in the statement of the shadow bound, the plane onto which the
polytope was projected to form the shadow was fixed and unrelated to the data
defining the polytope. However, in the analysis of the shadow-vertex algorithm,
the plane onto which the polytope is projected will necessarily depend upon data
defining the linear program. This is the dominant complication in the analysis of
the number of steps taken to solveLP′.
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Another obstacle will stem from the fact that, in the analysis ofLP+, we need
to consider the expected sizes of shadows of the convex hulls of points of the form
a+i /y+i , which do not have a Gaussian distribution. In our analysis ofLP+, we
essentially handle this complication by demonstrating that in almost every small
region the distribution can be approximated by some Gaussian distribution.

The last issue we need to address is that ifsmin (AI ) is too small, then the resulting
values fory′i andy+i can be too large. In Section 5.1, we resolve this problem by
proving that one of 3nd ln n randomly chosenI will have reasonablesmin (AI )
with very high probability. Having a reasonablesmin (AI ) is also essential for the
analysis ofLP′.

As our two-phase shadow-vertex simplex algorithm is randomized, we will mea-
sure its expected complexity on each input. For an input linear program specified
by A, y andz , we let

C(A,y , z )

denote the expected number of simplex steps taken by the algorithm on input
(A,y , z ). As this expectation is taken over the choices forI andα, and can be
divided into the number of steps taken to solveLP+ andLP′, we introduce the
functions

S ′z (A,y , I,α),

to denote the number of simplex steps taken by the algorithm in step (5) to solve
LP′ for a givenA, y , I andα, and

S+z (A,y , I)+ 2

to denote the number of simplex steps3 taken by the algorithm in step (7) to solve
LP+ for a givenA, y andI. We note that the complexity of the second phase does
not depend uponα, however, it does depend uponI asI affects the choice ofκ
andM . We have

C(A,y , z ) ≤ E
I,α

[
S ′z (A,y , I,α)

]+ E
I,α

[
S+z (A,y , I,α)

]+ 2.

THEOREM5.1 (MAIN ). There exists a polynomialP and a constantσ0 such
that for every n> d ≥ 3, Ā = [āaa1, . . . , āaan] ∈ IRn×d, ȳ ∈ IRn andz ∈ IRd, and
σ > 0,

E
A,y

[C(A,y , z )] ≤ min

(
P(d, n, 1/min(σ, σ0)),

(
n

d

)
+
(

n

d + 1

)
+ 2

)
,

whereA is a Gaussian random matrix of standard deviationσ maxi ‖(ȳi , āaa i )‖
centered atĀ and y is a Gaussian random vector of standard deviation
σ maxi ‖(ȳi , āaa i )‖ centered at̄y .

PROOF. We first observe that the behavior of the algorithm is unchanged if one
multipliesA andy by a power of two. That is,

C(A,y , z ) = C(2kA, 2ky , z ),

3The seemingly odd appearance of+2 in this definition is explained by Lemma 3.10.
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for any integerk. WhenA andy are Gaussian random variables centered atĀ andȳ
of standard deviationσ maxi ‖(ȳi , āaa i )‖, 2kAand 2ky are Gaussian random variables
centered at 2kĀ and 2kȳ of standard deviationσ maxi ‖(2k ȳi , 2kāaa i )‖. Accordingly,
we may assume without loss of generality in our analysis that maxi ‖(ȳi , āaa i )‖ ∈
(1/2, 1].

The Theorem now follows from Proposition 5.2 and Lemmas 5.15 and 5.27.

Before proceeding with the proof of Theorem 5.1, we state a trivial upper bound
onS ′ andS+:

PROPOSITION5.2 (TRIVIAL SHADOW BOUNDS). For all A, y , z , I andα,

S ′z (A,y , I,α) ≤
(

n

d

)
and S+z (A,y , I,α) ≤

(
n

d + 1

)
.

PROOF. The bound onS ′ follows from the fact that there are (n
d) d-subsets of

[n]. The bound onS+ follows from the observation in Lemma 3.10 that the number
of steps taken by the second phase is at most 2 plus the number of (d+ 1)-subsets
of [n].

5.1. MANY GOOD CHOICES. For a Gaussian randomd-by-d matrix
(aaa1, . . . ,aaad), it is possible to show that the probability that the smallest singu-
lar value of (aaa1, . . . ,aaad) is less thanε is at mostO(d1/2ε). In this section, we
consider the probability that almost all of thed-by-d minors of ad-by-n matrix
(aaa1, . . . ,aaan) have small singular value. If the events for different minors were in-
dependent, then the proof would be straightforward. However, distinct minors may
have significant overlap. While we believe stronger concentration results should be
obtainable, we have only been able to prove:

LEMMA 5.3 (MANY GOOD CHOICES). For n > d ≥ 3, let aaa1, . . . ,aaan be
Gaussian random variables inIRd of standard deviationσ centered at points of
norm at most1. LetA = (aaa1, . . . ,aaan). Then, we have

Pr
aaa1,...,aaan

 ∑
I∈([n]

d )
[smin (AI ) ≤ κ0] ≥

(
1− 1

n

)(
n

d

) ≤ n−d + n−n+d−1+ n−2.9d+1,

where

κ0
def= σ min(1, σ )

12d2n7
√

ln n
. (34)

In the analyses ofLP′ andLP+, we use the following consequence of Lemma 5.3,
whose statement is facilitated by the following notation for a set ofd-sets,I,

I(A)
def= argmaxI∈I (smin (AI )) .

COROLLARY 5.4 (PROBABILITY OF SMALL smin(AI(A))). For n > d ≥ 3, let
aaa1, . . . ,aaan be Gaussian random variables inIRd of standard deviationσ centered
at points of norm at most1, and letA = (aaa1, . . . ,aaan). For I a set of3nd ln n
randomly chosen d-subsets of[n],

Pr
A,I

[
smin

(
AI(A)

) ≤ κ0
] ≤ 0.417

(
n

d

)−1

.
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PROOF

Pr
A,I

[
smin

(
AI(A)

) ≤ κ0
]

= Pr
A,I

[∀I ∈ I : smin (AI ) ≤ κ0]

≤ Pr
A

 ∑
I∈([n]

d )
[smin (AI ) ≤ κ0] <

(
1− 1

n

)(
n

d

)
+ Pr
I,A

∀I ∈ I : smin (AI ) ≤ κ0

∣∣∣∣ ∑
I∈([n]

d )
[smin (AI ) ≤ κ0] ≥

(
1− 1

n

)(
n

d

)
≤ n−d + n−n+d−1+ n−2.9d+1+

(
1− 1

n

)|I|
, by Lemma 5.3,

≤ n−d + n−n+d−1+ n−2.9d+1+ n−3d, as|I| = 3nd ln n,

≤ 0.417

(
n

d

)−1

,

for n > d ≥ 3.

We also use the following corollary, which states that it is highly unlikely thatκ
falls outside the setK, which we now define:

K =
{
2blg(x)c : κ0 ≤ x ≤

√
d + 3d

√
ln nσ

}
. (35)

COROLLARY 5.5 (PROBABILITY OF κ IN K ). For n > d ≥ 3, letaaa1, . . . ,aaan be
Gaussian random variables inIRd of standard deviationσ centered at points of
norm at most1, and letA = (aaa1, . . . ,aaan). For I a set of3nd ln n randomly chosen
d-subsets of[n],

Pr
A,I

[
2blg(smin(AI(A)))c 6∈ K

]
≤ 0.42

(
n

d

)−1

.

PROOF. It follows from Corollary 5.4 that

Pr
A,I

[
smin

(
AI(A)

) ≤ κ0
] ≤ 0.417

(
n

d

)−1

.

On the other hand, as

smin (AI ) ≤ ‖AI ‖ ≤
√

d max
i
‖aaa i ‖ ,

Pr
A,I

[
smin

(
AI(A)

) ≥ √d
(
1+ 3

√
d ln nσ

)]
≤ Pr

A

[
max

i
‖aaa i ‖ ≥ 1+ 3

√
d ln nσ

]
≤ 0.0015

(
n

d

)−1

,

by Corollary 2.19.
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PROPOSITION5.6 (SIZE OFK ).

|K| ≤ 9 lg(nd/min(σ, 1)).

The rest of this section is devoted to the proof of Lemma 5.3. The key to the
proof is an examination of the relation between the events which we now define.

Definition 5.7. For I ∈ ([n]
d ), K ∈ ( [n]

d−1), and j 6∈ K , we define the indicator
random variables

XI = [smin (AI ) ≤ κ0] , and

Y j
K =

[
dist

(
aaa j ,Span(AK )

) ≤ h0
]
,

where

h0
def= σ

4n4
.

In Lemma 5.10, we obtain a concentration result on theY j
K s using the fact that

the Y j
K are independent for fixedK and different j . To relate this concentration

result to theXI s, we show in Lemma 5.11 that, whenXI is true, it is probably the
case thatY j

I−{ j } is true for mostj .

PROOF OFLEMMA 5.3. The proof has two parts. The first, and easier, part is
Lemma 5.10, which implies

Pr
aaa1,...,aaan

 ∑
K∈( [n]

d−1)

∑
j 6∈K

Y j
K ≤

⌈
n− d − 1

2

⌉(
n

d − 1

) > 1− n−n+d−1.

To apply this inequality, we use Lemma 5.11, which implies

Pr
aaa1,...,aaan

 ∑
K∈( [n]

d−1)

∑
j 6∈K

Y j
K >

d

2

∑
I

XI

 > 1− n−d − n−2.9d+1.

Combining these two inequalities, we obtain

Pr
aaa1,...,aaan

[
d

2

∑
I

XI <

⌈
n− d − 1

2

⌉(
n

d − 1

)]
≥ 1− n−d − n−n+d−1− n−2.9d+1.

Observing,

d

2

∑
I

XI <

⌈
n− d − 1

2

⌉(
n

d − 1

)
=⇒

∑
I

XI <
n− d

d

(
n

d − 1

)
= n− d

n− d + 1

(
n

d

)
=
(

1− 1

n− d + 1

)(
n

d

)
≤
(

1− 1

n

)(
n

d

)
,
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we obtain

Pr
aaa1,...,aaan

[∑
I

XI ≥
(

1− 1

n

)(
n

d

)]
≤ n−d + n−n+d−1+ n−2.9d+1.

LEMMA 5.8 (PROBABILITY OF Y j
K ). Under the conditions of Lemma5.3, for

all K ∈ ( [n]
d−1

)
and j 6∈ K,

Pr
aaa1,...,aaan

[
Y j

K

]
≤ h0

σ
.

PROOF. Follows from Proposition 2.20.

LEMMA 5.9 (SUM OVER j OF Y j
K ). Under the conditions of Lemma5.3, for all

K ∈ ( [n]
d−1

)
,

Pr
aaa1,...,aaan

[∑
j 6∈K

Y j
K ≥ d(n− d + 1)/2e

]
≤
(

4h0

σ

)d(n−d+1)/2e
.

PROOF. Using the fact that for fixedK the eventsY j
K are independent, we

compute

Pr
aaa1,...,aaan

[∑
j 6∈K

Y j
K ≥ d(n− d + 1)/2e

]
≤

∑
J∈( [n]−K

d(n−d+1)/2e)
Pr

aaa1,...,aaan

[
∀ j ∈ J,Y j

K

]
=

∑
J∈( [n]−K

d(n−d+1)/2e)

∏
j∈J

Pr
aaa1,...,aaan

[
Y j

K

]

≤
∑

J∈( [n]−K
d(n−d+1)/2e)

(
h0

σ

)d(n−d+1)/2e
, by Lemma 5.8,

≤
(

4h0

σ

)d(n−d+1)/2e
,

as|( [n]−K
d(n−d+1)/2e

)| ≤ 2|[n]−K | = 2n−d+1.

LEMMA 5.10 (SUM OVER K AND j OF Y j
K ). Under the conditions of

Lemma5.3,

Pr
aaa1,...,aaan

 ∑
K∈( [n]

d−1)

∑
j 6∈K

Y j
K >

⌈
n− d − 1

2

⌉(
n

d − 1

) ≤ n−n+d−1.
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PROOF. If
∑

K∈( [n]
d−1)

∑
j 6∈K Y j

K > dn−d−1
2 e( [n]

d−1), then there must exist aK for

which
∑

j 6∈K Y j
K > dn−d−1

2 e, which implies for thatK∑
j 6∈K

Y j
K ≥

⌈
n− d − 1

2

⌉
+ 1=

⌈
n− d + 1

2

⌉
.

Using this trick, we compute

Pr
aaa1,...,aaan

 ∑
K∈( [n]

d−1)

∑
j 6∈K

Y j
K ≥

⌈
n− d − 1

2

⌉(
n

d − 1

)
≤ Pr

aaa1,...,aaan

[
∃K ∈

(
[n]

d − 1

)
:
∑
j 6∈K

Y j
K ≥

⌈
n− d + 1

2

⌉]

≤
(

n

d − 1

)
Pr

aaa1,...,aaan

[∑
j 6∈K

Y j
K ≥

⌈
n− d + 1

2

⌉]

≤
(

n

d − 1

)(
4h0

σ

)d(n−d+1)/2e

(by Lemma 5.9)

=
(

n

n− d + 1

)(
4h0

σ

)d(n−d+1)/2e

≤ nn−d+1

(
1

n4

)d(n−d+1)/2e

≤ n−n+d−1.

The other statement needed for the proof of Lemma 5.3 is:

LEMMA 5.11 (RELATING XS TOYS). Under the conditions of Lemma5.3,

Pr
aaa1,...,aaan

 ∑
K∈( [n]

d−1)

∑
j 6∈K

Y j
K ≤

d

2

∑
I

XI

 ≤ n−d + n−2.9d+1.

PROOF. Follows immediately from Lemmas 5.12 and 5.14.

LEMMA 5.12 (GEOMETRICCONDITION FORBAD I ). If there exists a d-set I
such that

XI and
∑
j∈I

Y j
I−{ j } ≤

d

2
,

then there exists a set L⊂ I , |L| = bd/2− 1c and a j0 ∈ I − L such that

dist (aaa j0,Span(AL )) ≤
√

dκ0

(
1+

⌈
d

2

⌉
maxi ‖aaa i ‖

h0

)
.



438 D. A. SPIELMAN AND S.-H. TENG

PROOF. Let I = {i1, . . . , i d}. By Proposition 2.6 (a),XI implies the existence
of ui1, . . . ,uid , ‖(ui1, . . . ,uid )‖ = 1, such that∥∥∥∥∥∑

i∈I

uiaaa i

∥∥∥∥∥ ≤ κ0.

On the other hand,
∑

j∈I Y j
I−{ j } ≤ d/2 implies the existence of aJ ⊂ I , |J| =

dd/2e, such thatY j
I−{ j } = 0 for all j ∈ J. By Lemma 5.13, this implies|u j | < κ0/h0

for all j ∈ J. As ‖(ui1, . . . ,uid )‖ = 1 andκ0/h0 ≤ 1/
√

d, there exists some
j0 ∈ I − J such that|u j0| ≥ 1/

√
d. SettingL = I − J − { j0}, we compute∥∥∥∥∥∑

j∈I

u jaaa j

∥∥∥∥∥ ≤ κ0 =⇒
∥∥∥∥∥u j0aaa j0 +

∑
j∈L

u jaaa j +
∑
j∈J

u jaaa j

∥∥∥∥∥ ≤ κ0

=⇒
∥∥∥∥∥u j0aaa j0 +

∑
j∈L

u jaaa j

∥∥∥∥∥ ≤ κ0+
∥∥∥∥∥∑

j∈J

u jaaa j

∥∥∥∥∥
=⇒

∥∥∥∥∥aaa j0 +
∑
j∈L

(u j /u j0)aaa j

∥∥∥∥∥ ≤ (1/
∣∣u j0

∣∣)(κ0+
∥∥∥∥∥∑

j∈J

u jaaa j

∥∥∥∥∥
)

=⇒
∥∥∥∥∥aaa j0 +

∑
j∈L

(u j /u j0)aaa j

∥∥∥∥∥ ≤ √d

(
κ0+

∑
j∈J

∣∣u j

∣∣ ∥∥aaa j

∥∥)

=⇒ dist (aaa j0,Span(AL)) ≤
√

d

(
κ0+

⌈
d

2

⌉
κ0 maxi ‖aaa i ‖

h0

)
.

LEMMA 5.13 (BIG HEIGHT, SMALL COEFFICIENT). Let aaa1, . . . ,aaad be vectors
andu be a unit vector such that∥∥∥∥∥ d∑

i=1

uiaaa i

∥∥∥∥∥ ≤ κ0.

If dist (aaa j ,Span({aaa i }i 6= j )) > h0, then
∣∣u j

∣∣ < κ0/h0.

PROOF. We have∥∥∥∥∥ d∑
i=1

uiaaa i

∥∥∥∥∥ ≤ κ0 =⇒
∥∥∥∥∥u jaaa j +

∑
i 6= j

uiaaa i

∥∥∥∥∥ ≤ κ0

=⇒
∥∥∥∥∥aaa j +

∑
i 6= j

(ui /u j )aaa i

∥∥∥∥∥ ≤ κ0/
∣∣u j

∣∣
=⇒ dist

(
aaa j ,Span

({aaa i }i 6= j

)) ≤ κ0/
∣∣u j

∣∣ ,
from which the lemma follows.
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LEMMA 5.14 (PROBABILITY OF BAD GEOMETRY). Under the conditions of
Lemma5.3,

Pr
aaa1,...,aaan

[ ∃L ∈ ( [n]
bd/2−1c

)
, j0 6∈ Lsuch that

dist (aaa j0,Span(AL ))≤√dκ0

(
1+ ⌈d

2

⌉ maxi ‖aaa i ‖
h0

) ] ≤ n−d+ n−2.9d+1.

PROOF. We first note that

Pr
aaa1,... ,aaan

[ ∃L ∈ ( [n]
bd/2−1c

)
, j0 6∈ L such that

dist (aaa j0,Span(AL )) ≤ √dκ0

(
1+ ⌈d

2

⌉ maxi ‖aaa i ‖
h0

) ]

≤ Pr
aaa1,... ,aaan

[ ∃L ∈ ( [n]
bd/2−1c

)
, j0 6∈ L such that

dist (aaa j0,Span(AL)) ≤ √dκ0

(
1+ ⌈d

2

⌉
1+3
√

d ln nσ
h0

) ]
(36)

+ Pr
aaa1,... ,aaan

[max
i
‖aaa i ‖ > 1+ 3

√
d ln nσ ]. (37)

We now apply Proposition 2.20 to bound (36) by∑
L∈( [n]

bd/2−1c)

∑
j0 6∈L

Pr
aaa1,...,aaan

[
dist (aaa j0,Span(AL )) ≤

√
dκ0

(
1+

⌈
d

2

⌉
1+ 3

√
d ln nσ

h0

)]

≤
(

n

bd/2− 1c
)

(n− d/2+ 1)

(√
dκ0

σ

(
1+

⌈
d

2

⌉
1+ 3

√
d ln nσ

h0

))d−|L|
.

(38)

To simplify this expression, we note thatdd
2e ≤ 2d

3 , for d ≥ 3. We then recall

κ0

h0
= min(σ, 1)

3d2n3
√

ln n
,

and applyd ≥ 3 to show
√

dκ0

σ

(
1+

⌈
d

2

⌉
1+ 3

√
d ln nσ

h0

)
≤
√

dκ0

σ
+ κ0

h0

(
2d3/2

3σ
+ 2d2

√
ln n

)
≤ 1

n3
.

So, we have

(38)≤
(

n

bd/2− 1c
)

(n− d/2+ 1)

(
1

n3

)dd/2e
≤ nbd/2−1c+1n−3d/2

≤ n−d.

On the other hand, we can use Corollary 2.19 to bound (37) byn−2.9d+1.
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5.1.1. Discussion. It is natural to ask whether one could avoid the complication
of this section by settingI = {1, . . . ,d}, or even choosingI to be the bestd-set in
{1, . . . ,d + k} for some constantk. It is possible to show that the probability that all
d-by-d minors of a perturbedd-by-(d+k) matrix have condition number at mostε
grows like (

√
dε/σ )k. Thus, the best of these sets would have reasonable condition

number with polynomially high probability. This bound would be sufficient to
handle our concerns about the magnitude ofy′i . The analysis in Lemma 5.18 might
still be possible in this situation; however, it would require considering multiple
possible splittings of the perturbation (for multiple values ofτ1), and it is not clear
whether such an analysis can be made rigorous. Finally, it seems difficult in this
situation to apply the trick in the proofs of Lemma 5.27 and 5.15 of summing over
all likely values forκ. If the algorithm is givenσ as input, then it is possible to
avoid the need for this trick (and an such an analysis appeared in an earlier draft
of this article). However, we believe that it is preferable for the algorithm to make
sense without takingσ as an input.

While choosingI in such a simple fashion could possibly simplify this section,
albeit at the cost of complicating others, we feel that once Lemma 5.3 has been
improved and the correct concentration bound has been obtained, this technique
will provide the best bounds.

One of the anonymous referees pointed out that it should be possible to use
the rank revealing QR factorization to find anI with almost maximalsmin (AI )
(see Chan and Hansen [1992]). While doing so seems to be the best choice algo-
rithmically, it is not clear to us how we could analyze the smoothed complexity of
the resulting two-phase algorithm. The difficulty is that the assumption that a partic-
ular I was output by the rank revealing QR factorization would impose conditions
onA that we are currently not able to analyze.

5.2. BOUNDING THE SHADOW OF LP′. Before beginning our analysis of the
shadow ofLP′, we define the set from whichα is chosen to beA1/d2, where
we define

A = {α : 〈α | 1〉 = 1} , and
Aδ = {α : 〈α | 1〉 = 1 andαi ≥ δ, ∀i } .

The principal obstacle to proving the bound forLP′ is that Theorem 4.1 requires
one to specify the plane on which the shadow of the perturbed polytope will be
measured before the perturbation is known, whereas the shadow relevant to the
analysis ofLP′ depends on the perturbation—it is the shadow ontoSpan(Aα, z ).
To overcome this obstacle, we prove in Lemma 5.18 that ifsmin

(
ĀI(A)

) ≥ κ0/2,
then the expected size of the shadow ontoSpan(Aα, z ) is close to the expected
size of the shadow ontoSpan

(
Āᾱ, z

)
, whereᾱ is chosen fromA0. As this plane

is independent of the perturbation, we can apply Theorem 4.1 to bound the size
of the shadow on this plane. Unfortunately,Ā is arbitrary, so we cannot make any
assumptions aboutsmin

(
ĀI(A)

)
. Instead, we decompose the perturbation into two

parts, as in Corollary 4.20, and can then use Corollary 5.4 to show that with high
probabilitysmin

(
ÃI(A)

) ≥ κ0/2. We begin the proof with this decomposition, and
build to the point at which we can apply Lemma 5.18.

A secondary obstacle in the analysis is thatκ andM are correlated withA and
y . We overcome this obstacle by considering the sum of the expected sizes of the
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shadows whenκ and M are fixed to each of their likely values. This analysis is
facilitated by the notation

T ′z (A, I ,α, κ,M)
def= ∣∣ShadowAIα,z

(
aaa1, . . . ,aaan; y ′

)∣∣ ,
wherey′i =

{
M if i ∈ I√

d M2/4κ otherwise.

We note that

S ′z (A,y , I,α) = T ′z
(
A, I(A),α, 2blgsmin(AI(A))c, 2dlg(maxi ‖(yi ,aaa i )‖)e+2

)
.

LEMMA 5.15 (LP′ ). Let d≥ 3 and n≥ d+ 1. LetĀ = [āaa1, . . . , āaan] ∈ IRn×d,
ȳ ∈ IRn andz ∈ IRd satisfymaxi ‖(ȳi , ā i )‖ ∈ (1/2, 1]. For anyσ > 0, let A be
a Gaussian random matrix centered atĀ of standard deviationσ , and lety by a
Gaussian random vector centered atȳ of standard deviationσ . Letα be chosen
uniformly at random from A1/d2 and letI be a collection of3nd ln n randomly
chosen d-subsets of[n]. Then,

E
A,y ,I,α

[S ′z (A,y , I,α)]

≤ 326nd(ln n) lg(dn/min(1, σ )) D
(

d, n,
min(1, σ 4)

12, 960d8.5n14 ln2.5 n

)
,

whereD(d, n, σ ) is as given in Theorem4.1.

PROOF. Instead of treatingA as a perturbation of standard deviationσ of Ā,
we will view A as the result of applying a perturbation of standard deviationτ0
followed by a perturbation of standard deviationτ1, whereτ 2

0 +τ 2
1 = σ 2. Formally,

we will let G be a Gaussian random matrix of standard deviationτ0 centered at
the origin,Ã = Ā+G, G̃ be a Gaussian random matrix of standard deviationτ1

centered at the origin, andA = Ã+ G̃, where

τ1
def= κ0

6d3
√

ln n
,

andτ 2
0 = σ 2−τ 2

1 . We similarly decompose the perturbation toy into a perturbation
of standard deviationτ0 from which we obtain ˜y , and a perturbation of standard
deviationτ1 from which we obtainy . We will let h̃ = y − ỹ .

We can then apply Lemma 5.16 to show

Pr
I,Ã,G̃

[
smin

(
ÃI(A)

)
< κ0/2

]
< 0.42

(
n

d

)−1

. (39)

One difficulty in bounding the expectation ofT ′ is that its input parameters are
correlated. To resolve this difficulty, we will bound the expectation ofT ′ by the
sum over the expectations obtained by substituting each of the likely choices forκ
andM .

In particular, we set

M= {2dlg xe+2: max
i
‖(ỹi , ã i )‖−3

√
d ln nτ1≤ x≤ max

i
‖(ỹi , ã i )‖+3

√
d ln nτ1

}
.
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We now define indicator random variablesV , W, X, Y, andZ by

V = [|M| ≤ 2] ,

W =
[

max
i
‖(ỹi , ã i )‖ ≤ 1+ 3

√
(d + 1) lnnσ

]
,

X = [smin
(
ÃI(A)

) ≥ κ0/2
]
,

Y =
[
2blgsmin(AI(A))c ∈ K

]
, and

Z = [2dlg maxi ‖(yi ,aaa i )‖e+2 ∈M]
,

and then expand

E
I,A,y ,α

[S ′(A,y , I,α)]

= E
I,A,y ,α

[S ′(A,y , I,α)VWXYZ] + E
I,A,y ,α

[S ′(A,y , I,α)(1− VWXYZ)].

(40)

From Corollary 5.5, we know

Pr
A,I

[not(Y)] = Pr
A,I

[
2blgsmin(AI(A))c 6∈ K

]
≤ 0.42

(
n

d

)−1

. (41)

Similarly, Corollary 2.19 implies for anỹA andỹ andn > d ≥ 3,

Pr
G̃,h̃,I

[not(Z)] = Pr
G̃,h̃,I

[
2dlg maxi ‖(yi ,aaa i )‖e+2 6∈M] ≤ 0.0015

(
n

d

)−1

. (42)

From Corollary 2.19, we have

Pr
Ã,ỹ

[not(W)] ≤ n−2.9(d+1)+1 ≤ 0.0015

(
n

d

)−1

.

For i0 an index for which‖(yi0,aaa i0)‖ ≥ 1/2, Proposition 2.22 implies

Pr
Ã

[not(V)] ≤ Pr
ã i0,ỹi0

[
‖(ỹi0, ã i0)‖ < 9

√
(d + 1) lnnτ1

]
≤ 0.01

(
n

d

)−1

.

By also applying inequality (39) to bound the probability of not(X), we find

Pr
A,y ,I

[(1− VWXYZ) = 1] ≤ 0.86

(
n

d

)−1

.

As

S ′(A,y , I,α) ≤
(

n

d

)
, (by Proposition 5.2)

the second term of (40) can be bounded by 1.
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To bound the first term of (40), we note

E
I,A,y ,α

[S ′(A,y , I,α)V W XY Z]

≤ E
I,Ã,ỹ

[
V W

∑
κ∈K,M∈M

E
G̃,h̃,α

[T ′ (A, I(A),α, κ,M) XW]

]
. (43)

Moreover,

E
G̃,h̃,α

[
T ′ (A, I(A),α, κ,M) XW

]
= E

G̃,h̃,α

[∑
I∈I
T ′(A, I ,α, κ,M)W[smin(ÃI ) ≥ κ0/2][I(A) = I ]

]

≤ E
G̃,h̃,α

[∑
I∈I
T ′(A, I ,α, κ,M)W[smin(ÃI ) ≥ κ0/2]

]

≤ E
G̃,h̃,α

[∑
I∈I
T ′(A, I ,α, κ,M)|W andsmin(ÃI ) ≥ κ0/2

]
=
∑
I∈I

E
G̃,h̃,α

[
T ′(A, I ,α, κ,M)|W andsmin(ÃI ) ≥ κ0/2

]
≤
∑
I∈I

(6.01)D
(

d, n,
τ1

(2+ 3
√

d ln nσ )(
√

d M2/4κM)

)
, by Lemma 5.17,

≤ 3(6.01)nd(ln n)

(
D
(

d, n,
4τ1κ

(2+ 3
√

d ln nσ )(
√

d M)

))
.

Thus,

(43)

≤ E
I,Ã,ỹ

[
V W

∑
κ∈K,M∈M

3(6.01)nd(ln n)D
(

d, n,
4τ1κ

(2+ 3
√

d ln nσ )(
√

d M)

)]

≤ E
I,Ã,ỹ

[
3(6.01)nd(ln n)(V |M|) |K|WD

(
d, n,

4τ1 min(K)

(2+ 3
√

d ln nσ )(
√

d max(M))

)]
≤ E
I,Ã,ỹ

[
6(6.01)nd(ln n) |K|WD

(
d, n,

4τ1 min(K)

(2+ 3
√

d ln nσ )(
√

d max(M))

)]
≤ 6(6.01)nd(ln n) |K|D

(
d, n,

2τ1κ0√
d(2+ 3

√
d ln nσ )(1+ 6

√
(d + 1) lnnσ )

)
,

where the last inequality follows from max(M) ≤ 1+ 6
√

(d + 1) lnnσ whenW
is true.
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To simplify, we first bound the third argument of the functionD by:

2τ1κ0√
d(2+ 3

√
d ln nσ )(1+ 6

√
(d + 1) lnnσ )

= 1

3d3
√

ln n

κ2
0√

d(2+ 3
√

d ln nσ )(1+ 6
√

(d + 1) lnnσ )

= 1

3d3.5
√

ln n

(
1

12d2n7
√

ln n

)2
σ 2(min(1, σ ))2

(2+ 3
√

d ln nσ )(1+ 6
√

(d + 1) lnnσ )

≥ 1

432d7.5n14(ln n)1.5

min(1, σ 4)

(2+ 3
√

d ln n)(1+ 6
√

(d + 1) lnn)

≥ 1

432d7.5n14(ln n)1.5

min(1, σ 4)

30d ln n

= min(1, σ 4)

12, 960d8.5n14 ln2.5 n
,

where the last inequality follows from the assumption thatn > d ≥ 3.
Applying Proposition 5.6 to show|K| ≤ 9 lg(dn/min(1, σ )), we now obtain

(43)≤ 6(6.01)|K| nd(ln n)D
(

d, n,
min(1, σ 4)

12, 960d8.5n14 ln2.5 n

)
≤ 325nd(ln n) lg(dn/min(1, σ ))D

(
d, n,

min(1, σ 4)

12, 960d8.5n14 ln2.5 n

)
.

LEMMA 5.16 (PROBABILITY OF SMALL smin(ÃI(A))). For A, Ã, andI as de-
fined in the proof of Lemma5.15,

Pr
I,Ã,G̃

[
smin

(
ÃI(A)

)
< κ0/2

]
< 0.42

(
n

d

)−1

.

PROOF. Let I = I(A), we have

Pr [smin(ÃI ) < κ0/2] ≤ Pr [smin(AI ) < κ0]

Pr [smin(AI ) < κ0|smin(ÃI ) < κ0/2]
.

From Corollary 5.4, we have

Pr [smin (AI ) < κ0] ≤ 0.417

(
n

d

)−1

.

On the other hand, we have

Pr
[
smin(AI ) ≥ κ0

∣∣smin(ÃI ) < κ0/2
]

≤ Pr
[
smin(AI ) ≥ κ0 andsmin(ÃI ) < κ0/2

]
≤ Pr

[‖AI − ÃI ‖ ≥ κ0/2
]
, by Proposition 2.6 (b),
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≤ Pr
A

[max
i
‖aaa i − ã i ‖ ≥ κ0/2

√
d], by Proposition 2.4 (d),

= Pr
A

[max
i
‖aaa i − ã i ‖ ≥ 3d5/2

√
ln nτ1]

≤ n−2.9d+1,

by Corollary 2.19. Thus,

(5.2)≤ 0.417
(n

d

)−1

1− n−2.9d+1
≤ 0.42

(
n

d

)−1

,

for n > d ≥ 3.

LEMMA 5.17 (FROM ã ). Let I be a set in([n]
d ) and let ã1, . . . , ãn be points

each of norm at most1+ 3
√

(d + 1) lnnσ such that

smin(ÃI ) ≥ κ0

2
.

Then,

E
A,α∈A1/d2

[ShadowAIα,z (aaa1, . . . ,aaan; y ′)]

≤ (6.01)D
(

d, n,
τ1

(2+ 3
√

d ln nσ )(maxi y′i /mini y′i )

)
. (44)

PROOF. We apply Lemma 5.18 to show

E
A,α∈A1/d2

[∣∣ShadowAIα,z

(
aaa1, . . . ,aaan; y ′

)∣∣]
≤ 6 E

A,α̃∈A0

[∣∣ShadowÃI α̃,z

(
aaa1, . . . ,aaan; y ′

)∣∣]+ 1

≤ 6 max
α̃∈A0

E
A

[∣∣ShadowÃI α̃,z

(
aaa1, . . . ,aaan; y ′

)∣∣]+ 1

≤ 6D
(

d, n,
τ1

(2+ 3
√

d ln nσ )(maxi y′i /mini y′i )

)
+ 7

≤ (6.01)D
(

d, n,
τ1

(2+ 3
√

d ln nσ )(maxi y′i /mini y′i )

)
,

by Corollary 4.21 and fact thatD(n, d, σ ) ≥ 58, 888, 678 for any positive
n, d, σ .

LEMMA 5.18 (CHANGING α TO α̃). Let I ∈ ([n]
d ). Letaaa1, . . . ,aaan be Gaussian

random vectors inIRd of standard deviationτ1, centered at points̃a1, . . . , ãn. If
smin

(
ÃI
) ≥ κ0/2, then

E
A,α∈A1/d2

[∣∣ShadowAIα,z

(
aaa1, . . . ,aaan; y ′

)∣∣]
≤ 6 E

A,α̃∈A0

[∣∣ShadowÃI α̃,z

(
aaa1, . . . ,aaan; y ′

)∣∣]+ 1.
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PROOF. The key to our proof is Lemma 5.19. To ready ourselves for the appli-
cation of this lemma, we let

FA(t) = ∣∣Shadowt ,z

(
aaa1, . . . ,aaan; y ′

)∣∣ ,
and note thatFA(t) = FA(t/ ‖t‖). If

∥∥Ã−A
∥∥ ≤ 3d

√
ln nτ1, then∥∥I − Ã

−1
A
∥∥ ≤ ∥∥Ã−1∥∥∥∥Ã−A

∥∥
≤
(

2

κ0

)
3d
√

ln nτ1 ≤
(

2

κ0

)
3d
√

ln nκ0

12d3
√

ln n
≤ 1

2d2
.

By Proposition 2.6(b),

smin (AI ) ≥ smin
(
ÃI
)− ∥∥Ã−A

∥∥
≥ κ0/2− 3d

√
ln nτ1

≥ κ0

2

(
1− 1

2d2

)
≥ κ0

2

(
17

18

)
,

for d ≥ 3. So, we can similarly bound∥∥I −A−1Ã
∥∥ ≤ 9

17d2
.

We can then apply Lemma 5.19 to show

E
α∈A1/d2

[|ShadowAIα,z (aaa1, . . . ,aaan; y ′)|]≤ 6 E
α̃∈A

[|ShadowÃI α̃,z
(aaa1, . . . ,aaan; y ′)|].

From Corollary 2.19 and Proposition 2.4(d), we know that the probability that
‖Ã−A‖ > 3d

√
ln nτ1 is at mostn−2.9d+1. AsShadowÃI α̃,z

(aaa1, . . . ,aaan; y ′) ≤ ( n
d ),

we can apply Lemma 2.9 to show

E
A

[
E

α∈A1/d2

[∣∣ShadowAIα,z (aaa1, . . . ,aaan; y ′)
∣∣]] ≤

6E
A

[
E
α̃∈A

[∣∣ShadowÃI α̃,z
(aaa1, . . . ,aaan; y ′)

∣∣]]+ 1.

To compare the expected sizes of the shadows, we will show that the distribution
Span(Aα, z ) is close to the distributionSpan(Ãα̃, z ). To this end, we note that
for a givenα̃ ∈ A0, theα ∈ A for whichAα is a positive multiple ofÃα̃ is given
by

α = 9(α̃)
def= A−1Ãα̃〈

A−1Ãα̃ | 1〉 . (45)

To derive this equation, note that̃Aα̃ is the point in4 (ã1, . . . , ãd) specified
by α̃. A−1Ãα̃ provides the coordinates of this point in the basisA. Dividing by
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〈A−1Ãα̃ | 1〉 provides theα ∈ A specifying the parallel point inAff (aaa1, . . . ,aaad).
We can similarly derive

9−1(α) = Ã
−1

Aα〈
Ã
−1

Aα | 1〉 .
Our analysis will follow from a bound on the Jacobian of9.

LEMMA 5.19 (APPROXIMATION OFα BY α̃). LetF(x ) be a nonnegative func-
tion depending only onx/‖x‖. If δ = 1/d2, ‖I −Ã

−1
A‖ ≤ ε, and‖I −A−1Ã‖ ≤

ε, whereε ≤ 9/17d2, then

E
α∈Aδ

[F(Aα)] ≤ 6 E
α̃∈A0

[
F(Ãα̃)

]
.

PROOF. Expressing the expectations as integrals, the lemma is equivalent to

1

Vol (Aδ)

∫
α∈Aδ

F(Aα) dα ≤ 6

Vol (A0)

∫
α̃∈A0

F(Ãα̃) dα̃ .

Applying Lemma 5.21 and settingα = 9(α̃), we bound

1

Vol (Aδ)

∫
α∈Aδ

F(Aα) dα

≤ 1

Vol (Aδ)

∫
α∈9(A0)

F(Aα) dα

= 1

Vol (Aδ)

∫
α̃∈A0

F(A9(α̃))

∣∣∣∣∂9(α̃)

∂α̃

∣∣∣∣ dα̃

= 1

Vol (Aδ)

∫
α̃∈A0

F(Ãα̃)

∣∣∣∣∂9(α̃)

∂α̃

∣∣∣∣ dα̃

(asÃα̃ is a positive multiple ofA9(α̃) andF(x ) only depends onx/ ‖x‖)
≤ max
α̃∈A0

(∣∣∣∣∂9(α̃)

∂α̃

∣∣∣∣) 1

Vol (Aδ)

∫
α̃∈A0

F(Ãα̃) dα̃

= max
α̃∈A0

(∣∣∣∣∂9(α̃)

∂α̃

∣∣∣∣)(Vol (A0)

Vol (Aδ)

)
1

Vol (A0)

∫
α̃∈A0

F(Ãα̃) dα̃

≤ (1+ ε)d

(1− ε√d)d(1− ε)

(
1

1− dδ

)d 1

Vol (A0)

∫
α̃∈A0

F(Ãα̃) dα̃

(by Proposition 5.20 and Lemma 5.24)

≤ 6
1

Vol (A0)

∫
α̃∈A0

F(Ãα̃) dα̃ ,

for ε ≤ 9/17d2, δ = 1/d2 andd ≥ 3.

PROPOSITION5.20 (VOLUME DILATION ).

Vol (A0)

Vol (Aδ)
=
(

1

1− dδ

)d

.
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FIG. 5. 0u,v can be understood as the projection through the origin from one plane onto the other.

PROOF. The setAδ may be obtained by contracting the setA0 at the point
(1/d, 1/d, . . . ,1/d) by the factor (1− dδ).

LEMMA 5.21 (PROPERSUBSET). Under the conditions of Lemma5.19,

Aδ ⊂ 9(A0).

PROOF. We will prove

9−1(Aδ) ⊂ A0.

Letα ∈ Aδ, α′ = Ã
−1

Aα andα̃ = α′/〈α′ | 1〉. Using Proposition 2.2 to show
‖α‖ ≤ ‖α‖1 = 1 and Proposition 2.4(a), we bound

α′i ≥ αi − |αi − α′i | ≥ δ − ‖α−α′‖
≥ δ − ‖I − Ã

−1
A‖‖α‖ ≥ δ − ε > 0.

So, all components ofα′ are positive and therefore all components ofα̃ =
α′/

〈
α′ | 1〉 are positive.

We will now begin a study of the Jacobian of9. This study will be simplified
by decomposing9 into the composition of two maps. The second of these maps is
given by:

Definition5.22 (0u,v ). Let u andv be vectors in IRd and let0u,v (x ) be the
map from{x : 〈x | u〉 = 1} to {x : 〈x | v 〉 = 1} given by

0u,v (x ) = x

〈x | v 〉 .
(See Figure 5.)

LEMMA 5.23 (JACOBIAN OF9 ).∣∣∣∣∂9(α̃)

∂α̃

∣∣∣∣ = det
(
A−1Ã

) ‖1‖〈
A−1Ãα̃ | 1〉d ∥∥∥∥(Ã

−1
A
)T

1

∥∥∥∥ .
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PROOF. Letα = 9(α̃) and letα′ = A−1Ãα̃. As 〈α̃ | 1〉 = 1, we have〈
α′ |

(
Ã
−1

A
)T

1
〉
= 1.

So,α = 0u,v (α′), whereu = (Ã
−1

A)T1 andv = 1. By Lemma 5.25,∣∣∣∣∂α∂α̃
∣∣∣∣ = ∣∣∣∣ ∂α∂α′

∣∣∣∣ ∣∣∣∣∂α′∂α̃

∣∣∣∣ = det
(
∂0u,v (α′)
∂α′

)
det

(
A−1Ã

)
= det

(
A−1Ã

) ‖1‖〈
A−1Ãα̃ | 1〉d ∥∥∥∥(Ã

−1
A
)T

1

∥∥∥∥ .
LEMMA 5.24 (BOUND ON JACOBIAN OF 9 ). Under the conditions of

Lemma5.19, ∣∣∣∣∂9(α̃)

∂α̃

∣∣∣∣ ≤ (1+ ε)d

(1− ε√d)d(1− ε) ,

for all α̃ ∈ A0.

PROOF. The condition‖I − A−1Ã‖ ≤ ε implies ‖A−1Ã‖ ≤ 1 + ε, so
Proposition 2.4(e) implies

det
(
A−1Ã

) ≤ (1+ ε)d.

Observing that‖1‖ = √d, and‖I − (Ã
−1

A)T‖ = ‖I − (Ã
−1

A)‖, we compute∥∥∥(Ã
−1

A)T1
∥∥∥ ≥ ‖1‖ − ∥∥∥1− (Ã

−1
A)T1

∥∥∥ ≥ √d −
∥∥∥I − (Ã

−1
A)T

∥∥∥ ‖1‖
≥
√

d − ε
√

d.

So,

‖1‖∥∥∥∥(Ã
−1

A
)T

1

∥∥∥∥ ≤
1

1− ε .

Finally, as〈α̃ | 1〉 = 1 and‖α̃‖ ≤ 1, we have〈
A−1Ãα̃ | 1〉 = 〈α̃ | 1〉 + 〈A−1Ãα̃− α̃ | 1〉

= 1+ 〈(A−1Ã− I )α̃ | 1〉
≥ 1− ∥∥A−1Ã− I

∥∥ ‖α̃‖ ‖1‖
≥ 1− ε

√
d.

Applying Lemma 5.23, we obtain∣∣∣∣∂9(α̃)

∂α̃

∣∣∣∣ = det
(
A−1Ã

) ‖1‖〈
A−1Ãα | 1〉d ∥∥∥∥(Ã

−1
A
)T

1

∥∥∥∥ ≤
(1+ ε)d

(1− ε√d)d(1− ε) .
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LEMMA 5.25 (JACOBIAN OF 0u,v ).∣∣∣∣det
(
∂0u,v (x )

∂x

)∣∣∣∣ = ‖v‖
〈x | v 〉d ‖u‖ .

PROOF. Consider dividing IRd into Span(u, v ) and the space orthogonal to
Span(u, v ). In the (d− 2)-dimensional orthogonal space,0u,v acts as a multipli-
cation by 1/ 〈x | v 〉. On the other hand, the Jacobian of the restriction of0u,v to
Span(u, v ) is computed by Lemma 5.26 to be

‖v‖
〈x | v 〉2 ‖u‖ .

So, ∣∣∣∣det
(
∂0u,v (x )

∂x

)∣∣∣∣ = ( 1

〈x | v 〉
)d−2 ‖v‖

〈x | v 〉2 ‖u‖ =
‖v‖

〈x | v 〉d ‖u‖ .

LEMMA 5.26 (JACOBIAN OF 0u,v IN 2D). Let u and v be vectors inIR2 and
let 0u,v (x ) be the map from{x : 〈x | u〉 = 1} to {x : 〈x | v 〉 = 1} by

0u,v (x ) = x

〈x | v 〉 .

Then, ∣∣∣∣det
(
∂0u,v (x )

∂x

)∣∣∣∣ = ‖v‖
〈x | v 〉2 ‖u‖ .

PROOF. Let R =
(

0 −1
1 0

)
, the 90◦ rotation counterclockwise. Let

u⊥ = Ru/ ‖u‖ and v⊥ = Rv/ ‖v‖ .

Express thex such that〈x | u〉 = 1, asx = u/ ‖u‖2 + xu⊥. Similarly, parame-
terize the line{x : 〈x | v 〉 = 1} by v/ ‖v‖2+ yv⊥. Then, we have

0u,v

(
u/ ‖u‖2+ xu⊥

) = v/ ‖v‖2+ yv⊥,

where

y =
〈
u/ ‖u‖2+ xu⊥ | v⊥〉〈
u/ ‖u‖2+ xu⊥ | v 〉 =

〈
u/ ‖u‖2+ xu⊥ | v⊥〉

〈x | v 〉 .
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So, ∣∣∣∣det
(
∂0u,v (x )

∂x

)∣∣∣∣
=
∣∣∣∣det

(
∂y

∂x

)∣∣∣∣
=
∣∣∣∣∣∣
〈
u⊥
∣∣∣v⊥〉 〈 u

‖u‖2 + xu⊥
∣∣∣v 〉− 〈u⊥∣∣∣v 〉 〈 u

‖u‖2 + xu⊥
∣∣∣v⊥〉

〈x | v 〉2

∣∣∣∣∣∣
=
∣∣∣∣∣∣
〈
u⊥
∣∣∣v⊥〉 〈 u

‖u‖2
∣∣∣v 〉− 〈u⊥∣∣∣v 〉 〈 u

‖u‖2
∣∣∣v⊥〉

〈x | v 〉2

∣∣∣∣∣∣
=
∣∣∣∣∣∣
‖v‖

(〈
u⊥
∣∣∣v⊥〉 〈 u

‖u‖
∣∣∣ v
‖v‖
〉
−
〈
u⊥
∣∣∣ v
‖v‖
〉 〈

u
‖u‖
∣∣∣v⊥〉)

‖u‖ 〈x | v 〉2

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
‖v‖

(〈
u
‖u‖
∣∣∣ v
‖v‖
〉2
+
〈
u⊥
∣∣∣ v
‖v‖
〉2)

‖u‖ 〈x | v 〉2

∣∣∣∣∣∣∣∣ , asR is orthogonal andR2 = −1,

= ‖v‖
‖u‖ 〈x | v 〉2 , as

{
u

‖u‖ ,u
⊥
}

is a basis.

5.3. BOUNDING THE SHADOW OF LP+. The main obstacle to proving a bound
on the size of the shadow ofLP+ is that the vectorsa+i /y+i are not Gaussian random
vectors. To resolve this problem, we will show that, in almost every sufficiently small
region, we can construct a family of Gaussian random vectors with distributions
similar to the vectorsa+i /y+i . We will then bound the expected size of the shadow
of the vectorsa+i /y+i by a small multiple of the expected size of the shadow of these
Gaussian vectors. These regions are defined by splitting the original perturbation
into two, and letting the first perturbation define the region.

As in the analysis ofLP′, a secondary obstacle is the correlation ofκ andM with
A andy . We again overcome this obstacle by considering the sum of the expected
sizes of the shadows whenκ andM are fixed to each of their likely values, and use
the notation

T +z (A,y , κ,M)
def=
{∣∣Shadow(0,z ),z+

(
a+1 /y+1 , . . . ,a

+
n /y+n

)∣∣ , if
√

d M/4κ ≥ 1

0 otherwise,

where

a+i =
(
(y′i − yi )/2,aaa i

)
,

y+i = (y′i + yi )/2, and

y′i =
{

M if i ∈ I√
d M2/4κ otherwise.
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By Lemma 3.10 and Proposition 3.7, we then have

S+z (A,y , I) = T +z
(
A,y , 2blgsmin(AI(A))c, 2dlg(maxi ‖(yi ,aaa i )‖)e+2

)
.

LEMMA 5.27 (LP+). Let d≥ 3and n≥ d+1. LetĀ = [āaa1, . . . , āaan] ∈ IRn×d,
ȳ ∈ IRn andz ∈ IRd, satisfymaxi ‖(ȳi , ā i )‖ ∈ (1/2, 1]. For anyσ > 0, let A be
a Gaussian random matrix centered atĀ of standard deviationσ , and lety by a
Gaussian random vector centered atȳ of standard deviationσ . LetI be a set of
3nd ln n randomly chosen d-subsets of[n]. Then,

E
A,y ,I

[
S+(A,y , I)

]≤ 49 lg(nd/min(σ, 1))D
(
d, n,

min(1, σ 5)

223(d+ 1)11/2n14(ln n)5/2

)
+ n,

whereD(d, n, σ ) is as given in Theorem4.1.

PROOF. For ρ0 andρ1 defined below, we letG andG̃ be Gaussian random
matrices centered at the origin of standard deviationsρ0 andρ1, respectively. We
then letÃ = Ā + G andA = Ã + G̃. We similarly leth and h̃ be Gaussian
random vectors centered at the origin of standard deviationsρ0 andρ1, respectively,
and letỹ = y ′ + h andy = ỹ + h̃ . If

σ ≤ 3
√

1/4√
2en(60n(d + 1)3/2(ln n)3/2)

,

we setρ1 = σ . Otherwise, we setρ1 so that

ρ1 =
3
√

1/4+ d(σ 2− ρ2
1)

√
2en(60n(d + 1)3/2(ln n)3/2)

,

and setρ2
0 = σ 2− ρ2

1. We note that

ρ1 = min

σ, 3
√

1/4+ dρ2
0√

2en(60n(d + 1)3/2(ln n)3/2)

 .
As in the proof of Lemma 5.15, we define the set of likely values forM :

M =
{

2dlg xe+2 :

(
max

i
‖(ỹi , ã i )‖

)(
1− 9

√
(d + 1) lnn

(60n(d + 1)3/2(ln n)3/2)

)
≤ x

≤
(

max
i
‖(ỹi , ã i )‖

)(
1+ 9

√
(d + 1) lnn

(60n(d + 1)3/2(ln n)3/2)

)}
.

Observe that|M| ≤ 2.
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As in the proof of Lemma 5.15, we define random variables:

W =
[
max

i
‖(ỹi , ã i )‖ ≤ 1+ 3

√
(d + 1) lnnρ0

]
,

X =
max

i
‖(ỹi , ã i )‖ ≥

√
1/4+ dρ2

0√
2en

 ,
Y =

[
2blgsmin(AI(A))c ∈ K

]
, and

Z = [2dlg maxi ‖(yi ,aaa i )‖e+2 ∈M]
.

In order to apply the shadow bound proved below in Lemma 5.28, we need

M ≥ 3 max
i
‖(ỹi , ã i )‖ ,

and

M ≥ (60n(d + 1)3/2(ln n)3/2)ρ1.

From the definition ofM and the inequality

1− 9
√

(d + 1) lnn/(60n(d + 1)3/2(ln n)3/2) ≥ 3/4,

the first of these inequalities holds ifZ is true. Given thatZ is true, the second
inequality holds ifX is also true.

From Corollary 5.5, we know

Pr
A,I

[not(Y)] ≤ Pr
A,I

[
2blgsmin(AI(A))c 6∈ K

]
≤ 0.42

(
n

d

)−1

≤ 0.42n

(
n

d + 1

)−1

.

(46)

From Corollary 2.19, we have

Pr
Ã,ỹ

[not(W)] ≤ n−2.9(d+1)+1 ≤ 0.0015

(
n

d + 1

)−1

. (47)

From Proposition 2.22, we know

Pr [not(X)]

= Pr

max
i
‖(ỹi , ã i )‖ <

√
1/4+ dρ2

0√
2en

 < n−(d+1) ≤ 1

24

(
n

d + 1

)−1

. (48)

To bound the probability thatZ fails, we note that

max
i
‖(ỹi , ã i )‖ ≥

√
1/4+ dρ2

0√
2en

and

max
i
‖(yi − ỹi ,aaa i − ã i )‖ ≤ ρ13

√
(d + 1) lnn



454 D. A. SPIELMAN AND S.-H. TENG

imply Z is true. Hence, by Corollary 2.19 and (48),

Pr [not(Z)] ≤ n−2.9(d+1)+1+ n−(d+1) ≤ 0.044

(
n

d + 1

)−1

. (49)

As in the proof of Lemma 5.15, we now expand

E
I,A,y

[S+(A,y , I)]

= E
I,A,y

[S+(A,y , I)WXYZ] + E
I,A,y

[S+(A,y , I)(1−WXYZ)]. (50)

To bound the second term byn, we apply (47), (48), (46) and (49) to show

Pr
A,I

[not(W) or not(X) or not(Y) or not(Z)] ≤ n

(
n

d + 1

)−1

,

and then combine this inequality with Proposition 5.2.
To bound the first term of (50), we note

E
I,A,y

[
S+(A,y , I)WXYZ

]
≤ E
I,Ã,ỹ

[
WX

∑
κ∈K,M∈M

E
G̃,h̃

[T + (A,y , κ,M) XZ]

]

≤ E
I,Ã,ỹ

[
WX

∑
κ∈K,M∈M

E
G̃,h̃

[T + (A,y , κ,M) |XZ]

]

≤ E
I,Ã,ỹ

[
WX

∑
κ∈K,M∈M

eD
(

d, n,
ρ1 mini y′i

3(maxi y′i )2

)
+ 1

]
, by Lemma 5.28, (51)

≤ E
I,Ã,ỹ

[
WX

∑
κ∈K,M∈M

eD
(

d, n,
σM

3(M2/4κ)2

)
+ 1

]

≤ E
I,Ã,ỹ

[
WX|K| |M | eD

(
d, n,

16σ min(K)2

3 max(M)3

)
+ 1

]
. (52)

As min(K) ≥ κ0/2 andW implies max(M) ≤ 9(1+ 3
√

(d + 1) lnnσ ),

16σ min(K)2

3 max(M)3
≥ 16σ 3 min(1, σ )2

3 · 4(9(1+ 3
√

(d + 1) lnnσ
)3(

12d2n7
√

ln n
)2

≥ 16 min(1, σ 5)

3 · 4(9(1+ 3
√

(d + 1) lnn
)3(

12d2n7
√

ln n
)2

≥ min(1, σ 5)

223(d + 1)11/2n14(ln n)5/2
.

Applying this inequality, Proposition 5.6, and the fact thatX implies|M| ≤ 2, we
obtain

(52)≤ 49 lg(nd/min(σ, 1))D
(

d, n,
min(1, σ 5)

223(d + 1)11/2n14(ln n)5/2

)
.
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LEMMA 5.28 (LP+ SHADOW, PART 2). Let d ≥ 3 and n≥ d + 1. Lety be a
Gaussian random vector of standard deviationρ1 centered at a point̃y , and let
aaa1, . . . ,aaan be Gaussian random vectors inIRd of standard deviationρ1 centered
at ã1, . . . , ãn respectively. Under the conditions

y′i > 3(‖ỹi , ã i ‖), ∀i, and (53)

y′i > 60n(d + 1)3/2(ln n)3/2ρ1, ∀i, (54)

let

a+i = ((y′i − yi )/2,aaa i ), and

y+i = (y′i + yi )/2.

Then,

E
(y1,aaa1),... ,(yn,aaan)

[∣∣Shadow(0,z ),z+
(
a+1 /y+1 , . . . ,a

+
n /y+n

)∣∣]
≤ eD

(
d, n,

ρ1 mini y′i
3(maxi y′i )2

)
+ 1.

PROOF. We use the notation

(pi,0(h̃i ),p i (h̃i , g̃ i )) = a+i /y+i =
(

y′i − ỹi − h̃i

y′i + ỹi + h̃i
,

2(ã i + g̃ i )

y′i + ỹi + h̃i

)
,

whereg̃1, . . . , g̃n are the columns ofG̃ and (̃h1, . . . , h̃n) = h̃ as defined in the
proof of Lemma 5.27.

The Gaussian random vectors that we will use to approximate these will come
from their first-order approximations:

( p̂i,0(h̃i ), p̂(h̃i , g̃ i ))

=
(

y′i − ỹi − h̃i (2y′i /(y
′
i + ỹi ))

y′i + ỹi
,

2ã i + 2g̃ i − h̃i (2ã i /(y′i + ỹi ))

y′i + ỹi

)
.

Let ν̂i ( p̂i,0, p̂ i ) be the induced density on (p̂i,0, p̂ i ). In Lemma 5.30, we prove
that there exists a setB of ((p1,0,p1), . . . , (pn,0,pn)) such that

Pr∏n
i=1 νi (pi,0,p i )

[(( p1,0,p1), . . . , (pn,0,pn)) ∈ B] ≥ 1− 0.0015

(
n

d + 1

)−1

,

and for ((p1,0,p1), . . . , (pn,0,pn)) ∈ B,

n∏
i=1

νi (pi,0,p i ) ≤ e
n∏

i=1

µ′i (pi,0,p i ).

Consequently, Lemma 2.10 allows us to prove

E∏n
i=1 νi (pi,0,p i )

[∣∣Shadow(0,z ),z+((p1,0,p1), . . . , (pn,0,pn))
∣∣]

≤ e E∏n
i=1 ν̂i (pi,0,p i )

[∣∣Shadow(0,z ),z+((p1,0,p1), . . . , (pn,0,pn))
∣∣]+ 1.
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By Lemma 5.29, the densities ˆνi represent Gaussian distributions centered at points
of norm at most∥∥∥∥( y′i − ỹi

y′i + ỹi
,

2ã i

y′i + ỹi

)∥∥∥∥ ≤ √5, (by condition (53))

whose covariance matrices have eigenvalues at most(
9ρ1/2y′i

)2 ≤ (9/2(60n(d + 1)3/2(ln n)3/2))2 ≤ 1/9d ln n, (by condition (54))

and at least (
9ρ1/8y′i

)2
.

Thus, we can apply Corollary 4.21 to bound

E∏n
i=1 ν̂i (pi,0,p i )

[∣∣Shadow(0,z ),z+((p1,0,p1), . . . , (pn,0,pn))
∣∣]

≤ eD
(

d, n,
9ρ1/8 maxi y′i

(1+√5)(maxi y′i /mini y′i )

)
+ 1,

≤ eD
(

d, n,
ρ1 mini y′i

3(maxi y′i )2

)
+ 1,

thereby proving the Lemma.

LEMMA 5.29 (ν̂ ). Under the conditions of Lemma5.28, ( p̂i,0(h̃i ), p̂(h̃i , g̃ i )) is
a Gaussian random vector centered at(

y′i − ỹi

y′i + ỹi
,

2ã i

y′i + ỹi

)
,

and has a covariance matrix with eigenvalues between(9ρ1/8y′i )
2 and(9ρ1/2y′i )

2.

PROOF. Because (̂pi,0(h̃i ), p̂(h̃i , g̃ i )) is linear in (̃hi , g̃ i ) and (̃hi , g̃ i ) is a
Gaussian random vector, (p̂i,0(h̃i ), p̂(h̃i , g̃ i )) is a Gaussian vector. The statement
about the center of the distributions follows immediately from the fact that (h̃i , g̃ i )
is centered at the origin. To construct the covariance matrix, we note that the matrix
corresponding to the transformation from (h̃i , g̃ i ) to (p̂i,0(h̃i ), p̂(h̃i , g̃ i )) is

Ci
def=



−2y′i
(y′i+ỹi )2, 0, . . . ,0
−2ãi,1

(y′i+ỹi )2

−2ãi,2

(y′i+ỹi )2

...
−2ãi,d

(y′i+ỹi )2

2
y′i+ỹi

I


Thus, the covariance matrix of (p̂i,0(h̃i ), p̂(h̃i , g̃ i )) is given byρ2

1CT
i Ci .
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We now note that

y′i + ỹi

2
Ci −



−1 0, . . . ,0
0
0
...
0

I


=



ỹi

y′i+ỹi
, 0, . . . ,0

− ãi,1

y′i+ỹi

− ãi,2

y′i+ỹi
...

− ãi,d

y′i+ỹi

0


As all the singular values of the middle matrix are 1, and the norm of the right-hand
matrix is‖(ỹi , ã i )‖ /(y′i + ỹi ), all the singular values ofCi lie between

2

y′i + ỹi

(
1− ‖(ỹi , ã i )‖

y′i + ỹi

)
and

2

y′i + ỹi

(
1+ ‖(ỹi , ã i )‖

y′i + ỹi

)
.

The stated bounds now follow from inequality (53).

LEMMA 5.30 (ALMOST GAUSSIAN). Under the conditions of Lemma5.28, let
νi (pi,0,p i ) be the induced density on(pi,0,p i ), and letν̂i ( p̂i,0, p̂ i ) be the induced
density on( p̂i,0, p̂ i ). Then, there exists a set B of((p1,0,p1), . . . , (pn,0,pn)) such
that

(a) Pr [(( p1,0,p1), . . . , (pn,0,pn)) ∈ B] ≥ 1− 0.0015
( n

d+1

)−1
; and

(b) for all ((p1,0,p1), . . . , (pn,0,pn)) ∈ B,
n∏

i=1

νi (pi,0,p i ) ≤ e
n∏

i=1

ν̂i (pi,0,p i ).

PROOF. Let

B =
{

((p1,0(h̃1),p1(h̃1, g̃1)), . . . , (pn,0(h̃n),pn(h̃n, g̃n)))

such that
∥∥(h̃i , g̃ i )

∥∥ ≤ 3
√

(d + 1) lnnρ1, for 1≤ i ≤ n

}
.

From inequalities (53) and (54), and the assumption|h̃i | ≤ 3
√

(d + 1) lnnρ1,
we can showy′i + ỹi + h̃i > 0, and so the map from (h̃1, g̃1), . . . , (h̃n, g̃n) to
(p1,0,p1), . . . , (pn,0,pn) is invertible for (p1,0,p1), . . . , (pn,0,pn) ∈ B. Thus, we
may apply Corollary 2.19 to establish part (a).

Part (b) of follows directly Lemma 5.31.

LEMMA 5.31 (ALMOST GAUSSIAN, SINGLE VARIABLE ). Under the conditions
of Lemma5.28, for all h̃i and g̃ i such that‖(h̃i , g̃ i )‖ ≤ 3

√
(d + 1) lnnρ1,

νi (pi,0(h̃i ),p i (h̃i , g̃ i )) ≤ exp(1/n)ν̂i (pi,0(h̃i ),p i (h̃i , g̃ i )).

PROOF. Let µ(h̃i , g̃ i ) be the density on (̃hi , g̃ i ). As observed in the proof
of Lemma 5.30, the map from (h̃i , g̃ i ) to (pi,0(h̃i ),p i (h̃i , g̃ i )) is injective for
‖(h̃i , g̃ i )‖ ≤ 3

√
(d + 1) lnnρ1; so, by Proposition 2.26, the induced density on

νi is

νi (pi,0,p i ) =
1∣∣∣det

(
∂(pi,0,p i )
∂(h̃i ,g̃ i )

)∣∣∣µ(h̃i , g̃ i ),where (pi,0,p i ) = (pi,0(h̃i ),p i (h̃i , g̃ i )).
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Similarly,

ν̂i ( p̂i,0, p̂ i ) =
1∣∣∣det

(
∂( p̂i,0,p̂ i )
∂(ĥi ,ĝ i )

)∣∣∣µ(ĥi , ĝ i ),where (̂pi,0, p̂ i ) = ( p̂i,0(ĥi ), p̂ i (ĥi , ĝ i )).

The proof now follows from Lemma 5.32, which tells us that

µ(h̃i , g̃ i )

µ(ĥi , ĝ i )
≤ exp(0.81/n),

and Lemma 5.33, which tells us that∣∣∣det
(
∂( p̂i,0,p̂ i )
∂(ĥi ,ĝ i )

)∣∣∣∣∣∣det
(
∂(pi,0,p i )
∂(h̃i ,g̃ i )

)∣∣∣ ≤ exp(1/10n).

LEMMA 5.32 (ALMOST GAUSSIAN, POINTWISE). Under the conditions of
Lemma5.31, if pi,0(h̃i ) = p̂0(ĥi ), p i (h̃i , g̃ i ) = p̂ i (ĥi , ĝ i ), and ‖h̃i , g̃ i ‖ ≤
3
√

(d + 1) lnnρ1, then

µ(h̃i , g̃ i )

µ(ĥi , ĝ i )
≤ exp(0.81/n).

PROOF. We first observe that the conditions of the lemma imply

ĥi = h̃i (y′i + ỹi )

y′i + ỹi + h̃i
, and ĝ i =

g̃ i (y
′
i + ỹi )

y′i + ỹi + h̃i
.

We then compute

µ(h̃i , g̃ i )

µ(ĥi , ĝ i )
= exp

(−1

2ρ2
1

‖(h̃i , g̃ i )‖2
(

2h̃i (y′i + ỹi )+ h̃2
i

(y′i + ỹi + h̃i )2

))
. (55)

Assuming‖(h̃i , g̃ i )‖ ≤ 3
√

(d + 1) lnnρ1, the absolute value of the exponent in
(55) is at most

9(d + 1) lnn

2

(
2h̃i (y′i + ỹi )+ h̃2

i

(y′i + ỹi + h̃i )2

)
.

From inequalities (53) and (54), we find

y′i + ỹi

(y′i + ỹi + h̃i )2
≤ 40

(37)2n(d + 1)3/2(ln n)3/2ρ1
.

Observing that̃hi ≤ (1/40)(y′i + ỹi ), we can now lower bound the exponent in (55)
by

9(d + 1) lnn

2

(
2h̃i (81/80)40

(37)2n(d + 1)3/2(ln n)3/2ρi

)
≤ 0.81/n.
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LEMMA 5.33 (ALMOST GAUSSIAN, JACOBIANS). Under the conditions of
Lemma5.31, ∣∣∣det

(
∂( p̂0,p̂ i )
∂(ĥi ,ĝ i )

)∣∣∣∣∣∣det
(
∂(pi,0,p i )
∂(h̃i ,g̃ i )

)∣∣∣ ≤ exp(0.094/n).

PROOF. We first note that∣∣∣∣det
(
∂( p̂0, p̂ i )

∂(ĥi , ĝ i )

)∣∣∣∣ = |det (Ci )| = 2d+1y′i
(y′i + ỹi )d+2

.

To compute|det( ∂(pi,0,p i )
∂(h̃i ,g̃ i )

)|, we note that∣∣∣∣∂pi,0

∂ h̃i

∣∣∣∣ = −2y′i
(y′i + ỹi + h̃i )2

, and∣∣∣∣∣∂p i, j (h̃i , gi,k)

∂gi,k

∣∣∣∣∣ =
{

0 if j 6= k
2

y′i+ỹi+h̃i
otherwise.

Thus, the matrix of partial derivatives is lower-triangular, and its determinant has
absolute value ∣∣∣∣det

(
∂(pi,0,p i )

∂(h̃i , g̃ i )

)∣∣∣∣ = 2d+1y′i
(y′i + ỹi + h̃i )d+2

.

Thus, ∣∣∣det
(
∂( p̂0,p̂ i )
∂(ĥi ,ĝ i )

)∣∣∣∣∣∣det
(
∂(pi,0,p i )
∂(h̃i ,g̃ i )

)∣∣∣ =
(

y′i + ỹi + h̃i

y′i + ỹi

)d+2

=
(

1+ h̃i

y′i + ỹi

)d+2

≤
(

1+ 3h̃i

2y′i

)d+2

, by (53),

≤ exp

(
3(d + 2)h̃i

2y′i

)
≤ exp(0.094/n), by d ≥ 3 and (54).

6. Discussion and Open Questions

The results proved in this article support the assertion that the shadow-vertex sim-
plex algorithm usually runs in polynomial time. However, our understanding of
the performance of the simplex algorithm is far from complete. In this section,
we discuss problems in the analysis of the simplex algorithm and in the smoothed
analysis of algorithms that deserve further study.
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6.1. PRACTICALITY OF THE ANALYSIS. While we have demonstrated that the
smoothed complexity of the shadow-vertex algorithm is polynomial, the polynomial
we obtain is quite large. Yet, we believe that the present analysis provides some
intuition for why the shadow-vertex simplex algorithm should run quickly. It is clear
that the proofs in this article are very loose and make many worst-case assumptions
that are unlikely to be simultaneously valid. We did not make any attempt to optimize
the coefficients or exponents of the polynomial we obtained. We have not attempted
such optimization for two reasons: they would increase the length of the paper and
probably make it more difficult to read; and, we believe that it should be possible to
improve the bounds in this paper bysimplifyingthe analysis rather than making it
more complicated. Finally, we point out that most of our intuition comes from the
shadow size bound, which is not so bad as the bound for the two-phase algorithm.

6.2. FURTHERANALYSIS OF THESIMPLEX ALGORITHM

—While we have analyzed the shadow-vertex pivot rule, there are many other pivot
rules that are more commonly used in practice. Knowing that one pivot rule usu-
ally takes polynomial time makes it seem reasonable that others should as well.
We consider the maximum-increase and steepest-increase rules, as well as ran-
domized pivot rules, to be good candidates for smoothed analysis. However, the
reader should note that there is a reason that the shadow-vertex pivot rule was
the first to be analyzed: there is a simple geometric description of the vertices
encountered by the algorithm. For other pivot rules, the only obvious character-
ization of the vertices encountered is by iterative application of the pivot rule.
This iterative characterization introduces dependencies that make probabilistic
analysis difficult.

—Even if we cannot perform a smoothed analysis of other pivot rules, we might
be able to measure the diameter of a polytope under smoothed analysis. We
conjecture that it is expected polynomial inm, d, and 1/σ .

—Given that the shadow-vertex simplex algorithm can solve the perturbations of
linear programs efficiently, it seems natural to ask if we can follow the solutions
as weunperturbthe linear programs. For example, having solved an instance of
type (4), it makes sense to follow the solution as we letσ approach zero. Such an
approach is often called ahomotopyorpath-followingmethod. So far, we know of
no reason that there should exist anA for which one cannot follow these solutions
in expected polynomial time, where the expectation is taken over the choice of
G. Of course, if one could follow these solutions in expected polynomial time for
everyA, then one would have a randomized strongly polynomial time algorithm
for linear programming!

6.2. DEGENERACY. One criticism of our model is that it does not allow for
degenerate linear programs. It is an interesting problem to find a model of local
perturbations that will preserve meaningful degeneracies. It seems that one might
be able to expand upon the ideas of Todd [1991] to construct such a model. Until
such a model presents itself and is analyzed, we make the following observations
about two types of degeneracies.

—In primal degeneracy, a single feasible vertex may correspond to multiple bases,
I . In the polar formulation, this corresponds to an unexpectedly large number of
theaaa i s lying in a (d − 1)-dimensional affine subspace. In this case, a simplex
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method may cycle—spending many steps switching among bases for this vertex,
failing to make progress toward the objective function. Unlike many simplex
methods, the shadow-vertex method may still be seen to be making progress in
this situation: each successive basis corresponds to a simplex that maps to an
edge further along the shadow. It just happens that these edges are co-linear.

A more severe version of this phenomenon occurs when the set of feasible
points of a linear program lies in an affine subspace of fewer thend dimensions.
By considering perturbations to the constraints under the condition that they do
not alter the affine span of the set of feasible points, the results on the sizes
of shadows obtained in Section 4 carry over unchanged. However, how such a
restriction would affect the results in Section 5 is presently unclear.

—In dual degeneracy, the optimal solution of the linear program is a face of the
polyhedron rather than a vertex. This does not appear to be a very strong condi-
tion, and we expect that one could extend our analysis to a model that preserves
such degeneracies.

6.3. SMOOTHED ANALYSIS. We believe that many algorithms will be better
understood through smoothed analysis. Scientists and engineers routinely use al-
gorithms with poor worst-case performance. Often, they solve problems that appear
intractable from the worst-case perspective. While we do not expect smoothed anal-
ysis to explain every such instance, we hope that it can explain away a significant
fragment of the discrepancy between the algorithmic intuitions of engineers and
theorists. To make it easier to apply smoothed analyses, we briefly discuss some
alternative definitions of smoothed analysis.

Zero-Preserving Perturbations. One criticism ofsmoothed complexityas de-
fined in Section 1.2 is that the additive Gaussian perturbations destroy any zero-
structure that the problem has, as it will replace the zeros with small values. One
can refine the model to fix this problem by studyingzero-preserving perturbations.
In this model, one applies Gaussian perturbations only to non-zero entries. Zero
entries remain zero.

Relative Perturbations. A further refinement is the model ofrelative perturba-
tions. Under a relative perturbation, an input is mapped to a constant multiple of
itself. For example, a reasonable definition would be to map each variable by

x 7→ x(1+ σg),

whereg is a Gaussian random variable of mean zero and variance 1. Thus, each
number is usually mapped to one of similar magnitude, and zero is always mapped
to zero. When we measure smoothed complexity under relative perturbations, we
call it relative smoothed complexity. Smooth complexity as defined in Section 1.2
above can be calledabsolute smoothed complexityif clarification is necessary. It
would be very interesting to know if the simplex method has polynomial relative
smoothed complexity.

ε-Smoothed-Complexity. Even if we cannot bound the expectation of the run-
ning time of an algorithm under perturbations, we can still obtain computationally
meaningful results for an algorithm by proving that it hasε-smoothed-complexity
f (n, σ, ε), by which we mean that the probability that it takes time more than
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f (n, σ, ε) is at mostε:

∀x∈Xn Pr
g

[C(A, x + σ max(x)g) ≤ f (n, σ )] ≥ 1− ε.
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