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Abstract. We introduce themoothed analysis of algorithmahich continuously interpolates be-

tween the worst-case and average-case analyses of algorithms. In smoothed analysis, we measure the
maximum over inputs of the expected performance of an algorithm under small random perturbations

of that input. We measure this performance in terms of both the input size and the magnitude of the
perturbations. We show that the simplex algorithm $m®othed complexifyolynomial in the input

size and the standard deviation of Gaussian perturbations.
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1. Introduction

The Analysis of Algorithms community has been challenged by the existence of
remarkable algorithms that are known by scientists and engineers to work well
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in practice, but whose theoretical analyses are negative or inconclusive. The root
of this problem is that algorithms are usually analyzed in one of two ways: by
worst-case or average-case analysis. Worst-case analysis can improperly suggest
that an algorithm will perform poorly by examining its performance under the
most contrived circumstances. Average-case analysis was introduced to provide
a less pessimistic measure of the performance of algorithms, and many practical
algorithms perform well on the random inputs considered in average-case analysis.
However, average-case analysis may be unconvincing as the inputs encountered in
many application domains may bear little resemblance to the random inputs that
dominate the analysis.

We propose an analysis that we catioothed analysighich can help explain the
success of algorithms that have poor worst-case complexity and whose inputs look
sufficiently different from random that average-case analysis cannot be convinc-
ingly applied. In smoothed analysis, we measure the performance of an algorithm
under slight random perturbations of arbitrary inputs. In particular, we consider
Gaussian perturbations of inputs to algorithms that take real inputs, and we mea-
sure the running times of algorithms in terms of their input size and the standard
deviation of the Gaussian perturbations.

We show that the simplex method has polynomial smoothed complexity. The
simplex method is the classic example of an algorithm that is known to perform
well in practice but which takes exponential time in the worst case [Klee and
Minty 1972; Murty 1980; Goldfarb and Sit 1979; Goldfarb 1983; Avis and &hlv”
1978; Jeroslow 1973; Amenta and Ziegler 1999]. In the late 1970s and early 1980s
the simplex method was shown to converge in expected polynomial time on var-
ious distributions of random inputs by researchers including Borgwardt, Smale,
Haimovich, Adler, Karp, Shamir, Megiddo, and Todd [Borgwardt 1980; Borgwardt
1977; Smale 1983; Haimovich 1983; Adler et al. 1987; Adler and Megiddo 1985;
Todd 1986]. These works introduced novel probabilistic tools to the analysis of
algorithms, and provided some intuition as to why the simplex method runs so
quickly. However, these analyses are dominated by “random looking” inputs: even
if one were to prove very strong bounds on the higher moments of the distributions
of running times on random inputs, one could not prove that an algorithm performs
well in any particular small neighborhood of inputs.

To bound expected running times on small neighborhoods of inputs, we consider
linear programming problems in the form

maximize z' =
subjectto Az < y, (@H)

and prove that for every vectarand every matrixA and vectony, the expectation
over standard deviatiom(max ||(Yi, ai)|]) Gaussian perturbationd andy of A

and y of the time taken by a two-phase shadow-vertex simplex method to solve
such a linear program is polynomial iid and the dimensions oA.

1.1. LUNEAR PROGRAMMING AND THE SIMPLEX METHOD. Itis difficult to over-
state the importance of linear programming to optimization. Linear programming
problems arise in innumerable industrial contexts. Moreover, linear programming
is often used as a fundamental step in other optimization algorithms. In a linear
programming problem, one is asked to maximize or minimize a linear function over
a polyhedral region.
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Perhaps one reason we see so many linear programs is that we can solve them
efficiently. In 1947, Dantzig introduced the simplex method (see Dantzig [1951]),
which was the first practical approach to solving linear programs and which re-
mains widely used today. To state it roughly, the simplex method proceeds by
walking from one vertex to another of the polyhedron defined by the inequali-
ties in (1). At each step, it walks to a vertex that is better with respect to the
objective function. The algorithm will either determine that the constraints are
unsatisfiable, determine that the objective function is unbounded, or reach a ver-
tex from which it cannot make progress, which necessarily optimizes the objec-
tive function.

Because of its great importance, other algorithms for linear programming have
been invented. Khachiyan [1979] applied the ellipsoid algorithm to linear program-
ming and proved that it always converged in time polynomial,in, andL—the
number of bits needed to represent the linear program. However, the ellipsoid al-
gorithm has not been competitive with the simplex method in practice. In contrast,
the interior-point method introduced by Karmarkar [1984], which also runs in time
polynomial ind, n, andL, has performed very well: variations of the interior point
method are competitive with and occasionally superior to the simplex method in
practice.

In spite of half a century of attempts to unseat it, the simplex method remains
the most popular method for solving linear programs. However, there has been
no satisfactory theoretical explanation of its excellent performance. A fascinating
approach to understanding the performance of the simplex method has been the
attempt to prove that there always exists a short walk from each vertex to the
optimal vertex. The Hirsch conjecture states that there should always be a walk of
length at mosh — d. Significant progress on this conjecture was made by Kalai
and Kleitman [1992], who proved that there always exists a walk of length at most
n'°%9+2 However, the existence of such a short walk does notimply that the simplex
method will find it.

A simplex method is not completely defined until one specifiepiitst rule—
the method by which it decides which vertex to walk to when it has many to
choose from. There is no deterministic pivot rule under which the simplex method
is known to take a subexponential number of steps. In fact, for almost every deter-
ministic pivot rule there is a family of polytopes on which it is known to take an
exponential number of steps [Klee and Minty 1972; Murty 1980; Goldfarb and Sit
1979; Goldfarb 1983; Avis and Chtél 1978; Jeroslow 1973]. (See Amenta and
Ziegler [1999] for a survey and a unified construction of these polytopes). The best
present analysis of randomized pivot rules shows that they take expected time
no(ﬂ)[Kalai 1992; Matowsek et al. 1996], which is quite far from the polynomial
complexity observed in practice. This inconsistency between the exponential worst-
case behavior of the simplex method and its everyday practicality leave us wanting
a more reasonable theoretical analysis.

Various average-case analyses of the simplex method have been performed. Most
relevantto this article is the analysis of Borgwardt [1977, 1980], who proved that the
simplex method with the shadow vertex pivot rule runs in expected polynomial time
for polytopes whose constraints are drawn independently from spherically symmet-
ric distributions (e.g., Gaussian distributions centered at the origin). Independently,
Smale [1983, 1982] proved bounds on the expected running time of Lemke’s self-
dual parametric simplex algorithm on linear programming problems chosen from
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a spherically-symmetric distribution. Smale’s analysis was substantially improved
by Megiddo [1986].

While these average-case analyses are significantaccomplishments, itis not clear
whether they actually provide intuition for what happens on typical inputs. Edelman
[1992] writes on this point:

What is a mistake is to psychologically link a random matrix with the
intuitive notion of a “typical” matrix or the vague concept of “any old
matrix.”

Another model of random linear programs was studied in a line of research initi-
ated independently by Haimovich [1983] and Adler [1983]. Their works considered
the maximum over matriced, of the expected time taken by parametric simplex
methods to solve linear programs over these matrices in which the directions of the
inequalities are chosen at random. As this framework considers the maximum of
an average, it may be viewed as a precursor to smoothed analysis—the distinction
being that the random choice of inequalities cannot be viewed as a perturbation,
as different choices yield radically different linear programs. Haimovich and Adler
both proved that parametric simplex methods would take an expected linear num-
ber of steps to go from the vertex minimizing the objective function to the vertex
maximizing the objective function, even conditioned on the program being feasible.
While their theorems confirmed the intuitions of many practitioners, they were ge-
ometric rather than algorithmi@s it was not clear how an algorithm would locate
either vertex. Building on these analyses, Todd [1986], Adler and Megiddo [1985],
and Adler et al. [1987] analyzed parametric algorithms for linear programming un-
der this model and proved quadratic bounds on their expected running time. While
the random inputs considered in these analyses are not as special as the random
inputs obtained from spherically symmetric distributions, the model of randomly
flipped inequalities provokes some similar objections.

1.2. SWOOTHED ANALYSIS OF ALGORITHMS AND RELATED WORK. We intro-
duce thesmoothed analysis of algorithnis the hope that it will help explain the
good practical performance of many algorithms that worst-case does not and for
which average-case analysis is unconvincing. Our first application of the smoothed
analysis of algorithms will be to the simplex method. We will consider the maxi-
mum overA andy of the expected running time of the simplex method on inputs
of the form

maximize zia:
subjectto A + @)z < (y + h), (2)

where we letA and y be arbitrary andG and h be a matrix and a vector of
independently chosen Gaussian random variables of mean 0 and standard deviation
o(max ||(yi, ai)|)). If we leto go to O, then we obtain the worst-case complexity

of the simplex method; whereas, if we tetbe so large tha&G swamps outd, we

obtain the average-case analyzed by Borgwardt. By choosing polynomially small
o, this analysis combines advantages of worst-case and average-case analysis, and
roughly corresponds to the notion of imprecision in low-order digits.

LOur results in Section 4 are analogous to these results.
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In a smoothed analysis of an algorithm, we assume that the inputs to the algorithm
are subject to slight random perturbations, and we measure the complexity of the
algorithm in terms of the input size and the standard deviation of the perturbations.
If an algorithm has low smoothed complexity, then one should expect it to work well
in practice since most real-world problems are generated from data that is inherently
noisy. Another way of thinking about smoothed complexity is to observe that if an
algorithm has low smoothed complexity, then one must be unlucky to choose an
input instance on which it performs poorly.

We now provide some definitions for the smoothed analysis of algorithms that
take real or complex inputs. For an algoritthand inputz, let

Ca(zx)

be a complexity measure & on inputz. Let X be the domain of inputs té, and

let X,, be the set of inputs of size The size of an input can be measured in various
ways. Standard measures are the number of real variables contained in the input
and the sums of the bit-lengths of the variables. Using this notation, one can say
that A has worst-casé-complexity f (n) if

m%(CA(m)) = f(n).

Given a family of distributionsu, on X,, we say thatA has average-case
complexity f (n) underp if

E [Ca(@)] = f(n).
X

< Xn
Similarly, we say thatA hassmoothed’-complexity {n, o) if

maxE [Ca(z + (o 121 )] = f(n. o), ®)

where ¢ ||x||-)g is a vector of Gaussian random variables of mean 0 and standard
deviationo || x||» and| x|, is a measure of the magnitudeof such as the largest
element or the norm. We say that an algorithmagnomial smoothed complexity

ifits smoothed complexity is polynomialimand 1/o . In Section 6, we presentsome
generalizations of the definition of smoothed complexity that might prove useful.
To further contrast smoothed analysis with average-case analysis, we note that the
probability mass in (3) is concentrated in a region of radd{s ,/n) and volume

at mostO(o /n)", and so, whemr is small, this region contains an exponentially
small fraction of the probability mass in an average-case analysis. Thus, even an
extension of average-case analysis to higher moments will not imply meaningful
bounds on smoothed complexity.

A discrete analog of smoothed analysis has been studied in a collection of works
inspired by Santha and Vazirangemi-random sourceodel [Santha and Vazirani
1986]. In this model, an adversary generates an input, and each bit of this input has
some probability of being flipped. Blum and Spencer [1995] design a polynomial-
time algorithm thatk-colors k-colorable graphs generated by this model. Feige
and Krauthgamer [1998] analyze a model in which the adversary is more power-
ful, and use it to show that Turner’s algorithm [Turner 1986] for approximating the
bandwidth performs well on semi-random inputs. They also improve Turner’s anal-
ysis. Feige and Kilian [1998] present polynomial-time algorithms that recover large
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independent setk;colorings, and optimal bisections in semi-random graphs. They
also demonstrate that significantly better results would lead to surprising collapses
of complexity classes.

1.3. QUR REsuLTS We consider the maximum over, y, anday, ..., a, of
the expected time taken by a two-phase shadow vertex simplex method to solve
linear programming problems of the form

maximize z" x
subjectto(a; | ) <V, forl<i <n, 4

where eacla; is a Gaussian random vector of standard deviatiomax ||(Y;, a;)||
centered ai;, and eachy; is a Gaussian random variable of standard deviation
o max ||(i, ai)|l centered ay;.

We begin by considering the case in whigh= 1, ||ai|| < 1, ando <
1/3+/dInn. In this case, our first result, Theorem 4.1, says that for every vector
t the expected size of trehadowof the polytope—the projection of the polytope
defined by the equations (4) onto the plane spannedand z—is polynomial in
n, the dimension, and/& . This result is the geometric foundation of our work, but
it does not directly bound the running time of an algorithm, as the shadow relevant
to the analysis of an algorithm depends on the perturbed program and cannot be
specified beforehand as the vectomust be. In Section 3.3, we describe a two-
phase shadow-vertex simplex algorithm, and in Section 5, we use Theorem 4.1 as
a black box to show that it takes expected time polynomial ic, and Yo in the
case described above.

Efforts have been made to analyze how much the solution of a linear program
can change as its data is perturbed. For an introduction to such analyses, and
an analysis of the complexity of interior point methods in terms of the resulting
condition number, we refer the reader to the work of Renegar [1995b, 1995a, 1994].

1.4. INTUITION THROUGH CONDITION NUMBERS. For those already familiar
with the simplex method and condition numbers, we include this section to provide
some intuition for why our results should be true.

Our analysis will exploit geometric properties of the condition number of a
matrix, rather than of a linear program. We start with the observation that if a
corner of a polytope is specified by the equatidje = y,, wherel is ad-set,
then the condition number of the matiy provides a good measure of how far the
corner is from being flat. Moreover, it is relatively easy to show thatig subject
to perturbation, then it is unlikely tha&, has poor condition number. So, it seems
intuitive that if Ais perturbed, then most corners of the polytope should have angles
bounded away from being flat. This already provides some intuition as to why the
simplex method should run quickly: one should make reasonable progress as one
rounds a corner if it is not too flat.

There are two difficulties in making the above intuition rigorous: the first is that
even if A; is well conditioned for most sefs it is not clear thatA; will be well
conditioned for most setk that are bases of corners of the polytope. The second
difficulty is that even if most corners of the polytope have reasonable condition
number, it is not clear that a simplex method will actually encounter many of these
corners. By analyzing the shadow vertex pivot rule, it is possible to resolve both of
these difficulties.
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The first advantage of studying the shadow vertex pivot rule is that its analysis
comes down to studying the expected sizes of shadows of the polytope. From the
specification of the plane onto which the polytope will be projected, one obtains
a characterization of all the corners that will be in the shadow, thereby avoiding
the complication of an iterative characterization. The second advantage is that
these corners are specified by the property that they optimize a particular objective
function, and using this property one can actually bound the probability that they
are ill-conditioned. While the results of Section 4 are not stated in these terms, this
is the intuition behind them.

Condition numbers also play a fundamental role in our analysis of the shadow-
vertex algorithm. The analysis of the algorithm differs from the mere analysis of
the sizes of shadows in that, in the study of an algorithm, the plane onto which the
polytope is projected depends upon the polytope itself. This correlation of the plane
with the polytope complicates the analysis, but is also resolved through the help of
condition numbers. In our analysis, we view the perturbation as the composition
of two perturbations, where the second is small relative to the first. We show that
our choice of the plane onto which we project the shadow is well-conditioned
with high probability after the first perturbation. That is, we show that the second
perturbation is unlikely to substantially change the plane onto which we project, and
therefore unlikely to substantially change the shadow. Thus, it suffices to measure
the expected size of the shadow obtained after the second perturbation onto the
plane that would have been chosen after just the first perturbation.

The technical lemma that enables this analysis, Lemma 5.3, is a concentration
result that proves that it is highly unlikely that almost all of the minors of a random
matrix have poor condition number. This analysis also enables us to show that it is
highly unlikely that we will need a large “bi§d” in phase | of our algorithm.

We note that the condition numbers of tAgs have been studied before in the
complexity of linear programming algorithms. The condition numjeof Vavasis
and Ye [1996] measures the condition number of the worst submaAtirixand
their algorithm runs in time proportional to Inf). Todd et al. [2001] have shown
that for a Gaussian random matrix the expectation of Angs O(min(d In n, n)).

That is, they show that it is unlikely that ardy, is exponentially ill-conditioned.

It is relatively simple to apply the techniques of Section 5.1 to obtain a similar
result in the smoothed case. We wonder whether our concentration result that it is
exponentially unlikely that many, are even polynomially ill-conditioned could

be used to obtain a better smoothed analysis of the Vavasis—Ye algorithm.

1.5. DscussioN One can debate whether the definition pélynomial
smoothed complexighould be that an algorithm have complexity polynomial in
1/0 orlog(1/o). We believe that the choice of being polynomial jfeawill prove
more useful as the other definition is too strong and quite similar to the notion of
being polynomial in the worst case. In particular, one can convert any algorithm
for linear programming whose smoothed complexity is polynomiad,im and
log(1/0) into an algorithm whose worst-case complexity is polynomiadijim,
andL. That said, one should certainly prefer complexity bounds that are lower as
a function of Yo, d andn.

We also remark that a simple examination of the constructions that provide
exponential lower bounds for various pivot rules [Klee and Minty 1972; Murty
1980; Goldfarb and Sit 1979; Goldfarb 1983; Avis and @fay1978; Jeroslow
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1973] reveals that none of these pivot rules have smoothed complexity polynomial
in n and subpolynomial in A. That is, these constructions are unaffected by
exponentially small perturbations.

2. Notation and Mathematical Preliminaries

In this section, we define the notation that will be used in the article. We will also
review some background from mathematics and derive a few simple statements that
we will need. The reader should probably skim this section now, and save a more
detailed examination for when the relevant material is referenced.

—[n] denotes the set of integers between 1 andnd([ﬂ]) denotes the subsets of
[n] of sizek.

—Subsets oftf] are denoted by the capital Roman letterd, L, K. M will denote
a subset of integers, ardwill denote a set of subsets of][

—Subsets of R are denoted by the capital Roman letters
A,B,P,Q R, ST,U,V.

—\Vectors in R are denoted by bold lower-case Roman letters, sudh,as, &,
bi,ci,di,h,t,q,2,y.

—Whenever a vector, say € RY is present, its components will be denoted by
lower-case Roman letters with subscripts, suchias. ., aq4.

—Whenever a collection of vectors, sucha&s.. ., an, are present, the similar
bold upper-case letter, such ds will denote the matrix of these vectors. For
I e (1), A, will denote the matrix of those; for whichi € 1.

—NMatrices are denoted by bold upper-case Roman letters, suthasA, B, M
andR,,.

—59-1 denotes the unit sphere inR
—Vectors inS’ will be denoted by bold Greek letters, suchuagp, 7.

—Generally speaking, univariate quantities with scale, such as lengths or heights,
will be represented by lower case Roman letters suahlad, r, s, andt. The
principal exceptions are thatandM will also denote such quantities.

—~Quantities without scale, such as the ratios of quantities with scale or affine
coordinates, will be represented by lower case Greek letters suglBas, &, ¢.
o will denote a vector of such quantities suchas (. ., og).

—Density functions are denoted by lower case Greek letters suyclaadv.

—The standard deviations of Gaussian random variables are denoted by lower-case
Greek letters such as r andp.

—Indicator random variables are denoted by upper case Roman letters, sAich as
B,E,F,V,W, X,Y,andZ

—Functions into the reals or integers will be denoted by calligraphic upper-case
letters, such a¢, G, S*,S', 7.

—Functions into R are denoted by upper-case Greek letters, sudh.a¥’, .
—(x | y) denotes the inner product of vectatandy.

—For vectorsv andz, we letangle(w, z) denote the angle between these vectors
at the origin.
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—The logarithm base 2 is written Ig and the natural logarithm is written In.

—The probability of an everA is writtenPr [ A], and the expectation of a variable
X is writtenE [ X].
—The indicator random variable for an evehts written[ A].

2.1. GEoMETRICDEFINITIONS.  For the following definitions, we laty, . . ., ak
denote a set of vectors indR

—Span(a, ..., ax) denotes the subspace spannedhy . ., ay.

—Aff (a1, ..., ax) denotes the hyperplane that is the affine span of. ., ax: the
set of pointsy ; «iai, where) ; o; =1, foralli.

—ConvHull (a1, ..., ax) denotes the convex hull @, . . ., ax.

—Cone(ay, ..., ay) denotes the positive cone through . . ., ak: the set of points
Zi ojaj, for oj = 0.
—A(ayq, ..., ag) denotes the simpleonvHull (a4, ..., ag).

For alinear program specified lay, . . ., an, y andz, we will say that the linear
program is ingeneral positiorif

—The pointsay, ..., a, are in general position with respect ¢o which means
that for alll C ([Q]) andx = Al‘lyI ,andallj €1, (aj | ) # ;.
—Foralll c ({"), z & Cone(4)).

Furthermore, we will say that the linear program ig@meral position with respect
to a vectort if the set ofA for which there exists ah e (/") such that

(1—A)t+2rz € Cone(4))
is finite and does not contain O.

2.2. \ECTOR AND MATRIX NORMS. The material of this section is principally
used in Sections 3.3 and 5.1. The following definitions and propositions are stan-
dard, and may be found in standard texts on Numerical Linear Algebra.

Definition2.1 (Vector Norm$. For a vectorz, we define

—llzl = /3 X
—llzlly = 3 %]

—lzlloe = max |Xil.
PROPOSITION2.2 (MECTORSNORMS). For a vectorz € RY,
Izl < 2l < Vd 2] .

Definition2.3 (Matrix Norm). For a matrixA, we define

def
IAIl= max||Az|| /1] -

PROPOSITION2.4 (FROPERTIES OFMATRIX NORM). For d-by-d matricesA
and B, and a d-vectorr,
@ Azl < [IAl ]
(b) 1AB| < IIAll Bl
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© A =[AT].
(d) Al <v/dmax ||aill, whereA = (a1, ..., aq).
(e) det(4) < |A].

Definition2.5 (smin (). For a matrix4, we define

Smin (4) £ 477

We recall thatmin (A) is the smallest singular value of the matex and that it is
not a norm.

|—1

PROPOSITION2.6 (FROPERTIES OFspin()). For d-by-d matricesA and B,

(@) Smin (A) = ming [|Az]| /[l
(0) Smin (B) = smin (A) — |A — B].

2.3. RROBABILITY. For an eventA, we let[A] denote the indicator random
variable for the event. We generally describe random variables by their density
functions. Ifz has densitys, then

def

[AG)] & / [A@)] () de .

If B is another event, then

def def [ [B(z)] [ A(x)] u(zx) dz
Pr[A( )] = PrA(z)|B(z)] = T [B(@)] () da

In a context where multiple densities are present, we will use use the notation
Pr, [A(z)] to indicate the probability oA whenz is distributed according ta.

In many situations, we will not know the densjiyof a random variable:, but
rather a function such that(x) = cu(x) for some constart. In this case, we
will say thatx has density proportional to.

The following Propositions and Lemmas will play a prominent role in the proofs
in this article. The only one of these which might not be intuitively obvious is
Lemma 2.11.

PROPOSITION2.7 (AVERAGE < MAXIMUM ). Letu(X, y) be a density function,
and letx and y be distributed accordingia¢x, y). If A(X, y)isaneventand ¥, y)
is random variable, then

PIIAX. )] = maxPr[A(x. y)]. and

E [X(x, y)] = maxE[X(x, )],

X,y L
where in the right-hand terms, y is distributed in accordance with the induced
distribution (X, ).

PROPOSITION2.8 (EXPECTATION ONSUBDOMAIN). Let x be a random vari-
able and Ax) an event. Let P be a measurable subset of the domain Dhen,

Pr [A(z)] < Pr[A()]/Pr[z € P].
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ProOOF. By the definition of conditional probability,
Pr [A2)] = Pr{A(@)|z  P]
=Pr[A(z)andxz € P]/Pr[x € P], by Bayes’ rule,
<Pr[A(z)]/Pr[z € P]. O

LEMMA 2.9 (COMPARING EXPECTATIONS). Let X and Y be nonnegative ran-
dom variables and A an event satisfyifig X < k, (2) Pr[A] > 1 — ¢, and(3)
there exists a constant ¢ such thafX|A] < cE[Y|A]. Then,

E[X] < cE[Y] + ¢k.

PROOF.
E[X] = E[X|A] Pr[A] 4+ E[X|not(A)] Pr [not(A)]
< cE[Y|A]Pr[A] + €k
<cE[Y]+e€k. O

LEMMA 2.10 (SMILAR DISTRIBUTIONS). Let X be anonnegative random vari-
able such that X< k. Letv and u be density functions for which there exists a set
S such thafl) Pr, [§] > 1 — € and(2) there exists a constantx 1 such that for
alla € S,v(a) < cu(a). Then,

E[X@)] = CE[X(a)] + ke.
ProoF. We write

IVE[X] :/ SX(a)v(a)da+/ X(a@)v(a)da

&S
< c/ X(@)u(a)da + ke
ac$S

< c/ X(@)u(a)da + ke
a
= CE[X] + ke. O
"
LEMMA 2.11 (GOMBINATION LEMMA). Let x and y be random variables dis-

tributed in accordance witp.(X, y). LetF(x) andG(x, y) be nonnegative functions
anda and B8 be constants such that

—Ve > 0, Pry y [F(X) < €] < ae,and
—Ve > 0, max Pry [G(X, y) < €] < (Be)?,

where in the second line y is distributed according to the induced demnityy).
Then

PrIFOG(x. y) = €] < dope.
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PROOF Consider any andy for which F(x)G(x, y) < €. If i is the integer
for which

2 Be < F(x) < 21 Be,

thenG(x, y) < 271 /8. Thus, F(X)G(X, y) < e, implies that eitherF(x) < 28, or
there exists an integér> 1 for which

F(x) < 21ge and  G(x,y) <27/8.
So, we obtain the bound
PrIF(x)G(x.y) <]
= PrF(x) = 2Bl + > Pr[F(0) = 2*1ge andG(x. y) < 27 /8]

i>1 "’

< 2+ ) Pr{F() = 27 pe] Pr{g(x. v) = 27/ F(x) = 2" pe]

i1 X,
< 2aBe + ;Ei‘/ [F(x) < 2i+1/3€] m;’:th;r [G(x.y) < 2—i//3]
< 20Be+ Yy (2Vape) (27')?, by Proposition 2.7,

i>1
= 20fe + afe y 2"

i>1

= dofe. 0

As we have found this lemma very useful in our work, and we suspect others
may as well, we state a more broadly applicable generalization. Its proof is similar.

LEMMA 2.12 (GENERALIZED COMBINATION LEMMA). Letx and y be random
variables distributed in accordance witlh(x, y). There exists a function(a, b)
such that if 7(x) and G(x, y) are nonnegative functions and 8, a and b are
constants such that
—Pry y [F(X) < €] < (xe€)?, and
—max Pry [G(x, Y) < €] < (Be)®,
where in the second line y is distributed in accordance with the induced density
n(X,y), then

55 [F(X)G(X, y) < €] < c(a, b)ape™n@D) |g(1/¢)l=0],

where[a = b] is 1 if a = b, andO otherwise.

LEMMA 2.13 (ALMOST POLYNOMIAL DENSITIES). Letk > O and lett be a
nonnegative random variable with density proportionali¢)t% such that, for
someg > 0,

M&o<t<ty p(t) -c
MiNo<t <t, 4(t)
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Then,

Prit < €] < c(e/to)< 2.
PROOF.  Fore > to, the lemma is vacuously true. Assumiag to,
Prit <e] < Prit=cl
Pr[t < to]
 om)t<dt
_ Macta, i(1) ot dt
© MiNg<t<t, u(t) fttiotkdt
et/ (k+1)
7 /(k+1)
= c(e/to)<. -

2.4. GAussiIANRANDOM VECTORS  For the convenience of the reader, we recall
some standard facts about Gaussian random variables and vectors. These may be
foundin Feller [1968, VIl.1]and Feller [1971, III.6]. We then draw some corollaries
of these facts and derive some lemmas that we will need later in the article.

We first recall that a univariate Gaussian distribution with mean 0 and standard
deviationo has density

1
V2no

and that a Gaussian random vector ifi Entered at a poiné with covariance
matrix M has density

exp(—a?/252),

1
——exp(—(a—a) M Y(a - a)/2).
(v2r ) det@) M )
For positive-definiteM , there exists a basis in which the density can be written
d 1 2 2
exp(—a“/207),
E Ty, SXP(=a/20)

Whereol2 <...< Gdz are the eigenvalues d¥Z. When all the eigenvalues &7
are the same and equal¢owe will refer to the density as@aussian distribution
of standard deviatiow .

PROPOSITION2.14 (ADDITIVITY OF GAUSSIANS). If a; is a Gaussian random
vector with covariance matriM ; centered at a point; and a, is a Gaussian
random vector with covariance matrikl , centered at a poin&,, thena; + a, is
the Gaussian random vector with covariance maivlx + M > centered ati + ao.

LEMMA 2.15 (S100THNESS OFGAUSSIANS). Let u(x) be a Gaussian distri-
bution of standard deviatioa centered at a poind. Let k> 1, letdist (z, a) < k
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and letdist (x, y) < € < k. Then,

m(y) 2
—== > exp(—3ke/20°).
n(x) A )
PROOF. By translatinga, x andy, we may assume = 0 and||z| < k. We
then have

B o (1l — 2|2)/202
@) exp(—(llyll* — llzl)/20%)
> exp(—(2¢ |z | + €%)/202), asllyll < llzll +e€
> exp(—(2ek + €2) /20?), asllz| <k
> exp(—3ek/20?) ase < k. O]

PROPOSITION2.16 (RESTRICTIONS OFGAUSSIANS). Letu be a Gaussian dis-
tribution of standard deviatiosr centered at a poing. Letv be any vector and r
be any real number. Then, the induced distribution

Wzl @ =r)

is a Gaussian distribution of standard deviatiercentered at the projection af
onto the plandz : vTx =r}.

PROPOSITION2.17 (GAUSSIAN MEASURE OFHALFSPACES). Letw be any unit
vector inR% and r any real. Then,

1 d
(@a) /[<w | g) < rlexp(-ligl*/20%) dg
g

t=r
= \/% f exp(—t?/20%) dt
O Jt=—c0

PrROOF Immediate if one expresses the Gaussian density in a basis contain-
ingw. [

The distribution of the square of the norm of a Gaussian random vector is the
Chi-Square distribution. We use the following weak bound on the Chi-Square dis-
tribution, which follows from Equality (26.4.8) of Abramowitz and Stegun [1970].

PROPOSITION2.18 (GHI-SQUARE BOUND). Letx be a Gaussian random vec-
tor in RY of standard deviatiow centered at the origin. Then,

(k?)?/2" exp(~k?/2)
20/2-11°(d/2)

Prillz| > ko] < %)

From this, we derive

COROLLARY 2.19 (A CHI-SQUARE BOUND). Letax be a Gaussian random vec-
tor in RY of standard deviatiow centered at the origin. Then, forn 3

Pr[lzll > 3VdInno] < n=2%,
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Moreover, if n> d > 3, andzq, ..., =, are such vectors, then
-1
n
Pr [m_ax||zci | > 3vdlIn na] < n 2%+ < 0.0015(d> .
I

PrROOFE Fora = 3VInno, we can apply Stirling’s formula [Abramowitz and
Stegun 1970] to (5) to find

(«?d)¥2 L exp(—a?d/2) exp@/2)/d/2
2d/2—1(d/2)d/2\/g

= ()" exp(—(e? — 1)d/2)

Prllz) > «vd] <
dd/2—1\/a
2d/2—1(d/2)d/22ﬁ

= («®)"* exp(—(? - 1)d /2)%

< () exp(— (a2 — 1)d/2)

= exp(—(a? — In(e?) — 1)d/2)

< exp(=2.9dinn)

— n—2.9d,

as

(@? — In(@?) —1)=9In(n) — In(9Inn) — 1> In(n)(9— In9—1)>5.8In(n). [
We also prove it is unlikely that a Gaussian random variable has small norm.

PROPOSITION2.20 (GAUSSIAN NEAR POINT OR PLANE). Let x be ad-
dimensional Gaussian random vector of standard deviati@entered anywhere.
Then,

(a) For any pointp, Pr [dist (z, p) < €] < (min(1, J/e/d) (e/o))d, and
(b) For a plane H of dimension IRr [dist (z, H) < €] < (¢/0)%".

PROOF. Letz be the center of the Gaussian distribution, andl€p) denote
the ball of radius aroundp. Recall that the volume dB,(p) is

Zﬂd/zéd
drd,2)’
To prove part&), we bound the probability thalist (x, p) < € by

d
( . )/ exp(— ll(z — @)1 /20°) dz
z€B.(p)

2o
1 \9 /2792 €\d 2
“(7) (@r@n) - ) wram
By Proposition 2.21, we have for> 3

2 e\4d/2
st ()"
d2972r(d/2) = \d
Applying the inequality 2(d2%21"(d/2)) < 1 for alld > 1, we establish (a).
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To prove part (b), we consider a basis in whith h vectors are perpendicular to
H, and apply part (a) to the componentsmifh the span of those basis vector§.]

PROPOSITION2.21 (GAMMA INEQUALITY). Ford > 3

2 (S)‘”Z
d2d/2r(d/2) — \d

ProOOF. Ford > 3, we apply the inequalitif (x + 1) > +/27 /X(x/€)* to show

> 2 2e (d-2)/2
<
d29/2r(d/2) ~ d29/2/27/d = 2)/2 (d - 2)

B exp(d — 2)/2) d \@272
- (dd/z«/E«/(d = 2)/2) (d - 2)
e\d/2
=(3)
where in the last inequality we used the facts 2/(d — 2) < exp(2/(d — 2)) and
d > 3impliesv27 /(d—=1)/2> 1. O

PROPOSITION2.22 (NONCENTRAL GAUSSIAN NEAR THE ORIGIN). Ford > 3,
let z be a d-dimensional Gaussian random vector of standard deviatimentered
atz. Then, fore < 1/(+/2€)

Pr [nmn < (\/||£||2+d02> e} < (V2ee)”.

PROOF Let ) = |z||. We divide the analysis into two cases: {l)< +/do,
and (2)» > /do.
Fora < +/do,

Pr[ el < (VA2 + do?)e] < Pr [z < (vado)e] < (vaee)”

by Part &) of Lemma 2.20.
For A > +/do, let B, be the ball of radius around the origin. Applying the
assumptiorr < 1/(v/2€) and lettingh = c¢v/do for ¢ > 1, we have

Pr[ll:nll < (x/)»2+d62)e] Pr[ll:z:ll < (\@A)é]
= ( ! )d/MB exp(— lI(z — )11 /20?) dz

2no

: («/%a)d (diﬁ;za)

x (v2e1) exp(—(1 — 1/€21%/20?)

IA
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< («/Z:e)d 3 d?:g = exp(—(1— 1/6)%%/20°?)
= (v2ee)  exp(d(Inc — c2(1 — 1/€)%/2))
< (v2ee)”,

where the second inequality holds becaasg 1/(v/2€) and for any pointz e
B«/ie)»'

exp(— (1 — v2¢)*2%/20?)
exp(—(1 — 1/€)*2%/25?);

the third inequality follows from Proposition 2.21; and, the last inequality holds
because one can prove that for any 1, Inc — ¢?(1 —1/€)?/2 < 0. O

exp lI(z — z)[1? /20?)

IAIA

Bounds such as the following on the tails of Gaussian distributions are standard
(see, e.qg., Feller [1968, Section VII.1])

PROPOSITION2.23 (GAUSSIAN TAIL BOUND).

(2) X207 1 /ooexp(—tz/Zaz)dt

X V2 T V2no Ji=x
3 29,2
_(e_° exp( X/ZO')‘
- \x x3 V27

Using this, we prove:
LEMMA 2.24 (®MPARING GAUSSIAN TAILS). Leto < 1land let

1
V2ro

w(t) = exp(—t?/20?).

Then, for x< 2and|x — y| <,
ftioyﬂ(t) dt . 8¢
fo mt)dt 302

PROOF If y < X, the ratio is greater than 1 and the lemma is trivially true.
Assumingy > X, the ratio is minimized whegy = X + ¢. In this case, the lemma
will follow from

(6)

o mbdt 8
Jo ut)ydt — 302

It follows from part @) of Proposition 2.25 that the left-hand ratio in (7) is mono-
tonically increasing irx, and therefore is maximized whenis maximized at 2.
Forx = 2, we apply Proposition 2.23 to show

= / Tt = (2 _ "_3) exp(-2/0?) _ 30 expt-2/o?)
\/ZO' - \/E = 8«/% .

(7)

2 8

t=x
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We then combine this bound with

X+e€ - 2
1 / Lt dt < eexp2/o )’
Vemo Ji=x N 2no

to obtain

P u(t) dt - (eexp(—2/02)>( 821 )_ 8¢

[Zoutydt —\ V210 30 exp(-2/a2) ] ~ 302
PROPOSITION2.25 (MONOTONICITY OF GAUSSIAN DENSITY). Let

1
t) = exp(—t2/20?).
(1) Toms p(—t*/207)
(@) Foralla > 0, u(x)/u(x + a) is monotonically increasing in x; and,
(b) The following ratio is monotonically increasing in x

p(X)
J &) dt
PrROOF  Part @) follows from
pn(x) 2) /1952
ra) exp((2ax + a%)/20°),

and that exp(@x) is monotonically increasing ir.
To prove partlf) note that for ala > 0

Joom)dt [T u(x +t)dt N Jioou(x+a+t)dt Jia () dt

uw(x) () - (X + a) - u(x+a)
where the inequality follows from pard). [

’

2.5. (HANGES OF VARIABLES. The main proof technique used in Section 4
is change of variables. For the reader’'s convenience, we recall how a change of
variables affects probability distributions.

PROPOSITION2.26 (GHANGE OF VARIABLES). Lety be arandom variable dis-
tributed according to density. If y = ®(x), thenz has density

oo (22))

Recall thaﬂdet(g—y)| is the Jacobian of the change of variables.

We now introduce the fundamental change of variables used in this article. Let
a1, ..., aq be linearly independent points inRWe will represent these points
by specifying the plane passing through them and their positions on that plane.
Many studies of the convex hulls of random point sets have used this change
of variables (e.g., see Renyi and Sulanke [1963, 1964], Efron [1965], and Miles
[1971]). We specify the plane containiag, . . ., aq by w andr, where|w| = 1,
r > 0and{(w | aij) = r for all i. We will not concern ourselves with the issue
thatw is ill-defined if thea, ..., aq are affinely dependent, as this is an event of
probability zero. To specify the positions @i, . .., ag on the plane specified by
(w, r), we must choose a coordinate system for that plane. To choose a canonical

C:€9)
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set of coordinates for eacH ¢ 1)-dimensional hyperplane specified hy, ¢ ), we
first fix a reference unit vector in R sayq, and an arbitrary coordinatization of
the subspace orthogonal go For anyw # —gq, we let

R,

denote the linear transformation that rotajds w in the two-dimensional subspace
throughg andw and that is the identity in the orthogonal subspace. Uslpgwe
can map points specified in tlle— 1 dimensional hyperplane specified bynd

w to RY by

ai = R, b +rw,

whereb; is viewed both as a vector in9R! and as an element of the subspace
orthogonal tog. We will not concern ourselves with the fact that this map is not
well defined ifg = —w, asthe set o4, .. ., aq that result in this coincidence has
measure zero.

The Jacobian of this change of variables is computed by a famous theorem of
integral geometry due to Blaschke [1935] (for more modern treatments, see Miles
[1971] or Santalo [1976, 12.24]), and actually depends only marginally on the
coordinatizations of the hyperplanes.

THEOREM2.27 (BLASCHKE). For variablesby, ..., bq taking values irR92,
we S tandreR, let

(al,...,ad)z(wa1+rw,... ,wad+rw)

The Jacobian of this map is

8(a1, ey ad) N
‘det(a(w’ 5 bl,...,bd)>‘ = (d — 1)Vol (A (by, . . ., by)).

That is,
da; --- daqg = (d — 1)IVol (A (bq, ..., bg)) dw dr dby --- dbg

We will also find it useful to specify the plane byands, where{sq | w) =r, so
thatsgq lies on the plane specified lay andr . We will also arrange our coordinate
system so that the origin on this plane liesat

COROLLARY 2.28 (B.ASCHKE WITH S). For variablesby, ..., by taking val-
uesinRY ! w e ¥landse R, let

(a1,...,a4) = (R,b1+5q, ..., R,bq+Sq)
The Jacobian of this map is

8(a1,...,ad) _
det(a(w, s, bl,...,bd))‘ =(d - 1) {w | g) Vol (A (b1, ..., ba)).

PROOF.  So that we can apply Theorem 2.27, we will decompose the map into
three simpler maps:

(bl,..., bd,S,w)
— (b1 + R;l(Sq —rw),...,bg+ R;l(Sq —rw),s, w)
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> (b1+ RyN(sq —rw),..., bg+ R (sq —rw),r,w)
> (Ro (b1 + RHsq —rw)) +rw, ..., R, (ba + R, Sq — rw)) + rw)
= (Rubi+sq, ..., R,bda+5q)

As sq — rw is orthogonal taw, R;l(Sq — rw) can be interpreted as a vector in
thed — 1 dimensional space in whichy, ..., by lie. So, the first map is just a
translation, and its Jacobian is 1. The Jacobian of the second map is

ar

% =(q | w).

Finally, we note
Vol (b1 + R M(sq —rw), ..., by + R, (sq — rw)) = Vol (by, ..., bg),
and that the third map is the one described in Theorem 2 217.

In Section 4.2, we will need to represenby ¢ = (w | q) andy € -2, where
1) gives the location ofv in the cross-section o8~ for which (w | ¢) = c.
Formally, the map can be defined in a coordinate system with first coordjriate

w = (c,ypv1-c?).
For this change of variables, we have:

PROPOSITION2.29 (LATITUDE AND LONGITUDE). The Jacobian of the change
of variables fromw to (c, v) is

o(w) (1 2\d-3)
‘det<a<c,¢))"(l ey

PROOF  We begin by changing to (0, ¥), whereé is the angle betweew
and ¢, and represents the position af in thed — 2 dimensional sphere of
radius sing) of points at angle to g. To compute the Jacobian of this change
of variables, we choose a local coordinate systenStrt at w by taking the
great circle throughw and ¢, and then an arbitrary coordinatization of the great
d — 2 dimensional sphere through orthogonal to the great circle. In this co-
ordinate systeny is the position ofw along the first great circle. As that — 2
dimensional sphere of points at angldéo q is orthogonal to the great circle at
w, the coordinates iy can be mapped orthogonally into the coordinates of the
greatd — 2 dimensional sphere—the only difference being the radii of the sub-

spheres. Thus,
s ) -
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-1 15

Fic. 1. A shadow of a polytope.

If we now letc = cos@), then we find

‘det<a?<§:l)>’ - det(aﬁe(?b )‘ ‘det(%N

3. The Shadow Vertex Method

In this section, we will review the shadow vertex method and formally state the
two-phase method analyzed in this article. We will begin by motivating the method.
In Section 3.1, we will explain how the method works assuming a feasible vertex is
known. In Section 3.2, we present a polar perspective on the method, from which
our analysis is most natural. We then present a complete two-phase method in
Section 3.3. For a more complete exposition of the Shadow Vertex Method, we
refer the reader to Borgwardt [1980, Chap. 1].

The shadow-vertex simplex method is motivated by the observation that the
simplex method is very simple in two-dimensions: the set of feasible points form a
(possibly open) polygon, and the simplex method merely walks along the exterior of
the polygon. The shadow-vertex method lifts the simplicity of the simplex method
in two dimensions to higher dimensions. Lzebe the objective function of a linear
program and let be an objective function optimized lyy; a vertex of the polytope
of feasible points for the linear program. The shadow-vertex method considers the
shadowof the polytope—the projection of the polytope onto the plane spanned by
z andt (see Figure 1). One can verify that

() this shadow is a (possibly open) polygon,
(2) each vertex of the polygon is the image of a vertex of the polytope,
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(3) each edge of the polygon is the image of an edge between two adjacent vertices
of the polytope,

(4) the projection ofc onto the plane is a vertex of the polygon, and
(5) the projection of the vertex optimizing onto the plane is a vertex of the
polygon.

Thus, if one walks along the vertices of the polygon starting from the image of
and keeps track of the vertices’ pre-images on the polytope, then one will eventually
encounter the vertex of the polytope optimizingsiven one vertex of the polytope
that maps to a vertex of the polygon, it is easy to find the vertex of the polytope that
maps to the next vertex of the polygon: fact (3) implies that it must be a neighbor
of the vertex on the polytope; moreover, for a linear program that is in general
position with respect t@, there will bed such vertices. Thus, the method will be
efficient provided that the shadow polygon does not have too many vertices. This
is the motivation for the shadow vertex method.

3.1. FORMAL DESCRIPTION Our description of the shadow vertex simplex
method will be facilitated by the following definition:

Definition3.1 (optVer)). Given vectorsz, a1, ..., anin R¢ andy € R", we
defineoptVert ,(a, .. ., an; y) to be the set of solving

maximize z'z

subject to (aj | x) <y, forl<i <n.

If there are no such, either because the program is unbounded or infeasible, we
letoptVert ,(ay, ..., an; y) bed. Whenas, ..., a, andy are understood, we will
use the notatiooptVert .

We note that, for linear programs in general positioptVert , will either be
empty or contain one vertex.

Using this definition, we will give a description of the shadow vertex method
assuming that a vertexo and a vectort are known for whichoptVert, = xo.
An algorithm that works without this assumption will be described in Section 3.3.
Givent andz, we define objective functions interpolating between the two by

g, =0A-1t+ rz.

The shadow-vertex method will proceed by varyingrom 0 to 1, and tracking
optVert, . We will denote the vertices encountered by, x4, ..., xx, and we
will set A. so thatz; € optVert, for i € [Ai, Aij1]-

As our main motivation for presentlng the primal algorithm is to develop intuition
in the reader, we will not dwell on issues of degeneracy in its description. We will
present a polar version of this algorithm with a proof of correctness in the next
section.

primal shadow-vertex method
Input:aq, ..., an, ¥, z, andzy andt satisfying{xzo} = optVert,(a, ..., an;y).

(1) Setro =0, andi = 0.
(2) Setir; to be maximal such thdicy} = optvert,, for A € [ho, A1].
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y A y h y N
al a4 al a4 al a4
. . . /
(a) (b) (0)

Fic.2. Inexample (a), optSimg {{a1, a,, az}}. Inexample (b), optSimp- {{a1, a2, az}, {az, a3,
a4}}. In example (c), optSimp= ¢,

(3) whilexi 1 < 1,
(@) Set =i +1.
(b) Find anz; for which there exists a;;; > A; such thate; € optVert,, for A € [Ai, Ajqa]. If
no suche; exists, returrunbounded
(c) Leti,1 be maximal such that; € optVert, fora € [Ai, Aii4].

(4) returnz;.

Step (b) of this algorithm deserves further explanation. Assuming that the lin-
ear program is in general position with respectttceach vertexe; will have
exactlyd neighbors, and the vertex; .1 will be one of these [Borgwardt 1980,
Lemma 1.3]. Thus, the algorithm can be described as a simplex method. While one
could implement the method by examining theseertices in turn, more efficient
implementations are possible. For an efficient implementation of this algorithm in
tableau form, we point the reader to the exposition in Borgwardt[1980, Section 1.3].

3.2. POLAR DESCRIPTION Following Borgwardt [1980], we will analyze the
shadow vertex method from a polar perspective. This polar perspective is natural
provided that ally; > 0. In this section, we will describe a polar variant of the
shadow-vertex method that works under this assumption. In the next section, we
will describe a two-phase shadow vertex method that uses this polar variant to solve
linear programs with arbitrary;s.

While it is not strictly necessary for the results in this article, we remind the
reader that the polar of a polytopge = {z : (z | a;j) < 1,Vi}, is defined to be
{y: (x| y) <1 Ve P}. ThisequalonvHull (0, a1, ..., a,). We remark that
P is bounded if and only i@ is in the interior ofConvHull (a4, ..., an). The polar
motivates:

Definition3.2 ptSimp. Forz andas, ..., a,in R andy € R", y; >0, we
let optSimp,(as, ..., an; y) denote the set df € ([3]) such thatd, has full rank,
A ((ai/Yi)ie))isafacetofConvHull (0, @1/ys, . .., an/Yn)andz € Cone((ai)ic).
When y is understood to be, we will write optSimp, (a1, ..., a,) When
ai, ..., an andy are understood, we will use the notatioptSimp,, .

We remark that fory, z and ai,...,a, in general position, the set
optSimp, (a1, ..., an; y) will be the empty set or contain just one set of indites
For examples, see Figure 2.

The following proposition follows from the duality theory of linear programming:

PROPOSITION3.3 (DUALITY ). Foryiy, ..., ¥, > 0,1 € optSimp,(ai/yi, ...,
an/Yn) if and only if there exists am such thatr € optVert (a1, ..., an; y) and
(x| aj) =Y, foralli € 1.
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We now state the polar shadow vertex method.

polar shadow-vertex method
Input:

—1 e () andt satisfyingl < optSimp,(a1/yi. .. .. an/Yn).

(1) Setig =0andi =0.
(2) Setir, to be maximal such that for € [1o, 11],

I € optSimp,, (a1/y1, -, an/Yn)-

(3) while A, <1,

(@) Set =i +1.
(b) Find aj andk for which there exists a;,; > A; such that

| U{j} — (K} € OptSIMp,, (@1/Ys. - ... @n/Yn)

for & € [Ai, Ai;1]. If no suchj andk exist, returrunbounded
(c) Setl =1U{j}—{k}.
(d) Letxi;, be maximal such thdt € optSimp,(ai/y, ..., an/Yn) for & € [Ai, Aigal-

(4) returnl.

Thez optimizing the linear program, nametptVert , (a1, . .., an; y), is given
by the equationgz | aj) = v;, fori € I.

Borgwardt [1980, Lemma 1.9] establishes that speimdk can be found in step
(b) if there exists ar for which optS|mpq (a1/y1, ..., an/yn) # 9. That the
algorithm may conclude that the program is unboundecj #adk cannot be found
in step (b) follows from:

PROPOSITION3.4 (DETECTING UNBOUNDED PROGRAMS). If there is an i and
ane > 0 such thath; + ¢ < 1 and optSimqu_“(al/yl,...,an/yn) = ¢, then

OptSimpz(a’l/yls cee an/yn) =0

PROOF ThesebptS|mpq (a1/y1, ..., an/yn)isemptyifandonlyifg; ,. ¢

Cone(ay, ..., an). The proof now follows from the facts th&one(ay, ..., an)
is a convex set ang;, .. is a positive multiple of a convex combination band
z. U

The running time of the shadow-vertex method is bounded by the number of
vertices in shadow of the polytope defined by the constraints of the linear program.
Formally, this is

Definition3.5 (Shadow. For independent vectotsandz, a4, ..., a, in R
andy € R", y > 0,

Shadow ; (ai, . .., an; y) = LJ {optSimp,(a1/ys.. ... an/yn)}.
geSpan(t, z)

If y is understood to b, we will just write Shadow; , (a1, ..., an).
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3.3. Two-PHASE METHOD. We now describe a two-phase shadow vertex
method that solves linear programs of form

maximize (z | =)
subject to (aj |y <V, forl<i <n. (LP)

There are three issues that we must resolve before we can apply the polar shadow
vertex method as described in Section 3.2 to the solution of such programs:

(1) the method must know a feasible vertex of the linear program,
(2) the linear program might not even be feasible, and
(3) somey; might be non-positive.

The first two issues are standard motivations for two-phase methods, while the third
is motivated by the polar perspective from which we prefer to analyze the shadow
vertex method. We resolve these issues in two stages. We first relax the constraints
of LP to construct a linear progratrP” such that

(a) the right-hand vector of the linear program is positive, and
(b) we know a feasible vertex of the linear program.

After solvingLP’, we construct another linear progralo® ", in one higher dimen-
sion that interpolates betwe&R andLP’. LP* has properties (a) and (b), and we
can use the shadow vertex methodld®" to transform a solution t&P’ into a
solution ofLP.
Our two-phase method first choosed-aetl to define the known feasible vertex
of LP". The linear prograrhP’ is determined by, z and the choice of. However,
the magnitude of the right-hand entrieslif’ depends upoBy, (A;). To reduce
the chance that these entries will need to be large, we examine several randomly
choserd-sets, and use the one maximizisg, .
The algorithm then sets

M = 2fla(max iy, ai ||)1+2,

K = ZUQ(Smn(AI))J’ and

M fori €|
VdM?/4¢  otherwise.

/

Yi =

These define the prograli’:
maximize (z | =)
subject to (@i |z) <y, forl<i <n. (LP)

By Proposition 3.6 4, is a feasible basis fdtP’ and optimizes any objective
function of the formA4, «, for a > 0. Our two-phase algorithm will solMeP’ by
starting the polar shadow-vertex algorithm at the bhsiad the objective function
A, « for arandomly chosea satisfyingy_ «; = 1 anda; > 1/d?, for alli.

PROPOSITION3.6 (INITIAL SIMPLEX OF LP’). For everya > 0,
| = optSimpy, 4 (a1, -- .. an; y).
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PROOF Letz’ be the solution to the linear system
(@i | 2') =Y, for iel.
By Definition 2.3 and Proposition 2.4(a),
l2'll < Iy, AT < MVAIATH = MVd/Smin (A1)
So, foralli &1,
(ai | 2) < (maxllai [)MV/d/Smin (A1) < M*Vd/4%.
Thus, foralli &1,
(ai | z') <Y,

and, by Definition 3.2] = optSimpy, . (a1, ..., an;y’). O

We will now define a linear prograioP™ that interpolates betweerP andLP.
This linear program will contain an extra variabdgand constraints of the form

(@i | z) < (“;X") Vi + (1_2x0) Vi,

and—1 < xg < 1. So, forxg = 1, we see the original prograirP while for
Xo = —1 we getLP'. Formally, we let

(Y, —¥i)/2,ai) forl<i<n
a”=1(10,...,0) fori =0
(-1,0,...,0 fori=-1
(Y +Vi)/2 forl<i<n
yr=11 fori =0

1 fori = -1
zt=(1,0,...,0),

and we defin&.P* by

maximize (z* | (Xo, x))
subjectto (a; | (Xo, z)) <y, for—1<i <n, (LPT)

and we set

def
yt E (vt Y.

By Proposition 3.7M&M/4K > 1,s0y; > M andyﬁr > 0, foralli. If LPis
infeasible, then the solution 1oP™ will have xo < 1. If LP is feasible, then the
solution toLP* will have the form (1 x) wherez is a feasible point foLP. If we

use the shadow-vertex method to soh" starting from the appropriate initial
vector, thenz will be an optimal solution ta.P.

PrROPOSITION3.7 (RELATION OF M AND k). For M andk as set by the algo-
rithm, v/dM/4« > 1.
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PROOFE. By definition,x < smin (4). On the other handy,in (4)) < |4, <
Jdmax ||aill, by Proposition 2.4(d). FinalyM > 4max |lai|. O

We now state and prove the correctness of the two-phase shadow vertex method.

two-phase shadow-vertex method
Input: A = (aq, ..., an), v, 2.

(1) LetZ ={lq,..., Iandinn} be a collection of randomly chosen sets[[ﬁ)( and letl € 7 be the set
maximizingsmin (4,).

(2) SetM = 2ramax liyi.aiN+2 gy = 2U9(Smin(41)]
fori e |
JdM?/4¢  otherwise.
(4) Choosex uniformly at random from{ar : Y o = 1 ande; > 1/d?}. Sett’ = A, a.

(5) LetJ be the output of the polar shadow vertex algorithmLét on inputl and¢'. If LP' is
unboundegthen returrunbounded

(6) Let¢ > 0 be such that

(3) Setyl =

{—=1}UJ e optSimp,_, ,,(a’y/y . ... aF/y7}).

(7) LetK be the output of the polar shadow vertex algorithnL&1 on input{—1} U J, (-¢, z2).
(8) Compute %o, z) satisfying((xo, z) | a;") = y; fori € K.
(9) If xo < 1, returninfeasible Otherwise, returr.

The following propositions prove the correctness of the algorithm.

PROPOSITION3.8 (UNBOUNDED PROGRAMS). The following are equivalent:

(@) LP is unbounded;
(b) LP' is unbounded;

(c) there exists & > A > Osuch thabptSimp, 1 )4 1-a)(—¢.2)(@7 1. - - - @t y™)
is empty;

(d) forall 1> A > 0, optSimp, 1.0y 1_s)(—c.2)(@71. - - - @} y™) is empty.

PrROPOSITION3.9 (BOUNDED PROGRAMS). If LP’ is bounded and has solution
J, then

(a) thereexistgosuchthavs > ¢o, {—1}UJ € optSimp,_, (a¥y, ..., af;y™);

(b) if LP is feasible, then for Ke optSimp, (a1, ..., an; y), there existg, such
thatVe > &, {0 UK’ e optSimp@ﬂ(afl, ...,atr;y%); and,

(c) if we use the shadow vertex method to solvée Rrting from{—1, J} and
objective function(—¢, z), then the output of the algorithm will have form
{0} U K/, where K is a solution to LP.

PROOF OFPROPOSITION3.8. LP is unbounded if and only if there exists a vector
v such that(z | v) > 0 and{(a; | v) < O for all i. The same holds fotP,
and establishes the equivalence of (a) and (b). To show that (a) or (b) implies (d),
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observe
(AMLO+@Q—-2)(-¢2)[(0,v))=(1—-2)(z|v)>0, (8)
(aiJr|(O,'u)>=(ai|v),fori:1,...,n, 9)
(a¢ 1(0,v)) =0, and
(a*,1(0,v))=0

To show that (c) implies (a) and (b), note thgf anda™; are arranged so that if
for somevp we have

(af | (Vo,w)) <0, for—1<i <n,

thenvy = 0. This identity allows us to apply (8) and (9) to show (c) implies (a)
and (b). O

PROOF OFPROPOSITION3.9. LetJ be the solution ta. P’ and letz’ = Ay
be the corresponding vertex. We then have

(z' | ai) =y, fori € J, and
(z' | ai) <y, fori ¢ J.
Therefore, it is clear that
(-1 2) | af) =y, fori e {(—1} U J, and
(-1 )| af) <y, fori ¢ {—1}U J.

Thus,A(a”y, (a;h)ics) is a facet ofLP™. To see that there existsza such that it
optimizes ¢, z) for all ¢ > ¢, first observe that there exigt > O, fori € J,
suchthaty ", _; aiai = z. Now, let (—¢o, 2) = Y aiai". Forg > ¢o, we have

(—2.2) =@ —t)a*, + ) _aaf,
ied

which proves ¢, z) € Congla™, (a;")ics) and completes the proof of (a).

The proof of (b) is similar.

To prove part (c), leK be as in step (7). Then, there exists@such that for all
A€ (M 1),

K = optSimp(l,x)(,{’z)Hﬁ(afl, cees a:, y+)

Let (xo. z) satisfy((xo, z) | a;") = y;*, fori € K. Then, by Proposition 3.3,

(X0, z) = optVert ), izt (afy. ... atiy™).

If Xo < 1, then LP was infeasible. Otherwise, &t = optVert (a1, ..., an; y).
By part (b), there existg such that for alE > &,

(1 z*) = optVert ,(aly. ... . at; y").
Foré = —¢ + A/(1— 1), we have
1

(6.2) = T (A= 1)(=5.2) +22").



Smoothed Analysis of Algorithms 413

So, ask approaches ¥k = —¢ + A /(1 — A) goes to infinity and we have
optVert ;¢ yaz+(aly. ... el y™) = optVert, ,(ay, ..., af;y™),
which implies &o, ) = (1, z*). O

Finally, we bound the number of steps taken in step (7) by the shadow size of a
related polytope:

LEMMA 3.10 (S4ADOW PATH OFLPT). Fora™,,...,a} and y',,...,yi as
defined in LP, if (-1} U J = optSimp_, ,,(aXy/y*. ..., aj/y{) for ¢ > 0,
then the number of simplex steps made by the polar shadow vertex algorithm while
solving LP" from initial basis{—1} U J and vectol(—¢, z) is at most

2+ |Shadow,z) =+ (af /Y1 . ... af/yT)|.

PrOOF  We will establishthat—1} € | for the first step only. One can similarly
prove that{0} € | is only true at termination.

Let| € optSimp, (a”y/y";. ..., a;/y]) have form{—1}UL.As gy = a7, €
Coneg(A_1yuL), andCong(A;_1uL) is a convex set, we havg, € Cone(A_1uL)
forall 0 < )’ < A. As [Ai, Aiy1] is exactly the set of optimized byA (A,) in the
ith step of the polar shadow vertex methbanust be the initial set.[]

3.4. DscussioN  We note that our analysis of the two-phase algorithm actually
takes advantage of the fact tkedndM have been set to powers of two. In particular,
this fact will be used to show that there are not too many likely choices &ord
M. For the reader who would like to drop this condition, we briefly explain how the
argument of Section 5 could be modified to compensate: first, we could consider
settingk and M to powers of 14+ 1/poly(n, d, 1/0). This would still result in a
polynomially bounded number of choices foland M. One could then drop this
assumption by observing that allowirgandM to vary in a small range would not
introduce too much dependency between the variables.

4, Shadow Size

In this section, we bound the expected size of the shadow of the perturbation of a
polytope onto a fixed plane. This is the main geometric result of this article. The
algorithmic results of this article will rely on extensions of this theorem derived in
Section 4.3.

THEOREM4.1 (SHADOW SIZE). Letd > 3andn> d. Letz andt be indepen-

dentvectors ifRY, and letu, . . ., un be Gaussian distributions iRY of standard
deviationo centered at points each of norm at mastThen,
E [IShadow . (ai,...,an) ] <D(n,d, o), (10)
ai,...,an
where
58, 888 678nd®
D n, d, o) = )
( ) min(o, 1/3+/dInn)é
anday, ..., a, have densitf ", ui(ai).

The proof of Theorem 4.1 will use the following definitions.
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Definition4.2 (@ng). For a vectorg and a ses, we define

ang(q, S = mig angle(q, =) .
re

If Sis empty, we seang(q, ¥) = oco.
Definition4.3 (ang,). For a vectorg and pointsay, ..., ay in RY, we define
ang, (a1, ..., an) = ang(q, 3 A (optSimp, (a1, ..., an))),
whered A (optSimp,(as, . .., an)) is the boundary of\(optSimp, (a1, . . ., an)).

These definitions are arranged so that if the ray throgglves not pierce the
convex hull ofay, . .., an, thenang, (a, ..., an) = oo.

In our proofs, we will make frequent use of the fact that it is very unlikely that a
Gaussian random variable is far from its mean. To capture this fact, we define:

Definition4.4 (P). P isthe setofé,..., an)for which|la;| < 2, for alli.
Applying a union bound to Corollary 2.19, we obtain
PrROPOSITION4.5 (MEASURE OFP).

Pri(as,...,an) € Pl > 1—n(n~2%) = 1 — n=2%+1,

PROOF OFTHEOREM4.1. We first observe that we can assume< 1/3
vJdInn—if ¢ > 1/3+/dInn, then we can scale down all the data umtil=

1/3+/dInn. As this could only decrease the norms of the centers of the distribu-
tions, the theorem statement would be unaffected.

Assume without loss of generality thatandt¢ are orthogonal. Let
qy = zSin@) + t cosP). (1D

We discretize the problem by using the intuitively obvious fact, which we prove as
Lemma 4.6, that the left-hand of (10) equals

lm E_ U {optSimp,, (as. ..., an)}
pefzr 22r  mor)
m m m

Let E; denote the event

[optSimpqwm(al, co.,Qp) F# optSimpqzﬂ«m) oy (@15 s an)] .

)/m

Then, for anym > 2 and for alla, ..., an,

U {optSimp,, (a1, ....an)}| =D Ei(as.....an).
i=1

pe(z 2. mzn)
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We bound this sum by
m —_
E[Z Ei:| =E|)_Ei|Pr[P] +|§[Z Ei:| Pr[P]
i—1 i
Z E |+ (2) n—2.9d+1
E D E|+1

Thus, we will focus on boundinge [Y"; Ei].
Observing thak; implies [anngm/m (ay,...,an) < 27/m], and applying lin-
earity of expectation, we obtain

o)

A
oMm

IA

Pr(E]

A

12 1142

Il
N

27
PPr [angqbi/m(al, ce,@p) < ﬁ]

9,372 424nd®
n%, by Lemma 4.7,
o

- 58,888 677nd’

IA
¥

o6 -

LEMMA 4.6 (DISCRETIZATION IN LIMIT). Letz andt be orthogonal vectorsin
RY, and letus, ..., un be nondegenerate Gaussian distributions. Then,
geSpan(z,t)

E
a,...,an
im E
m—oo ay,...,an

whereg, is as defined irf11).

U {optSimpq(al,...,an)}H =

U {optsimp, (a1..... an)}:| . (12)

oe{ T 55 M )

Proor. Foral e (), let

Fi(a,...,an) = / [optSimp,, (a1,...,an) = 1] dd.
0

The left- and right-hand sides of (12) can differ only if there exisés=a 0 such
that for alle > 0,

| = optSimp,, (as, ..., an) for somed, and] > s,

al,l.:ir,a,n |:EI F| (0,1, ey an) < €
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As there are only finitely many choices foy this would imply the existence of a
8’ and a particulat such that for alk > 0,

Pr | = optSimp,, (a1, . .., an) for somes, and 1
ay an F|(a1,...,an)<e

As Fi (a1, ..., an) = Fi(4)) given thatl = optSimp, (a1, ..., an) for someo,
this implies that for alk > 0,

| = optSimp,, (A) for somed, and .Y
F| (A|) < € -7

Note thatl = optSimp, (A4,) if and only if g, € Cone(A,). Now, let

Pr

ai,...,Qn

(13)

G(4)) = /{;[% € Cone(A4,)](ang(qy. 3 A (A,))/7)do.
AsG(4)) < F(4)), (13) implies that for alk > 0

Pr [ | = optSimp,, (a1, . .., a,) for somes, and]
ai,....an | G(A|) < €

HoweverG is a continuous function, and therefore measurable, so this would imply

> 4.

Pr [ = optSimp,, (a1, . . ., ay) for somed, and]
anan | G(A)) =0

which is clearly false as the set df| satisfying
—G(A4,) =0, and
—36 : optSimqu(al, ..an)={A}

has codimension 1, and so has measure zero under the product distribution of
nondegenerate Gaussiangl

/
’

> 5

LEMMA 4.7 (ANGLE BOUND). Letd > 3 and n > d. Let ¢ be any unit
vector and letuy, ..., un be Gaussian measures RY of standard deviation

o < 1/3VdInn centered at points of norm at mdstThen,
9,372 424nd®
———F——€

ob

’

F;r [ang,(as, ..., an) < €] <

wherea,, ..., a, have density

n
[ wia).
i=1
The proof will make use of the following definition:
Definition4.8 (P}). Foral e () andj e I, we defineP/ to be the set of
ai, ..., aq satisfying
(1) Forallg, if optSimp,(ay, ..., an) # @, thens < 2, wheresis the real number
for whichsq € A(optSimp,(as, . . ., an)),
(2) dist(ai, ax) < 4, fori,ke | —{j},
(3) dist(aj, Aff(A|_(j))) < 4,and
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(4) dist(aj, ai) < 4,foralli € | —{j}, wherea; is the orthogonal projection of
aj OntOAff(A|_{j}).

ProPOSITION4.9 (P C P,j ). Forallj,I,PC Plj.

PrROOF.  Parts (2), (3), and (4) follow immediately from the restrictidiag| <
2. To see why part (1) is true, note ttsatlies in the convex hull o&,, . . ., a,, and
so its norms, can be at most maXa; || < 2, for (a1, ...,an) € P. O

PROOF OFLEMMA 4.7. Applying a union bound twice, we write

F;r [ang,(a1, ..., an) < €]

optSimp, (a4, ..., a,) = | and
=25 onaa A Gy

d .
optSimp,(ay, ..., ay) = | and
P q
DIDIL{ ol el

d .
optSimp, (a1, ..., an) = | and}
< Pr q Pr[P
- Z il [ang(q, A(Ai)) <e p) [P]
(by Proposition 2.8)
d .
optSimp,(ay, ..., an) = | and
P a Pr[P
SZ; Pljr|:ang(q,A(A|_{j}))<e / r[ ]

(by P c P))

1 4. [ optSimp,(ay,...,an) =1 and ]
< Pr q 9 b
~ 1—n-2%+1 Z; pi Land(g. A (Ai—)) <e |

(by Proposition 4.5)

1 d " optSimp, (a1, ..., an) = | and ]
e e S |
= |

| ang(a. A (41 ) < <

by changing the order of summation.
We now expand the inner summation using Bayes' rule to get

Z [optSimpq(al,...,an) = | and]
7 L ang(a. & (41 ) < €

=) Pr[optSimp,(ay.....an) = 1]
| PlJ

ang(q. & (Ai-()) <€l
F;Ijr [ optSimp,(ay, ..., an) = | (14)

As optSimp, (a1, . . ., an) is a set of size zero or one with probability 1,

ZPr[optSimpq(al, can)=1]<1;
|
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from which we derive
> " Pr[optSimp,(as. . .., an) = 1]
| PIJ

< ) Pr[optSimp,(as, ..., an) = 1]/ Pr [P/]
|

(by Proposition 2.8)
1 .
= 1291 XI: Pr [optSimp, (a1, ..., an) = 1]
(by P c P/ and Proposition 4.5)

1
< -
= 1_ n-29%+1

So,

o ang(q. A (Ai_j))) < €|
(14) = 1— n—29+1° mlaxlzljr[ optSimp (a1, ..., an) =1 |’

Plugging this bound in to the first inequality derived in the proof, we obtain the
bound of

F:Dr [ang,(ai, ..., an) < €]
d ang(g, A (Ai—gj))) < €

= (1 — n-29d+1)2 ”,“?XFP’IT [ optSimp,(as, ..., an) = |

9,372 424nd’
< d2’—6 €, byLemma4.11d > 3andn >d + 1,
o
9,372 424nd’

= — €. |:|

06

Definition4.10 Q). We defineQ to be the set of;, ..., bq) € R4 satis-
fying
(1) dist (by, Aff (bo, ..., ba)) < 4,
(2) dist(bi, bj) < 4foralli, j > 2,
(3) dist(by, b)) < 4 foralli > 2, whereby is the orthogonal projection df;
ontoAff (b,, ..., by), and
(4) 0e A(by,..., byg).

LEMMA 4.11 (ANGLE BOUND GIVEN OPTSIMP). Let i, ..., un be Gaussian

measures ilRY of standard deviatiom < 1/3/dInn centered at points of norm
at mostl. Then

[ang(q, Ala, ..., aq) <€ ] _ 9,371, 990ndPe

pr optSimpq(al, oan)=1{1,...,d} o6 ’

1
Pl.... d

(15)
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whereas, ..., ay have density

[ ] wia).
i=1

PROOF.  We begin by making the change of variables frem. .., aq tow, s,
b1, ..., by described in Corollary 2.28, and we recall that the Jacobian of this
change of variables is

(d — 1)1 (w | q) Vol (A (by, ..., ba)).

As this change of variables is arranged so 8k A (a1, ..., aq) if and only if
0 € A(by, ..., bg), the condition thadptSimp,(ay, ..., an) = {1,... ,d} can be
expressed as

[0eA(br.....00)] [ [[(w | a)) < (w]sq)].
j>d

Letx be any pointo (ay, ..., aq). Giventhasq € A (ay, ..., aq), conditions
(3) and (4) for membership iﬁ’llw_’d imply that

dist (sq, z) < dist (a1, ) < \/dist (a1, Aff (az, ..., aq))? +dist (at, z)°< 42,

wherea; is the orthogonal projection af; ontoAff (ay, . . ., aq). So, Lemma 4.12
implies

dist(sq, Aff (az, ..., aq)) (w | q)

ang(q, A(ao, ..., aq)) >

2442
_ dist(0, Aff (by, ..., b)) (w | @)
- 2+ 442 '
Finally, observe thata(, ..., aq) € P} is equivalent to the conditiors< 2

.....

and (s, ..., bg) € Q, given thatoptSimp,(ay, ..., ad) = {1, ..., d}. Now, the
left-hand side of (15) can be bounded by

i Aff
Prz [dlst (0, Aff (b2, \/,_bd)) (w] q) - e:| | 6
w,s<
(b1,...,bg)€Q 2+4y2

where the variables have density proportional to

(w] q)Vol (A(by, ..., by))-
d

(H [<w|aj>§s<w|q>]u,-(a,-)da,->1_[ui(wai+sq).

j>d v aj i=1
As Lemma 4.13 implies

900€*3d2%e

Pr [dist (0, Aff (b2, ..., bg)) < €] < 2 ,
w,s<2 o

(b1,...,ba)eQ
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and Lemma 4.16 implies

340e \ 2
max Priiw| q) <e€] < > ,
Quw o

s<2,bq,...,bge

we can apply Lemma 2.11 to prove

900e2/3d2> <340”|) - 9, 371, 990nde
€ .

o4 -

(16)54-(2+4ﬁ).<

o? o8

LEMMA 4.12 (DvISION INTO DISTANCE AND ANGLE). Let  be a vector, let
0 < s < 2, and letq andw be unit vectors satisfying

(@ (w|x—sq)=0,and

(b) dist(z, sq) < 4v/2.

Then,

dist(z, sq) (w | q)
2+4v2

PROOF Letr =« — sq. Then, @) implies

angle(q, z) >

2
<u:|q>2+-<ﬂ;ﬂ|q> <l =1;

SO,

(r1g) <y1—(wl@?lrl.
Let h be the distance frone to the ray throughy. Then,
h? +(r | @) = |I7II;
SO,
h>(w]q)lrl=(w|q)dist(z,sq)
Now,

angle(q, ) > sin(angle(q, x)) = ﬁ
xr

- h - h - (w | q)dist(x, sq)
~ s+dist(z.sq) T 2+4v2 2+4v2
4.1. DSTANCE. The goal of this section is to prove it is unlikely thais near
9 A(by, ..., by).

LEMMA 4.13 (DSTANCE BOUND). Let g be a unit vector and lef,, . .., un

be Gaussian measures R of standard deviatiow < 1/3./dInn centered at
points of norm at mosk. Then,

O

900e*3d2e

[dist (0, Aff (bo, . .., ba)) < €] < —
o

oo (17)
(bi,...,ba)eQ
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where the variables have density proportional to

(w] q)Vol (A(byq, ..., by))-

d
(H [(w | aj) < sw | q)]uj(a;)da; ) [ [ wi(Rabi + sq).
j>d v aj i=1
ProOOF. Note that if we fixw ands, then the first and third terms in the density

become constant. For any fixed plane specifieddaysf, Proposition 2.16 tells us
that the induced density ol remains a Gaussian of standard deviatioand is
centered at the projection of the centengfonto the plane. As the origin of this
plane is the poinsg, ands < 2, these induced Gaussians have centers of norm at
most 3. Thus, we can use Lemma 4.14 to bound the left-hand side of (17) by

900€e?/3d%
max  Pr dist (0, Aff (bo,..., b < —. ]
w,ng(bl,...,bd)eQ[ ( (b2 a)) < el o4
LEMMA 4.14 (DSTANCE BOUND IN PLANE). Let puq,...,ug be Gaussian

measures ifRY~L. of standard deviatiom < 1/3+/dInn centered at points of
norm at mosB. Then

900e%/3d2¢
=< (18)

bl“f’ngQ[dISt (O, Aff (b2, ..., bg)) < €] <

wherebq, ..., bg have density proportional to

d
Vol (A& (b, - ba)) [ [ wi(B0).
i=1

PrOOF In Lemma 4.15, we will prove that it is unlikely that, is close to
Aff (by, ..., bg). We will exploit this fact by proving that it is unlikely thad
is much closer tharb; to Aff (bo, ..., bg). We do this by fixing the shape of
A (by, ..., bg), and then considering slight translations of this simplex. That is, we
make a change of variables to

1.
h = aZbi

i=1
di = h — b;, fori > 2.

Thevectorsl,, . . ., dq specify the shape of the simplex, almdpecifies its location.
As this change of variables is a linear transformation, its Jacobian is constant. For
convenience, we also defidg = h — by = — > ,_, d;. (see Figure 3.)
It is easy to verify that B
Oe A(bl,...,bd) < h e A(dl,...,dd),
dist (O, Aff (bo, ..., by)) = dist(h, Aff (ds,...,dq)),
dist(bq, Aff (by, ..., bq)) = dist(d,, Aff (d, ..., dg)), and
Vol (A (by, ..., bg)) = Vol(A(dy,...,dg)).

Note that the relation betweeh andd,, ..., dy guarantee® € A (dq,...,dq)
for all do, ...,dq. SO, (b1,...,bq) € Qif and only if (d1,...,dq) € Q and
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d2 d3

d;
Fic. 3. The change of variables in Lemma 4.14.

h € A(dy,...,dq). Asd; is a function ofd,, ..., dq, we let Q' be the set of
do, ..., dq for which dq, ..., dg) € Q.
So, the left-hand side of (18) equals

Pr[dist(h, Aff (da, ..., dq)) < €],

R
whereh, d,, ..., dq have density proportional to
d
Vol (A (dy. ... da)) [ T wi(h — di). (19)
i=1

Similarly, Lemma 4.15 can be seen to imply
Pr[dist(dy, Aff (da, ..., dq)) < €]

(dz,...,da)€Q
heA(dy,...,dg)
3 2
< <e3 exp£2/3)d> - (e3exp§2/3)d) (20)
o o

under density proportional to (19). We take advantage of (20) by proving
dist (h, Aff (do, ..., dg)) 75de
dist(dy, Aff (dg, ... dg)) 6] S Te2
whereh has density proportional to

d
Hﬂi(h —dp).
=1

Before proving (21), we point out that using Lemma 2.11 to combine (20) and
(21), we obtain

(21)

max Pr
dz,... ,ddEQ/ hEA(dl,.‘. ,dd)

900e%3d2%¢
P dist (h, Aff (dy, ..., d 900e”°d%
(dz,--‘,drd)eQ’[ ist (h, (da, q4) <€) < -

heA(dy,....dq)

’

from which the lemma follows.
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To prove (21), we let

ist (h, Aff
Uez{heA(dl ..... dy - Jist(h, AT (dz, ’d“))>},

" dist (dq, Aff (da, ..., dq)) ~ ‘

and we sebt(h) = ]_[id=l wi(h — dj). Under this notation, the probability in (21) is
equal to

(v(Uo) — v(Uy))/v(Uo).

To bound this ratio, we construct an isomorphism froignto U.. The natural
isomorphism, which we denot®,, is the map that contracts the simplex by a
factor of (1— ¢) atd;. To use this isomorphism to compare the measures of the
sets, we use the facts that by, ..., dg € Q andh € A(dq, ..., dy),

—l|lh —dil| <max; [ldi —d;|| < 4./2, so the distance froh — d; to the center
of its distribution is at mosth — di|| + 3 < 42+ 3;

—dist (h, ®.(h)) < € max dist (dy, di) < 4v/2¢

to apply Lemma 2.15 to show that for &lle A (dy, ..., dq),

pi(@c(h) —di) p(_s 4V2(42+ 3)e> . p<_(4s+ 1&/§)e> |

wi(h —dj) 202 o2
So,
(@ch) _ L i @e(h) — di)
hea(ds.....ds)  v(h) heA(ds....da) i1 pi(h —di)
N exp(_(48+ 12\/§)de) R 12\/§)de. (22)
(o2 o
As the Jacobian
‘8<I>e(h) (- > 1 de,
oh
using the change of variablas= ®.(h) we can compute
v(U,) = / v(x) de
xeU,
dPc(h)
= d.(h dh
[, v
> (1—de) V(P (h))dh . (23)

hGUo
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So,
1—de v(®.(h))dh
WU (L= d) ey, V(@(h) by (23)
v(Up) Jheu, v(R) dR
dh
hea(ds,....ds)  v(h) Jneu, AP
» (- de) (1 _ M) by (22)
o
21—7526, aso < 1.
o
(21) now follows from ((Ug) — v(U,))/v(Uo) < 2. [
LEMMA 4.15 (HEIGHT OF SIMPLEX). Letus, ..., ug be Gaussian measuresin

RY~! of standard deviatios < 1/3+/dInn centered at points of norm at mdt
Then

3e e2/3d)3

Pr  [dist(by, Aff (b2,...,bd)<e)]§< .
d€Q o

bi,...,b
wherebs, ..., bg have density proportional to

d
Vol (A (by. ... ba)) [ [ i (bi)-
i=1

PROOF We begin with a simplifying change of variables. As in Theorem 2.27,
we let

(ba,...,bg) =(Rrco+tr,..., Rrcq +1t1),

wherer € S 2andt > 0 specify the plane throughy, ..., bg,andcy, ..., ¢cq €

RY~2 denote the local coordinates of these points on that plane. Recall that the
Jacobian of this change of variablesvsl (A (ca, ..., cq)). Letl = — (7| by),

and letc; denote the coordinates inF of the projection ofb; onto the plane
specified byr andt. (See Figure 4.) Note that> 0. In this notation, we have

dist (ba, Aff (b2, ..., ba)) = | +1.

The Jacobian of the change fram to (I, ¢1) is 1 as the transformation is just an
orthogonal change of coordinates. The conditions 8ar (. ., bq) € Q translate
into the conditions

(a) dist (i, ¢j) < 4foralli # j;

(b) ( +1) <4, and

(c) 0e A(by, ..., by).

Let R denote the set o4, ..., ¢q satisfying the first condition. As the lemma is

vacuously true foe > 4, we will drop the second condition and note that doing so
cannot decrease the probability thiat{l) < €. Thus, our goal is to bound

Pr [ +1) <e€], (24)

Tt1,(c1,...,cq)eER
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FiG. 4. The change of variables in Lemma 4.15.

where the variables have density proportional to

d
[0€ A(bi..... ba)] VoI (A (b, ... ba)) VoI (A (cz, ..., ea)) [ [ i (Bi):
i=1

AsVol (A (by, ..., bg)) = (I +t)Vol (A (cy, ..., cq)) /d, thisis the same as having
density proportional to

d
(+8)[0€ A(by, ..., ba)] VOI (A(ca, ..., ca)* [ [ i (bi).
i=1

Under a suitable system of coordinates, we can exgress(—I, ¢1) andb; =
(t, ¢) fori > 2. The key idea of this proof is that multiplying the first coordinates
of these points by a constant does not change whether @& @ak (b, ..., bg);
so, we can determine wheth@e A (b4, ..., bg) from the datal(/t, ¢y, ..., cq).
Thus, we will introduce a new variabte setl = «t, and letS denote the set of
(o, €1, ..., cq) forwhichO € A (by,..., bg) and (c1, ..., ¢q) € R. This change
of variables from to « incurs a Jacobian Oa% =1, so (24) equals

Pr eS[(1+ at < €],

7.t (o, c1,...,cq)

2While we keep terms such dg in the expression of the density, they should be interpreted as
functions ofr, t, I, cq, ..., cq.
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where the variables have density proportional to

d
t2(1+ a)Vol (A (ca, . . ., €q))? pa(—at, 1) ]‘[ ni(t, ci).

We upper bound this probability by
max SPtr [+ o)t <€] < max SF:r [max(l o)t < €],

7.(a,c1,...,cq)€ 7.(a,c1,...,cq)€

wheret has density proportional to

d
ua(—at, e)) [ [ mitt, @),
i=2

For ey, ..., cq fixed, the points {at, ¢1), (t, ¢2), ..., (t, c¢g) become univariate
Gaussians of standard deviatienand mean of absolute value at most 3. Let

to = o2/(3max(1 «)d). Then, fort in the range [0tg], —at is at most 3+ aty

from the mean of the first distribution artds at most 3+ t; from the means of

the other distributions. We will now observe that ifs restricted to a sufficiently
small domain, then the densities of these Gaussians will have bounded variation.
In particular, Lemma 2.15 implies that

d
maxe(o,t;) m1(—at, e1) [ [, mi(t, ci)
mintE[O,to] ,bLl(—C(t, Cl) HidZZ Mi (ta Ci)

d
< exp(3(3+ ato)ato/202?) l_[ exp(3(3 + to)to/20°?)
i—2

d
< exp(9ato/20%) (1_[ exp(9to/202)) exp(3(ato)? /207 (l_[ exp(3tg /202 )
i—2
d
< exp(3/2d) (1_[ exp(?/Zd)) - exp(o?/60?) (l_[ eXp(a2/6d2))
i—2

i=2
< exp(3/2) - exp(1/6d)
< exp(2)
Thus, we can now apply Lemma 2.13 to show that
3
t (o

from which we conclude

3ee?3d\°
Pr[max(la)t<e]<<€ . ) . O
t o
4.2. ANGLE OF ¢ TO w.
LEMMA 4.16 (ANGLE OFINCIDENCE). Letd > 3and n> d. Letuy, ..., un

be Gaussian densities R? of standard deviation centered at points of norm at
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mostl. Lets< 2and let(by, ..., bq) € Q. Then,

3400 ?
F;r[<w|q><e]<( 02”) ,

(25)

wherew has density proportional to

(w | q) (H/ (w1 aj) <S<wIQ]MJ(aJ)daJ)]_[M|(R bi + 5q).

j>d i=1

PrROOF.  First note that the conditions fob{, ..., bq) to be inQ imply that for
1 <i <d, b; has norm at mosy/ (4)2 + (4)? = 4+/2 by properties (1), (3) and (4)
of Q.

As in Proposition 2.29, we changeto (c, +/), wherec = (w | ¢) andy € 42,
The Jacobian of this change of variables is

(1 _ CZ)(d_S)/Z.
In these variables, the bound follows from Lemma 4.17.

LEMMA 4.17 (ANGLE OF INCIDENCE, II) Let d > 3 and n > d. Let
Wd+1s - - -, in be Gaussian densities iIRY of standard deviatior centered at
points of norm at most. Let s< 2, and letb,, ..., by each have norm at most

42 Letyp € S*2. Then

4 2
PI‘[C<6]<(3 025n> ,
o

where ¢ has density proportional to
(1— )32 .
(l_[ [{wey.c | aj) <S{wyclq ]Mj(aj)daj ) HMI(szpcbl +sq). (26)
j>d i=1
PROOF. Let
vi(c) = (1 — 332

v2(0) =[] [w¢c | aj) < S{wy.c | @)lnj(aj)daj, and
j>d

d
v3(C) = 1_[ wi (R, bi +5q).
i=1
Then, the density of is proportional to
(26) = c - vi(c)v2(Cc)v3(C).
Let

=—, 27
C = Saa (27)
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We will show that, forc between 0 andy, the density will vary by a factor no
greater than 2. We begin by lettiflg = /2 — arccos€g), and noticing that a
simple plot of the arccos function reveals< 1/26 implies

6o < 1.001co. (28)

So, asc varies in the range [@], w. ¢ travels in an arc of angle at mog and
therefore travels a distance at m@stAsc = <q | w¢,0>1 we can apply Lemma4.18
to show
MiNp<c<c, V2(C) 1 8n(1+ s)b o1 24n6, o1 1.001’
by (27) and (28).
We similarly note that asvaries between O ardd, the pointR,, , . b +sq moves
a distance of at most

(29)

302

6o l1bi || < 4+/26.
As this point is at distance at most
1+s+bill <4v2+3
from the center ofi;, Lemma 2.15 implies

MiNo<c<c, Ki (wa.cbi + sq)

2
Moo (R by 1 5q) = P BAV2+ 34 200/25%)

exp(—147o/5?).

v

So,
MiNg<c<c, v3(C) - 2
————" " — > exp(—147d6y/c°) > exp(—148/240 30
MaXp<c<c, v3(C) ~ A 0/o") 2 expl-148240) (30)
by (27) and (28) and < n.
Finally, we note that

1>v(c) = (1 - )32 > (1 - 1/26d)4-32 > (1 — 5%) . (31

So, combining Egs. (29), (30), and (31), we obtain

minoscfco vl(C)vz(C)Ug(C) - (1_ i) — L8 (1 B 1001) > 1/2
MaX<c<q, v1(C)v2(C)va(c) ~ 52 30 /)7

We conclude by using Lemma 2.13 to show

240en\?  /340n)\?
Pr[c<e]§2(e/co)2=2( 2”) 5( 2”) . 0
c o

(o2

LEMMA 4.18 (ROINTSUNDERPLANE). For n > d, let ugy1,..., un be
Gaussian distributions ilR? of standard deviatios centered at points of norm at
mostl. Let s> 0and letw; andw; be unit vectors such thaw, | g) and{w> | q)
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are nonnegative. Then,

l_[J>df (w2 aj) < s(wz2 q)]uj(a;)daj o1 8n(1+9) lwy — wo
l_[]>df (w1l aj) <s{wi] @)pnj(aj)da; ~ 302 '

PROOF.  As the integrals in the statement of the lemma are just the integrals of
Gaussian measures over half-spaces, they can be reduced to univariate integrals. If
wj is centered at j, then

/ [(wilaj) <s{wi] q)]nj(aj)da;

(«/_0) /[w1|aj> < s(wi| @)lexp(—llaj — ajl ?/20 )daj
1 \° _
=<Jﬁb) [(wilg;+aj) < swi | @lexp(~lg;lI*/20?) dg;
9gi

(settingg; = aj — a;)

V2ro
1 t=<w1\8q—51> p( 25 2)d
= expl—t</20°) dt
V2ro /t:oo

(by Proposition 2.17)

1 /-t—oo ) )
exp(—t</207) dt
v o (wilsg—aj) M )

As |laj| < 1, we know

1 \° _
=( ) [l g = (wilsq—ajlexp(-lg;l*/207) dg;

—(wilsg—aj) = —(w1189) + (w1 aj) < (wil|aj) <1 (32)
Similarly,
| —(wilsqg—aj)+ (w2]|8¢g —aj)| =|— (w1 —w2|sqg—aj)|
< w1 — w2lllisg — ajll
< [lw1 —w2l(s+1). (33)

Thus, by applying Lemma 2.24 to (32) and (33), we obtain

faj[(wz laj) <s{wz2]| q)luj(a;j)da; ft wz\sq a, ) eXp(= t2/202) dt.
Jo,lwi | aj) < s(wi| q)]pj(a;)da; e Ctousa_a) EXP(-t2/202) dt.

- (1_ 8(1+ S)||¢'11 - wzll) .
> 32
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Thus,
[T-afolw2 1 aj) < stw2 | @)lpj(aj)daj (1_ 8(1+s)||w1—w2||>nd
[Tjsa fo, w1l aj) < s(w1] @luj(a;)daj ~ 302
- (1_ 8n(1+S)||w1—wz||) .
N 302

O

4.3. EXTENDING THE SHADOW BOUND. In this section, we relax the restrictions
made in the statement of Theorem 4.1. The extensions of Theorem 4.1 are needed
in the proof of Theorem 5.1.

We begin by removing the restrictions on where the distributions are centered in
the shadow bound.

COROLLARY 4.19 (|ai|| FREE). Letz andt be unitvectors and lety, ..., an
be Gaussian random vectorsRf of standard deviatioa < 1/3./d Inn centered
at pointsas, ..., an. Then,

o
E[Shado <D|(d,n, — ,
[ V. (61, .. an)] ( max(1, max IIaII))

whereD(d, n, o) is as given in Theorer.1.

PrROOF. Letk = max | a;||. Assume without loss of generality tHat- 1, and
letb; = aj/kforalli. Then,b; is a Gaussian random variable of standard deviation
(0/Kk) centered at a point of norm at most 1. So, Theorem 4.1 implies

E[Shadow, ; (by. ..., by)] <D (d, n, 5) .
k
On the other hand, the shadow of the polytope defined bypthean be seen to
be a dilation of the polytope defined by thes: the division of theb;s by a factor
of k is equivalent to the multiplication @t by k. So, we may conclude that for all
al, e ey an,

|Shad0\/\g,t (0,1, ey G,n) | = |ShadOV\Q’t (bl, ey bn) | O
COROLLARY 4.20 (GAUSSIANSFREE). Let z and ¢ be unit vectors and
let ay,...,a, be Gaussian random vectors RY with covariance matrices
M., ..., M, centered at pointsiy, ..., an, respectively. If the eigenvalues of

eachM; lie betweery? and1/9d Inn, then

o
E[Shado ai,...,apn) <D(d,n, ——— | +1,
[Shadon (@ .. an)) = D (4.1, T )

whereD(d, n, o) is as given in Theored. 1.
PROOF By Proposition 2.14, eacly can be expressed as
ai =ai + g + g,

whereg; is a Gaussian random vector of standard deviaticentered at the origin
andg; is a Gaussian random vector centered at the origin with covariance matrix
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M? = M;—o?1,eachofwhose eigenvaluesisatmg@dinn. Letd; = a;+g;.
If |ai| <1+ | aj| foralli,then we can apply Corollary 4.19 to show

_ E _ [Shadow ¢ (a1, ..., an)]
-»9n

gl,..
Sp(d,n, o )fp(d,n,%)‘
max(1, max ||a|l) 1+ max |lal

On the other hand, Corollary 2.19 implies

-1
. _ n

Pr [3i:]aill >1+|ail] < 0.0015(d> )
1>--->9n

So, using Lemma 2.9 arshadow, ; (a1, ..., an) < (§), we can show
o
E E [Shado a,...,a <Dld,n ——-— | +1,
Grvein [gl,.u,gn[ Ve, (a1 ”)]] < 1+ max ||a||>
from which the Corollary follows. [J

COROLLARY 4.21 (i FREE). Lety € R" be a positive vector. Let and ¢
be unit vectors and let, ..., a, be Gaussian random vectors RY with co-
variance matriced\l,, ..., M, centered at pointas, .. ., an, respectively. If the
eigenvalues of each; lie betweeny? and1/9d Inn, then

E[Shadow, ; (a1, ..., an); ¥]

o
S D d’ na — . + 19
( (1 + max [lai [[)(max y;)/(min; Yi)>
whereD(d, n, o) is as given in Theorer. 1.

ProOOF.  Nothing in the statement is changed if we rescaleyteeSo, assume
without loss of generality that miry; = 1.

Let bj = aj/y;. Thenb; is a Gaussian random vector with covariance matrix
M /y? centered at a point of norm at mdst; || /yi < |lail|. Then, the eigenvalues
of eachM, lie betweerny?/y? and /(9d Inny?) < 1/9d Inn, so we may complete
the proof by applying Corollary 4.20.]

5. Smoothed Analysis of a Two-Phase Simplex Algorithm

In this section, we will analyze the smoothed complexity of the two-phase shadow-
vertex simplex method introduced in Section 3.3. The analysis of the algorithm
will use as a black-box the bound on the expected sizes of shadows proved in the
previous section. However, the analysis is not immediate from this bound.

The most obvious difficulty in applying the shadow bound to the analysis of an
algorithm is that, in the statement of the shadow bound, the plane onto which the
polytope was projected to form the shadow was fixed and unrelated to the data
defining the polytope. However, in the analysis of the shadow-vertex algorithm,
the plane onto which the polytope is projected will necessarily depend upon data
defining the linear program. This is the dominant complication in the analysis of
the number of steps taken to soh#'.
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Another obstacle will stem from the fact that, in the analysi&®f, we need
to consider the expected sizes of shadows of the convex hulls of points of the form
a;"/y;", which do not have a Gaussian distribution. In our analysikRf, we
essentially handle this complication by demonstrating that in almost every small
region the distribution can be approximated by some Gaussian distribution.

The lastissue we need to address is thatiif (A ) is too small, then the resulting
values fory’ andy;" can be too large. In Section 5.1, we resolve this problem by
proving that one of 8dInn randomly chosen will have reasonablsy,, (A))
with very high probability. Having a reasonalsg, (4,) is also essential for the
analysis ofLP'.

As our two-phase shadow-vertex simplex algorithm is randomized, we will mea-
sure its expected complexity on each input. For an input linear program specified
by A, y andz, we let

C(A,y, =)

denote the expected number of simplex steps taken by the algorithm on input
(A, y, z). As this expectation is taken over the choicesZaand «, and can be
divided into the number of steps taken to solet andLP’, we introduce the
functions

S.(A,y,T, ),

to denote the number of simplex steps taken by the algorithm in step (5) to solve
LP for a givenA, y, Z anda, and

SH(A, y,I)+2

to denote the number of simplex stépasken by the algorithm in step (7) to solve
LP* for a givenA, y andZ. We note that the complexity of the second phase does
not depend upom, however, it does depend up@nasZ affects the choice of
andM. We have

C(A,y,2)< IE [S/Z(A, y,Z, a)] +IE [SI(A, y,Z, a)] + 2.
THEOREMS5.1 (MAIN). There exists a polynomidP and a constantg such

that foreveryn>d > 3, A =[ay,...,an] € R”Y, y € R"andz € RY, and
o >0,

AEy [C(A, y, z)] <min <P(d, n, 1/ min(o, og)). (2) + (d i 1) + 2) ,

where A is a_Gaussian random matrix of standard deviatiemax ||(y;, aj)||
centered at4A and y is a Gaussian random vector of standard deviation
o max ||(Vi, aj)| centered aty.

PROOF.  We first observe that the behavior of the algorithm is unchanged if one
multiplies A andy by a power of two. That is,

C(A, y, z) = C(2XA, Xy, 2),

3The seemingly odd appearanceie in this definition is explained by Lemma 3.10.
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for any integek. WhenA andy are Gaussian random variables centeretiandy
of standard deviatiom max ||(Y;, ai)|l, 2¢A and Xy are Gaussian random variables
centered at'24 and Xy of standard deviatios max [|(2€y;, 2¢a;)||. Accordingly,
we may assume without loss of generality in our analysis that fifgx a;)| €
(1/2,1].

The Theorem now follows from Proposition 5.2 and Lemmas 5.15 and 5(27.

Before proceeding with the proof of Theorem 5.1, we state a trivial upper bound
onS’ andS™:

PROPOSITIONS.2 (TRIVIAL SHADOW BouNDs). Forall A, y, z,Z and«,

S,(A,y,T,a) < (2) and ST (A, y,Z,a) < (d _T_ 1).

PROOF.  The bound ors’ follows from the fact that there arg]) d-subsets of
[n]. The bound ors* follows from the observation in Lemma 3.10 that the number
of steps taken by the second phase is at most 2 plus the numlok#-df)¢subsets
of[n]. O

5.1. MANY GooD CHoIcEs For a Gaussian randond-by-d matrix
(a1, ..., aq), it is possible to show that the probability that the smallest singu-
lar value of @, ..., aq) is less thare is at mostO(d¥?¢). In this section, we
consider the probability that almost all of tkheby-d minors of ad-by-n matrix
(a1, ..., an) have small singular value. If the events for different minors were in-
dependent, then the proof would be straightforward. However, distinct minors may
have significant overlap. While we believe stronger concentration results should be
obtainable, we have only been able to prove:

LEMMA 5.3 (MANY GOODCHOICES). Forn > d > 3, let a1,...,a, be
Gaussian random variables iR® of standard deviatio centered at points of
norm at mostl.. Let A = (a1, ..., an). Then, we have

1
Pr Z [Smin (A1) < ko] > (1_ > (n) <nd 4 -l 2904

ai,...,an Ie([g]) n d

where
def O min(l, U)
Ko —m —————.
0 12d2n7/Inn

In the analyses dfP’ andLP*, we use the following consequence of Lemma 5.3,
whose statement is facilitated by the following notation for a set-séts,Z,

Z(A) £ argmax . (Snin (A1)).
COROLLARY 5.4 (FROBABILITY OF SMALL Smin(Azw)). Forn > d > 3, let

ai, ..., a,be Gaussian random variables R of standard deviation centered
at points of norm at moslt, and letA = (a4, ..., an). For Z a set of3ndInn
randomly chosen d-subsets[af,

(34)

-1
n
Erz [Smin (Az(4)) < ko] < O.417<d) )
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PROOF
EI’I [Smin (Az(4)) < ko]
=Pr [Vl €Z:smn(A
A’rI[ €7 :smin (A1) < ko]

R

RN ]

1z
<n 94 a1y 294l <1 — ﬁ) , by Lemma 5.3,

+ Pr |:V| €T :Smin(A)) < ko
7.4

<n 94 n a1y n72%41 4 =3 3517] = 3ndInn,

-1
n
0.417|
<o0a17(3) .

forn>d>3. [

We also use the following corollary, which states that it is highly unlikely that
falls outside the set’, which we now define:

K= {2L'9<X>J T ko < X < +/d + 3dv/In no} . (35)

COROLLARY 5.5 (FROBABILITY OF k IN ). Forn>d > 3, letas, ..., ay be
Gaussian random variables iRY of standard deviatiomw centered at points of
norm at most, and letA = (a4, ..., an). For Z a set of3ndIn n randomly chosen
d-subsets din],

AT

-1
Pr |:2|_|g(smin(AI(A)))J d IC] < O.42(3> .

ProoF. It follows from Corollary 5.4 that

-1
n
EVI [Smin (Az(4)) < ko] < 0.417(d) .
On the other hand, as

Smin (A1) < |4 || < Vdmax|ai]]

Pr |Snin (Az() = v (1+3vdInno ) |

r
AT

-1
n
< I?4r [m.ax||ai | >1+3vdlIn na] < 0.0015(d> ,
|

by Corollary 2.19. [
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PROPOSITIONS.6 (SzE OF K).
K| < 9lg(nd/ min(o, 1)).

The rest of this section is devoted to the proof of Lemma 5.3. The key to the
proof is an examination of the relation between the events which we now define.

Definition 5.7.  Forl e (1), K € (J"), andj ¢ K, we define the indicator
random variables

X = [Smin (A1) < ko] , and
Yg = [dist (a;, Span(Ak)) < ho],

where
def O

hozm.

In Lemma 5.10, we obtain a concentration result on\tfge using the fact that

the Y,i are independent for fixeld and differentj. To relate this concentration
result to theX; s, we show in Lemma 5.11 that, wheq is true, it is probably the

case thah(l‘_{j} is true for mostj.

PrROOF OFLEMMA 5.3. The proof has two parts. The first, and easier, part is
Lemma 5.10, which implies

i n—-d-1 n _ a—n4+d-1
al,l?.ljan Z ZYK = ’7 2 —‘ <d - 1) Zion .
< 17

To apply this inequality, we use Lemma 5.11, which implies

a1,l?.':an Z ZYIi > g XI: X | >1- n—d _ n—2.9d+1‘

Ke(d[flj) jgK

Combining these two inequalities, we obtain

d n—d-1 n
Pr |5) X — = >~ 1_n9_ -1 _ p29d+1
o “"{22 <7 Kd—lﬂ_

Observing,

g.Zx' - {#W (d:) = LX< nd;d<dil)

- tasala)
(1 nma1) )
=(-2) (@)
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we obtain

|:Z X > (l — }) (2>:| <9 4 p -l 29+ O

LEMMA 5.8 (FROBABILITY OF Yli). Under the conditions of Lemnta3, for
allk e (") and j¢K,

1 _h
Pr [Y,’(] <=2
ay,...,an o

PrROOF  Follows from Proposition 2.20.[]

LEMMA 5.9 (SUM OVER | OF Y}i ). Under the conditions of Lemn&a3, for all

K e (In),
[(n—d+1)/2]
[Z Y, = [n—d+ 1)/21} (4—h°) .
o jgK o

PrOOF.  Using the fact that for fixeK the eventsY,i are independent, we
compute

i¢K

or {ZY’ > [(n—d +1)/21]

A
P
£
—
=
m
(]
<
[I—

.....

Je(l’(n d+1 /zw)

SRR M

JE({(n d+1)/21)J ed

hO [(n—d+1)/2]
Z (—) , by Lemma 5.8,
[n]—K

J e([(n d+1)/2]

4hg [(-C+0/2]
=< - ’
=(%)

(K K] _ on—d+l
as|(j-gr1y2) | < 2K =2 O

IA

LEMMA 5.10 (3IM OVER K AND | OF Y,i). Under the conditions of
Lemmab.3,

j n-d-1 n —n+d—1
Pl 2 e [P () | =

Ke(d[ilj) jgK
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PROOF  If 3y (fny 3= Y, > [1=9=17( "), then there must exist & for
which ", Yg > [2=3=%1, which implies for thak

T, erin_g_l—‘-i-l:’;]_g—i_l—‘.

jgK

Using this trick, we compute

LA DINEIE== I

""""" Ke([M) igK

B [n] . i o n—d+1
_al?.ran|:3Ke<d—1).%;YJ_’7 2 H

(by Lemma 5.9)

n 4h0 [(n—d+1)/2]
n—d+ 1) <7>

1 [(n—d+1)/2]
< nnfdJrl (_)
= n?

< n—n—&-d—l‘

O

The other statement needed for the proof of Lemma 5.3 is:

LEMMA 5.11 (RELATING XS TOYS). Under the conditions of Lemnta3,

al,l?.lza,n Z ZYli =< gZ X| < n_d + n—2.9d+1.

kel i#K
ProoF  Follows immediately from Lemmas 5.12 and 5.141]

LEMMA 5.12 (GEOMETRIC CONDITION FORBAD |). If there exists a d-set |
such that

i d
i
X and ZY|7{” =< Ea
jel
then there existsasett I, |[L| = |[d/2—1] anda j € | — L such that

dist (aj,, Span(Ay)) =< Vdico (1—}— ’7%—‘ %”a'”) )
0
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PrROOF Letl ={iq,...,iq}. By Proposition 2.6 (a)X, implies the existence
of Ui, ..., Ui, [[(Ui, ..., uy)|l =1, such that

Zu‘a‘

iel

< Kp.

On the other hanqz Y (jy < d/2 implies the existence of & C I, |J| =

rd/27, suchthaiﬁ(J = Oforallj e J.ByLemma5.13, thisimpliesi;| < «o/ho
forall j € J. As ||(u,1,.. ,Ui,)ll = 1 andko/hp < 1/[ there exists some
Jo € I —Jsuchthatuj,| > 1/f SettingL = | — J — {jo}, we compute

> uja;

jel

<Ko

< ko = ujoaj0+Zujaj+Zujaj

jeL jed
> uja;

jed

=< (1/ |u]o‘) <K0+

= ||Ujpaj, + Z uja;
jeL

<ko+

Zujaj

= |laj, + ) _(uj/uj)e;

)

jeL jed
— a10+2(uj/ujo)aj S\/a<K0+Z‘UjH‘aj“)
jeL jed
. d ma -
— dist(aj,, Span(A.)) < vd (Ko + h—‘ K(JhixﬂallI) )
0
O
LEMMA 5.13 (BG HEIGHT, SMALL COEFFICIENT). Letay,..., aq be vectors
and u be a unit vector such that
d
Z ujaj| < ko.
i=1
If dist (aj, Spar({ai}i-j)) > ho, then|u;| < xo/ ho.
ProOOF We have
i#]
— aj-l—Z(ui/uj)ai fl(o/‘u]‘
i#]

— dist (aj, Span(fai}i4j)) <

from which the lemma follows. []
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LEMMA 5.14 (RROBABILITY OF BAD GEOMETRY). Under the conditions of
Lemmab.3,

L e (Ld/2 lJ) jo € Lsuch that
P
a1 dist (aj,, Span(AL)) < +/dxo (1+ 4] L’;L““ ”)

ProOOF We first note that

:| < n—d +n—2.9d+l.

or [EL € (ig)2-1))> Jo ¢ L such that j|
a1.....an dist (aj,, Span(AL)) < +/do <1+ 4] metle, ||)
L € (/54 Jo & L such that
=P, { dist (aj,, Span(AL)) < v/dko <1_|_ El 1+3\{%W5> }
(36)
+ alPra [miax||ai | >1+3vdInno]. (37)

We now apply Proposition 2.20 to bound (36) by
1+ 3vdl
Pr |:d|st (aj,, Span(AL)) < v/dxo <1+ [2—‘ + nho >:|

4 ai,...,an hO
[n]
LE([d/g—IJ) JogL

n Vdko d]1+3VdInno aIH
S(Ld/Z—u)(”_d/“”(o (HH o ))

(38)
To simplify this expression, we note th@} < % ford > 3. We then recall

Ko _ min(o, 1)
ho  3d2n3Inn’
and applyd > 3 to show
Vdko <1+ EW 1+3«/d|nna> 5 Viko |, Ko (Zd +2d2m>

o ho o ho \ 30

1
@.

38) < 4 n_anen (L)
( )_<Ld/2—ll)( - /et )<@)

< nld/2-1+1,-3d/2

=

So, we have

<n9,

On the other hand, we can use Corollary 2.19 to bound (37 By*.
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5.1.1 Discussion. Itis natural to ask whether one could avoid the complication
of this section by setting = {1, ... , d}, or even choosingj to be the bedl-set in
{1,...,d+ k}forsome constarit. Itis possible to show that the probability that all
d-by-d minors of a perturbed-by-(d + k) matrix have condition number at mast
grows like (/de/o)¥. Thus, the best of these sets would have reasonable condition
number with polynomially high probability. This bound would be sufficient to
handle our concerns about the magnitudg ofrhe analysis in Lemma 5.18 might
still be possible in this situation; however, it would require considering multiple
possible splittings of the perturbation (for multiple values9f and it is not clear
whether such an analysis can be made rigorous. Finally, it seems difficult in this
situation to apply the trick in the proofs of Lemma 5.27 and 5.15 of summing over
all likely values forx. If the algorithm is giverr as input, then it is possible to
avoid the need for this trick (and an such an analysis appeared in an earlier draft
of this article). However, we believe that it is preferable for the algorithm to make
sense without taking as an input.

While choosingl in such a simple fashion could possibly simplify this section,
albeit at the cost of complicating others, we feel that once Lemma 5.3 has been
improved and the correct concentration bound has been obtained, this technique
will provide the best bounds.

One of the anonymous referees pointed out that it should be possible to use
the rank revealing QR factorization to find &rwith almost maximakmin (4))

(see Chan and Hansen [1992]). While doing so seems to be the best choice algo-
rithmically, it is not clear to us how we could analyze the smoothed complexity of
the resulting two-phase algorithm. The difficulty is that the assumption that a partic-
ular | was output by the rank revealing QR factorization would impose conditions
on A that we are currently not able to analyze.

5.2. BOUNDING THE SHADOW OF LP’. Before beginning our analysis of the
shadow ofLP’, we define the set from which is chosen to beA; 42, where
we define

A={a:{a]|1) =1}, and
As={a:{a|l)=1ando; > 4§,Vi}.

The principal obstacle to proving the bound Ed¥ is that Theorem 4.1 requires
one to specify the plane on which the shadow of the perturbed polytope will be
measured before the perturbation is known, whereas the shadow relevant to the
analysis ofLP’ depends on the perturbation—it is the shadow @pgan(Aa, z).
To overcome this obstacle, we prove in Lemma 5.18 thaLiH(Az(A)) > ko/2,
then the expected size of the shadow dBpan(Aa, z) is close to the expected
size of the shadow ont8pan(Aa;, z), wherea is chosen fromAo. As this plane
is independent of the perturbation, we can apply Theorem 4.1 to bound the size
of the shadow on this plane. Unfortunatelyis arbitrary, so we cannot make any
assumptions aboust,in (AI(A)). Instead, we decompose the perturbation into two
parts, as in Corollary 4.20, and can then use Corollary 5.4 to show that with high
probability Smin (AI(A)) > ko/2. We begin the proof with this decomposition, and
build to the point at which we can apply Lemma 5.18.

A secondary obstacle in the analysis is thandM are correlated wittd and
y. We overcome this obstacle by considering the sum of the expected sizes of the
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shadows wher and M are fixed to each of their likely values. This analysis is
facilitated by the notation

def

'TZ/(A, |, a, K, M) = ’ShadOWAla,z (al, ..., Qp, y/) R
ey M ifi el
wherey, =
y, VdM?/4¢  otherwise.

We note that
S;(A’ y. 7, a) = '];’ (A’ Z(A), o, ollg Suin (Az(4)) | ’ 2llg(max H(Yi,ai)\l)1+2> ]

LEMMA 5.15 (LP). Letd>3andn>d+1. LetA =[a1,...,an] € R™Y,
y € R"andz € RY satisfymax [|(¥i, @i)| € (1/2, 1]. For anyo > 0, let A be
a Gaussian random matrix centered Atof standard deviatiow, and lety by a
Gaussian random vector centeredspbf standard deviatiow . Let o be chosen
uniformly at random from Ag. and letZ be a collection of3ndInn randomly
chosen d-subsets pi]. Then,

LE S y.T.0)]

< 326nd(Inn) Ig(dn/ min(1, o)) D (d’ 0 min(L, o%) ) |

" 12,960085n14In>° n
whereD(d, n, o) is as given in Theorerd.1.

PrOOF. Instead of treatingd as a perturbation of standard deviatiorof A,
we will view A as the result of applying a perturbation of standard deviatgon
followed by a perturbation of standard deviatiapnwhereré + 12 = o2. Formally,
we will let G be a Gaussian random matrix of standard deviatipoentered at
the origin,A = A + G, G be a~Gau~ssian random matrix of standard deviation
centered at the origin, and = A + G, where

. def Ko
1= ——F—,
6d3/Inn

andt? = 02— . We similarly decompose the perturbationtto a perturbation
of standard deviatiomp from which we obtainy’; and a perturbation of standard
deviationt; from which we obtairny. We willleth = y — 3.

We can then apply Lemma 5.16 to show

-1
FBI’~ [Smin (AI(A)) < K0/2] < 042(2) . (39)
A, G

One difficulty in bounding the expectation @f is that its input parameters are
correlated. To resolve this difficulty, we will bound the expectatiory bby the
sum over the expectations obtained by substituting each of the likely choices for
andM.

In particular, we set

M = [2Nox1+2: miax||()7i, @)l —3vdInnry <x < miax||()7i, ai)ll +3vdinnry}.
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We now define indicator random variabMsW, X, Y, andZ by
V=[Ml =2,
W = [ max|i(%, @)l < 1+ 3/(d+ D)inno |,
X = [smin (Az(a)) = k0/2],
Y = [ZL'gsﬂin(AﬂA))J € IC] , and
Z = [2lomaxlionadii+2 ¢ pq],
and then expand

E [S'(A y,Z, o)

I,Ay
= E [S(A,y,T,0)VWXYZ+ E [S(A, y,Z, a)(1—-VWXY]].
7,Ay,« I,A Y.«
(40)
From Corollary 5.5, we know
-1
— Llg Smin (Az(a)) | n
Pr [not(v)] = Pr [2 ¢ /c] <042 ) (41)

Similarly, Corollary 2.19 implies for anyl andsj andn > d > 3,

-1
Pr [not(z)] = Pr [2Memasiti.adll+2 o Aq] 50.0015(”) . (42)
G.hT G.hI d

From Corollary 2.19, we have

-1
n

Pr [not(W)] < n=29C@+D+ < 0.0015( ) .
Ay d

Forip an index for whichi|(yi,, ai,)|l > 1/2, Proposition 2.22 implies
-1
Pr[not(V)] < _Pr [||(§/io, ai)ll <9v/(d+1)In nrl] < 0.0l((r;) .
A %ig»Yig

By also applying inequality (39) to bound the probability of nox(we find

-1
n
Alf’yr’z[(l —VWXYZ=1] < O.86(d) .
As
S'(4,y,7,a) < (2) (by Proposition 5.2)

the second term of (40) can be bounded by 1.
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To bound the first term of (40), we note

E [S'(A, y.Z,x)VWXY 2
,Ay,«

=

[T1

|:VW > E [T'(A.I(A). o, M)XW]:|. (43)

LAY kek.Mem G:h.cx
Moreover,

E [T (A Z(A), o, k, M) XW]

G.ha
= . E ZT/(A’ l’ a, K, M)W[Smm(lal) = KO/Z][I(A) = I]:|
G.ho| g
< E Z’T/(A, I, o, k, M)W[Smin(AI)Z’CO/Z]j|
G.h,a | leZ

IA
pz
=M

ZT(A, |, e, ke, M)|W andsmin(4,) > K0/2:|
allez

7 ™

E [T'(A 1, k, M)|W andsmin(4) > ko/2]

B

G

T1
= (c.0nP (d’ & (2 + 3V/dInno)(vVdM2/4¢ M)

4‘[1/(
< 3(6.01)nd(Inn) (D (d, n, o BMU)(\/HM))> .

=

) , bylLemmab.17,

N

< i 4‘L’1K
- IE,@ _VWKE,C%;M 3@0Lnd(nnD (d’ " 2+ 3/dInne)(vd M))}

3(6.01)nd(In n)(V |M]) || WD (d’ "2 3%?;?%) maXW)))]

_ 47, m|n(’C)
. _6(6.01)nd(|n n) || WD (d’ n, 2+ 3v/dInno)(vd max(/\/l)))}

2‘15]_/(0
< 6(6.01)nd(Inn) K| D(d’ " Jd@+ 3v/dno)+ wmo)) ’

where the last inequality follows from ma¥{) < 1+ 6./(d + 1) Innoc whenW
is true.
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To simplify, we first bound the third argument of the functibrby:

2‘L’;|_K()

Vd(2 + 3v/dInno)(1+ 6./(d+ 1)Inno)

1 /cg
~ 3d3v/Inn /d(2 + 3vdInno)(1 + 6,/(d + 1)Inno)
B 1 1 2 o2(min(L, 0))?
~ 3d%5Inn <1zd2nwm> 2+ 3J/dInno)(1+ 64/ + I)nno)
. 1 min(L, o%)
= 432075n14(Inn)%5 (2 + 3/dnn)(1 + 6./(d + 1) Inn)
- 1 min(1, o)
~ 43247°n14(Inn)1> 30dInn
B min(1, o4
12 960d85n14In%°n’

where the last inequality follows from the assumption that d > 3.
Applying Proposition 5.6 to showC| < 9lg(dn/ min(1, o)), we now obtain

min(1, o) )
12,960d85n141n%5n

min(1, o) ) .
" 12,960d85n14In%5n ) °

(43) < 6(6.01)|K| nd(Inn)D (d, n,

< 325d(Inn)Ig(dn/ min(1, ¢))D (d, n

LEMMA 5.16 (FROBABILITY OF SMALL sﬂin(AI(A))). For A, A, andZ as de-
fined in the proof of Lemm&a 15,

-1
~ n
Pr in (A 2[ <042 .
A [Smin (Az(4)) < Kk0/2] < <d)
PROOF Letl =7(A), we have

Pr[smin(A)) < ko]

Pr [Smin(AI) = KO/Z] = Pr [Smin(Al) < K0|Snin(A|) < KO/Z]‘

From Corollary 5.4, we have

~1
Pr [Smin (A1) < Kq] < o.417<2) .
On the other hand, we have
Pr [smin(A1) > ko|Smin(A1) < k0/2]
< Pr[smin(A1) > xo andsmin(A) < ko/2]

<PrlllA — Al = xo/2]. by Proposition 2.6 (b),
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< af [max|lai — &l = xo/2V/d], by Proposition 2.4 (d),
I

= Primax|lai — aill = 3d*?vInnty]
|

< n—2.9d+l’

by Corollary 2.19. Thus,
0.417(%) m

forn>d>3. [

LEMMA 5.17 (Rom a). Let | be a set ir([Q]) and letas, ..., a, be points
each of norm at most + 3,/(d + 1) Inno such that
~ K
Srin(41) = 7.
Then,

E [Shadowy . (a1, ..., an; )]

A,aEAl/dz

< i
< (601p (d’ " (24 3vdInno)(max y// min y{)) - 49

PrRoOOF  We apply Lemma 5.18 to show
E [|Shadowy,a.: (a1 ..., an y)|]

A aeh p
<6 E [IShadow,s . (a1, aniy)|] +1
< sggaA?)(E [|Shadow; 5 , (a1.....any)|] +1

T1
<6D(d,n, , +7
( (24 3vVdInno)(max y// min; y{))

T1
= (eonp (d’ " 2+ 3/dinno)(max v/ min yi’)) |

by Corollary 4.21 and fact thab(n,d, o) > 58,888 678 for any positive
ndo. O

LEMMA 5.18 ((HANGING aa TO &). Let | € ([Q]). Letaq, ..., a, be Gaussian
randoIn vectors ifRY of standard deviatiorr;, centered at point&y, ..., an. If
Smin (A1) = Ko/2, then

E [|Shadowy,q.: (a1, ... an;y)|]

A,aEAl/dz

< 6,4,56/:@ [|Shadow; 4 , (a1.....an¥')|] + 1.
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ProOOF.  The key to our proof is Lemma 5.19. To ready ourselves for the appli-
cation of this lemma, we let

Fa(t) = |Shadow ; (a1, ..., an; ¥)

’

and note tha 4 (t) = Fa(t/ IItll). If |A — A|| < 3d+/Innzy, then

~_1 ~_1 ~
[t —A"a] <[Aa7]]A- 4]
2 2\ 3d+/Innkg 1
<|—)3dvl <(—)7<—.
- <Ko) nim = Ko/ 12d3y/Inn ~ 2d?
By Proposition 2.6(b),

Smin (A1) = Smin (A1) — | A — A|
> ko/2 — 3dvInnt

Ko 1
> —1—-— —
- 2( 2d2)

ko (17
>~ | —
- 2\18/)°
ford > 3. So, we can similarly bound

9

—_— _l~ —
HI A AH = 17d2'

We can then apply Lemma 5.19 to show

E [IShadowy q. z(a1,...,an; y)|] <6 E [|Shadow; 4 .(a1,...,an; ¥y)l].
ach g2 aeA ’

From Corollary 2.19 and Proposition 2.4(d), we know that the probability that
|A—A| > 3dvInnz;isatmosn=2%+1 AsShadowy  ,(a1, ..., an;y') < (§),

we can apply Lemma 2.9 to show

E [aeE/dZ HShadOWA'a’Z(al’ S Oy y/)”] =

GE[aEAHShadOWAl&,z(al’“"a“;y/)’]] +1. O
To compare the expected sizes of the shadows, we will show that the distribution

Span(Aa, z) is close to the distributioSpan(A&, z). To this end, we note that

for a givena € Ag, thea € Aforwhich A« is a positive multiple ofA & is given

by

o det ATMA&
a=VYa)= —. 45
@) (A~tAa | 1) (49)
To derive this equation, note thaté is the point inA (@, ..., aq) specified

by &. A"t A& provides the coordinates of this point in the badisDividing by
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(A"YA& | 1) provides thex € A specifying the parallel point iAff (a1, . . ., aq).
We can similarly derive

Our analysis will follow from a bound on the Jacobiandof

LEMMA 5.19 (APPROXIMATION OF  BY &). Lelt]-“(a:) be a nonnegatwe func-
tion depending onlyom/||a:|| If6 =1/d2, |1 — Al <e,and||l —A7A| <
€, Wheree < 9/17d?, then

aeEAd [F(Aa)] < 6&50 [F(A&)].

PROOF  Expressing the expectations as integrals, the lemma is equivalent to

VoI (&) S F(Aa)da < VOl (o) Jacn, F(A&)da .
Applying Lemma 5.21 and setting = ¥ (&), we bound
1
VoI (A) Joen F(Aa) da
1
F(Aa)d
= Vol (A) Jucainy” A%
= F(AY
Vol (A) Jaen,” AV ”‘
. 1 8\Il(a)
B Vol (AB) achAy
(asAé is a positive multiple ofA\ll(a) andF(x) only depends or/ ||x||)
AW (&) 1 .
<L'l%( & )VOI (B Jaop T AG)dE
V(&) Vol (Ap) 1 5 i
=n2x( %" ) (Varcan) v e aen, ] AN

(1+€) ( 1 )d 1 / .
< F(Aa)d
= L= evaP—e) \1=ds) VoI (Ag) Jucn, T AV E
(by Proposition 5.20 and Lemma 5.24)

<6 !
Vol (AO) achg
fore <9/17d% 6§ = 1/d?andd > 3. [
PROPOSITIONS.20 (MOLUME DILATION ).

e (a)

F(A&)dé,
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Fic.5. I, canbe understood as the projection through the origin from one plane onto the other.

PROOF The setA; may be obtained by contracting the & at the point
(1/d,1/d, ..., 1/d) by the factor (1— d§). [
LEMMA 5.21 (RROPERSUBSET). Under the conditions of Lemntal9,

As C Y(Ao).
PrRoOOF  We will prove

UH(As) C Ao

Leta € As, o = A A andé = a’/(a’ | 1). Using Proposition 2.2 to show
lall < |lall4 = 1 and Proposition 2.4(a), we bound
o > o — o —of| =8 —[la—o

> 85—l —A "A|al =8 —€ > 0.

So, all components o&’ are positive and therefore all componentséof =
o'/ (e | 1) are positive. [J

We will now begin a study of the Jacobian Wt This study will be simplified
by decomposingy into the composition of two maps. The second of these maps is
given by:

Definition5.22 (C,.,). Letw andwv be vectors in R and letl', ,(x) be the
map from{z : (x | u) = 1} to{z : (x | v) = 1} given by

&
N, o(x) = .
() Z10)
(See Figure 5.)
LEMMA 5.23 (JACOBIAN OF ).
v (a ~ 1

TR o
@ (4*4a 1) |(4"4) 1‘
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PROOF Leta = W(&)and leta’ = A *A&. As (& | 1) = 1, we have

<a’ | (A‘1A>T 1> =1

S0,a = 'y (), whereu = (A *4)T1 andv = 1. By Lemma 5.25,

‘3_0‘ :‘aa o :det(w)detmlﬁ)
i da’ || dx o’
— det(4~14) I g
(atAa 1) |(A74) 1

LEMMA 5.24 (BOUND ON JACOBIAN OF W). Under the conditions of
Lemmab. 19,

'a\p(&) - (1+€)d
dad | T L—eJd)¥(1—¢)
forall & € Ag.
PROOF.  The condition||]| — A7*A| < e implies [A™24]] < 1+ ¢, so

Proposition 2.4(e) implies
det(A1A) < (1+¢),

Observing thati1] = v/d, and||l — (4 A)T|| = ||l — (A~ "A4)|l, we compute
@ = 2 - 1- @ T = va- |1 - @7
= Vd — evd.
So,
1] 1

T = 1 :
' (474) 1H €
Finally, as(& | 1) = 1 and|&| < 1, we have
(A7*A& | 1) = (& |1 +(A A& —a | 1)
=1+(A*4A-1)a 1)

>1—|A7TA 1] &l
>1-— eV/d.
Applying Lemma 5.23, we obtain
~ d
D) _ger(a1d) X B L
« (4 a1 | (47" 4) 1’ (- evd)yi(l-e)

[
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LEMMA 5.25 (ACOBIAN OF Iy, 4).

oz (x| v)° [l

PROOF.  Consider dividing R into Span(u, v) and the space orthogonal to
Span(u, v). In the @ — 2)-dimensional orthogonal spadg, , acts as a multipli-
cation by ¥ (x | v). On the other hand, the Jacobian of the restrictiofl 9f, to
Span(u, v) is computed by Lemma 5.26 to be

So,

d-2
)det(aru,v(w))‘:< L
oa @lv)) (@ oPlul (@] o) ul

LEMMA 5.26 (ACOBIAN OF ', ,, IN 2D). Letu and v be vectors inR? and
let "y, ,(x) be the map fronfx : (z | v) = 1} to{z : (z | v) = 1} by

€T

Fu,v(w) = (x| ’U).

Then,

det(aru,v(w)>‘ - Iol

dz x| v)?||ul

PROOF LetR = (Cl) _é> the 90 rotation counterclockwise. Let

ut = Ru/ ||u] and vl =Rv/|v]|.

Express thex such thatiz | u) = 1, asz = u/ ||u||®> + xu'. Similarly, parame-
terize the ling{x : (x | v) = 1} by v/ ||v||? + yv'. Then, we have

Tuw (U/ 1wl + xu') = v/ 0] + yot,
where

(u/ lwl? 4+ xut | vt)  (u/lluwl®+ xut | vt)

(u/ llwll® +xut | v) (x| v)
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So,

(752
x(2)

(oYt + xo o) = ot + o)

lw llw

(x| v)?
_ (“L‘”mefnz ”>_<“L‘”)<nsuz ”L>
(@ | v)?

ol ({u]o*) (7%

o)~ (o [mon) (men

lull (2 | v)?
2 2
ol <(ﬁ o) (ut ﬁ>> |
= 5 , asR is orthogonal andR? = —1,
lull (x| v)
= vl 5 as{ v ,uL} is a basis. O
lull (x| v) [l

5.3. BOUNDING THE SHADOW OF LP*. The main obstacle to proving a bound
on the size of the shadow bP™ is that the vectora;" /y;* are not Gaussian random
vectors. Toresolve this problem, we will show that, in almost every sufficiently small
region, we can construct a family of Gaussian random vectors with distributions
similar to the vectors;"/y;". We will then bound the expected size of the shadow
of the vectorss;" /y:* by a small multiple of the expected size of the shadow of these
Gaussian vectors. These regions are defined by splitting the original perturbation
into two, and letting the first perturbation define the region.

As inthe analysis ofP’, a secondary obstacle is the correlatior ahdM with
A andy. We again overcome this obstacle by considering the sum of the expected
sizes of the shadows wherandM are fixed to each of their likely values, and use
the notation

TH Ay, M) & |Shadow ) .+ (af /7. ..., at/y?)], if«/aM./4/< >1
0 otherwise

where

ai = (¥ — ¥1)/2, ai),

Y[ = (Y +y)/2, and
;[ ifi el
= VdM?/4¢  otherwise.
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By Lemma 3.10 and Proposition 3.7, we then have
S;(A, y,T) = sz+ (A, v, ollg Snin(Aza)) ] , 2llg(max II(Yi,ai)H)H-Z) ]

LEMMA 5.27 (P+). Letd>3andn>d+1.LetA =[ay, ..., an] € R™Y,
y € R"andz € RY, satisfymax ||(¥i, ai)|l € (1/2, 1]. For anyo > 0, let A be
a Gaussian random matrix centered Atof standard deviatiow, and lety by a
Gaussian random vector centeredwpof standard deviatiow. LetZ be a set of
3ndInn randomly chosen d-subsetsof. Then,

E [S*(A. y.7)] <491g(d/ min(s, 1))D (d. n min(L, o°) +
Ayt Y, 4] =491 ’ * T 223(d - 1)1/2n14(In n)5/2 )

whereD(d, n, o) is as given in Theorer. 1.

PROOF For pg and p; defined below, we leG and G be Gaussian random
matrices centered at the origin of standard deviatjgnand p1, respectively. We
thenletA = A+ G andA = A + G. We similarly leth andh be Gaussian
random vectors centered at the origin of standard deviatigasdp1, respectively,
andlety =y + handy =y + h. If

o < 3/1/4
~ J2en(60n(d + 1)%2(Inn)3/2)’

we setp; = o. Otherwise, we set; so that

3\/1/4 +d(02 — p?)
~ /2en60n(d + 1¥2(Inn)%?)’

P1

and setp3 = 02 — p2. We note that

3,/1/4 + dp?
01 = min ( 0 ) )

7 /2en(60n(d + 1)¥2(Inn)??)

As in the proof of Lemma 5.15, we define the set of likely valuesvior

e o 9/(d+1I)Inn
M = {2“9 +2 . (miaXII(Yi, ai)||> (1— (60n(d + 1¥2(In n)a/z)) =X

< (miaXII(Y/i, ai)II) <1+ S ) }

(60n(d + 1)¥?(Inn)%/2)

Observe thatM| < 2.
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As in the proof of Lemma 5.15, we define random variables:
w = maxi(s, @)1 = 1+ 3/@+ Dinngo|.
J1/44dod
Vv2en ’

Y= [2L'9":""i"(“‘f<f4>)J € IC], and
7 — [zﬂgmax I(yi.a)l1+2 < /\/l]

In order to apply the shadow bound proved below in Lemma 5.28, we need

X = |:miaXI(§/i, ai)l >

M = 3max|(%i. ai)ll
and
M > (60n(d + 1)*?(Inn)¥?)p,.
From the definition ofM and the inequality

1—9/(d + 1) Inn/(60n(d + 1)*?(Inn)*/?) > 3/4,

the first of these inequalities holds #f is true. Given that is true, the second
inequality holds ifX is also true.
From Corollary 5.5, we know

-1 -1
|19 Snin (Az(4)) | n n
Pr [not(Y)] < Pr [2 §ZIC] <042( ) =oax(, )
(46)
From Corollary 2.19, we have

-1
n

Pr [not(W)] < n=29@+1+1 < 0.0015( ) . (47)

A d+1

From Proposition 2.22, we know

Pr [not(X)]

J2en —24\d+1

To bound the probability that fails, we note that

V1/4+dod

v2en

~1/4—|-dp§:| < n @+ < i( n )_1. (48)

=Pr |:miax||(§/., ai)ll <

miaXIl(Vi, ai)ll >

and

miaXH(yi —¥i,ai — @)l < p13y/(d+1)Inn
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imply Z is true. Hence, by Corollary 2.19 and (48),

-1
Pr[not(Z)] < n~29@+D+1 4 p=(+) < o.044( n ) . (49)
d+1
As in the proof of Lemma 5.15, we now expand
+
LB 1574, 3, 7)]
= E [ST(A,y,I)WXYZ+ E [ST(A4,y,I)(1—-WXYZ]. (50)
I,Ay 7,Ay
To bound the second term loy we apply (47), (48), (46) and (49) to show

n -1
Eg[not(\N) or not(X) or not(Y) or notZ)] < n(d N 1) ,

and then combine this inequality with Proposition 5.2.
To bound the first term of (50), we note
+
I’Ey [S (A, vy, I)WXYq

< WX Z E [TH(A,y,«, M)XZ]}

Bl

7.AY L keK,MeM G.h
< E_[WX Y EI[T'(4y.«M)IXZ
7.Ajy L kek,MeM G.h
< E |wx Y e (d, n, M) +1|. byLemma5.28, (51)
LAY | rek.MeM 3(max ;)
i oM
< E |WKX eD d,n,7)+1
Z,A,@ L KEIC,ZMGM < 3(M2/4K)2 i|
I 160 min(K)?
E |WX|K|IM|eD|d - 1]. 52
SI‘M_ IKIIM| e <,n, 3max(M)3> ] (52)
As min(K) > «ko/2 andW implies max(\) < 9(1+ 3./(d + 1) Inno),
160 min(K)? - 1603 min(1, 0)?
3max(M)® ~ 3.4(9(1+ 3/(d + I)Inno)’(12d2n7y/Inn)°
- 16 min(1, 0°)
-~ 3491+ 3/[d+ 1) n)3(12d2n7\/ln n)2
min(1, o)

> .
= 223(d + 1)1/2n14(In n)5/2

Applying this inequality, Proposition 5.6, and the fact tiaimplies| M| < 2, we
obtain

|

(52) < 491g(nd/ min(o, 1))D (d, n, min(1, o) ) .

223(d + 1)11/2nl4(|n n)5/2
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LEMMA 5.28 (P* SHAaDOW, PART 2). Letd > 3andn>d + 1. Lety be a
Gaussian random vector of standard deviatigncentered at a poing, and let

a1, ..., a, be Gaussian random vectors R of standard deviatiom; centered
atas, ..., an respectively. Under the conditions
y, > 3(I%. @ill). Vi, and (53)
y, > 60n(d + 1)*?(Inn)*?py, Vi, (54)
let

ai = ((y, — ¥i)/2. ai), and
Yi© =+ w)/2
Then,

+ /1yt + iyt
(yl,al),?,(yn,an) [|Shadowg z). -+ (a1 /Y1 .- ... af /yi)]]

< eD (d’ n M) 1.

" 3(max y/)?
ProOOF We use the notation

(pro(Mi), pi(hi, §)) = af /v = <

Y — % —hi 2@ +§) )
Y+ ¥ +h Y +%+h/)
wheregy, ..., §, are the columns ofy and fiy, ..., h,) = k as defined in the
proof of Lemma 5.27.

The Gaussian random vectors that we will use to approximate these will come
from their first-order approximations:

(i.o(hi). B(hi, §1))
_ (Yi/ — G —hQy /(Y + %) 2@ + 2§ — hi2a /(Y] + f’i)))
- Y+ ¥ ’ Y + % '
Let 7 (Pi.0, p;) be the induced density oi(o, p;). In Lemma 5.30, we prove
that there exists a s& of ((p1.o, p1), - - - » (Pn.0, Pn)) SUch that

-1
n
Pr [((P10, P1)s---» (Pno, Pn) € B] > 1— 0'0015(d + 1) ’

[Ty vi(pio.pi)
and for (L0, P1). - » (Pn.o» Pn) € B,
n n
1_[ vi(Pio, Pi) < 91_[ 14 (P10, Pi)-
i=1 i=1

Consequently, Lemma 2.10 allows us to prove
. E [|Shadowp, ).+ (P10, P1). - - - » (Pn.o. Pn))|]
[Tiz1 vi(pio.pi)

<e n AE [|Shad0V\(O,z),z+((pl,0» pl)v e (pn,Oa pn))” +1
[TiZ1 %i(pio.pi)
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By Lemma 5.29, the densiti@srepresent Gaussian distributions centered at points
of norm at most

<yi/_§/i 2a;
Y+ %Y+

whose covariance matrices have eigenvalues at most

)“ < /5, (by condition (53))

(9,01/2y{)2 < (9/2(60n(d + 1)*?(Inn)¥?))?2 < 1/9d Inn, (by condition (54))
and at least
(901/8y))*.
Thus, we can apply Corollary 4.21 to bound

n AE [‘ShadOV\(O,Z),z+((pl,0, pl): cees (pn,O» pn))u
[TiZ1 %i(pio.pi)

<ep(d.n. 9p1/8 max y, | ‘1
(14 +/B)(max y// min; y)

<eD (d,n m> 1,

" 3(max y/)?
thereby proving the Lemma.[]

LEMMA 5.29 (7). Under the conditions of Lemn%28, (i o(hi), H(hi, §;)) is
a Gaussian random vector centered at

(s 7ew)
M/+S'/|’yl/+§/| ’

and has a covariance matrix with eigenvalues betw@®gr/8y/)? and(901/2y)?.

PROOF  Because fti o(hy), p(hi, ;) is linear in @i, §) and @, g;) is a
Gaussian random vectorﬁ)i(o(ﬁi), p(hi, §;)) is a Gaussian vector. The statement
about the center of the distributions follows immediately from the fact ﬁnaﬁ()
is centered at the origin. To construct the covariance matrix, we note that the matrix
corresponding to the transformation from (g;) to (pi.o(hi), p(hi, §;)) is

-2y,

(Y +%)% 0,...,0
—25 1
(Y/+¥)?
—28; »

 def

O+5)2 | 2|
: YitH

—28 g
(Y/+%)?

Thus, the covariance matrix op(o(hi), p(hi, §;)) is given byp?CT C;.



Smoothed Analysis of Algorithms 457

We now note that

Yi
-1/0,...,0 Yit+¥i’ Q,....0
0 —
/ & i+i
Yt+die | o _| &
2 I i+ 0
0 ) &g
RVES7

As all the singular values of the middle matrix are 1, and the norm of the right-hand
matrix is ||(%i, @i)ll /(Y + %), all the singular values d; lie between

/2~ (1_ Il()fi,ai)ll) and /2~ (1+ II()fi,ai)H)'
Yi +¥i Yi +¥i Yi T ¥ Yi + ¥

The stated bounds now follow from inequality (53).]

LEMMA 5.30 (ALMOST GAUSSIAN). Under the conditions of Lemnta28, let
vi(pi.o, p;) be the induced density dp; o, p;), and letd; (Pi.0, p;) be the induced
density on(fi o, p;)- Then, there exists a set B @p1.0, p1). - - - » (Pn.0, P,,)) SUCh
that
(@) Pr[((PLo. P1). --- - (Pno. Py)) € B] = 1—-0.0015,7,)"; and
(b) forall ((pyo, P1). - - (pn 0. Pn)) € B,

1_[\)|(p| 0, Pj) < el_[vl(pl 0, Pi)-

i=1

PROOF. Let
B _ { ((Pr.o(M2). P2, §2)). - - (Pro(fn). Paln, §i)) }
- such thaf (hi, §;)| <3/ + D)nnpy, forl<i<n]’

From inequalities (53) and (54), and the assumptﬁnm < 3J/(d+1)Innpy,
we can showy, + ¥ + h; > 0, and so the map fronhy, g,), ..., (hn, g,) to
(P1.0s P1)s - - -» (Pn.0s Py) IS invertible for (P10, p1), - - -, (Pn.0, Pn) € B. Thus, we
may apply Corollary 2.19 to establish part (a).

Part (b) of follows directly Lemma 5.31.01

LEMMA 5.31 (ALMOST GAUSSIAN, SNGLE VARIABLE ). Under the conditions
of Lemmab.28, for all h; and §; such thati|(h;, §;)Il < 3/(d + 1)Innps,

vi(pi.o(hi), pi (hi, §)) < exp(Y/n)i (pio(hi), pi (i, §i))-
PrRoOF. Let u(h;, g;) be the density onf, gi). As_observed in the proof
of Lemma 5.30, the map fromhy(, g;) to (p o(h) p,(hl, gi)) is injective for

Il(hi, g)ll < 3J(d + 1)Innps; so, by Proposition 2.26, the induced density on
Vi is

vi(Pi,0, pi) = TM(FN, g:), where @i 0, p;) = (pi.o(M), p; (i, §;))-
det pl,th)
) ( a(hi.g;) )‘
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Similarly,
Vi (B0, pi) = Wﬂ(ﬁi, gi), where @i o, p;) = (bi,o(ﬁi), ﬁi(ﬁi’ 9:))-
‘d6t< (.30 )‘
The proof now follows from Lemma 5.32, which tells us that
hoa
M(A"?') < exp(Q81/n),
n(hi, gi)
and Lemma 5.33, which tells us that
3(Pi.0.P1)
det (o)) < exp(1/10n) -
det 3(pi.o.Pi) - ’
a(hi.g;)

LEMMA 5.32 (ALMOST GAUSSIAN, POINTWISE). Under the conditions of
Lemma5.31, if pio(hi) = Po(hi), pi(hi.gi) = pi(hi. i), and JIhi, gi|| =<
3J/(d + 1) Innpq, then

M(ﬁi, SNJi)
~ Q81/n).
R a) < exp(Q81/n)

PROOF  We first observe that the conditions of the lemma imply
A — F‘i(yi/ + %)

= W) and ji_gi(yi"‘yi)
Y+ ¥ +h

RS +h
We then compute
hi, g; -1 . . 2hi (y/ + i) + h?
i, 91) =exp(—2||(hi,gi)||2< O+ %) 2))
w(hi, g;) 201 (i + % + hi)

Assuming||(h;, gl < 3J/(d + 1)Innpy, the absolute value of the exponent in
(55) is at most

(55)

9(d + 1)Inn (2& (v + %) + ﬁf)
2 v +%+h)32 )
From inequalities (53) and (54), we find
Y + ¥ - 40
(Y + ¥ + )2 = (37Pn(d + 1¥/X(Inn)32p;”

Observing thah; < (1/40)(y; + %), we can now lower bound the exponent in (55)
by

9d +1)Inn ( 2hi (81/80)40

2 (37Pn(d + 1)¥2(Inn)3¥2p, ) =08un -
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LEMMA 5.33 (ALMOST GAUSSIAN, JACOBIANS). Under the conditions of

Lemmab.31,
det ( P2y ‘
L_ﬁﬂy@lﬁgwmmmqm.

PrROOE We first note that

o 2d+1 !
det (2RLD) | _ ger(cy = 2N

a(hi, g;) (¥ + §i)a+2
To computﬂdet(—-’—agg‘]jog_")))l, we note that
api oy
' p~.,o = — Y ~——, and
ahi (¥ + % +hi)?
apj(hi.g)| [0 if j #k
G k ~ |y55r  otherwise

Thus, the matrix of partial derivatives is lower-triangular, and its determinant has

absolute value
‘det(a(pi‘o’ pi))' . 20ty

ahi, g) /1 (y + % + hy)d+2
Thus,
’det(g((ﬁ?:g.l))ﬂ _ <y|’+ ¥+ ﬁi)d+2
det(Lperd)| A ¥+,

3ﬁi >d+2
< 1+ — s by (53 ,
(1+3 Y (59
3(d + 2)h; )
op 2020
2y,
< exp(Q094/n), byd > 3 and (54). ]

6. Discussion and Open Questions

The results proved in this article support the assertion that the shadow-vertex sim-
plex algorithm usually runs in polynomial time. However, our understanding of
the performance of the simplex algorithm is far from complete. In this section,
we discuss problems in the analysis of the simplex algorithm and in the smoothed
analysis of algorithms that deserve further study.
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6.1. FRACTICALITY OF THE ANALYSIS. While we have demonstrated that the
smoothed complexity of the shadow-vertex algorithmis polynomial, the polynomial
we obtain is quite large. Yet, we believe that the present analysis provides some
intuition for why the shadow-vertex simplex algorithm should run quickly. Itis clear
that the proofs in this article are very loose and make many worst-case assumptions
that are unlikely to be simultaneously valid. We did not make any attempt to optimize
the coefficients or exponents of the polynomial we obtained. We have not attempted
such optimization for two reasons: they would increase the length of the paper and
probably make it more difficult to read; and, we believe that it should be possible to
improve the bounds in this paper bimplifyingthe analysis rather than making it
more complicated. Finally, we point out that most of our intuition comes from the
shadow size bound, which is not so bad as the bound for the two-phase algorithm.

6.2. FURTHERANALYSIS OF THE SIMPLEX ALGORITHM

—While we have analyzed the shadow-vertex pivot rule, there are many other pivot
rules that are more commonly used in practice. Knowing that one pivot rule usu-
ally takes polynomial time makes it seem reasonable that others should as well.
We consider the maximum-increase and steepest-increase rules, as well as ran-
domized pivot rules, to be good candidates for smoothed analysis. However, the
reader should note that there is a reason that the shadow-vertex pivot rule was
the first to be analyzed: there is a simple geometric description of the vertices
encountered by the algorithm. For other pivot rules, the only obvious character-
ization of the vertices encountered is by iterative application of the pivot rule.
This iterative characterization introduces dependencies that make probabilistic
analysis difficult.

—Even if we cannot perform a smoothed analysis of other pivot rules, we might
be able to measure the diameter of a polytope under smoothed analysis. We
conjecture that it is expected polynomialim d, and Yo.

—Given that the shadow-vertex simplex algorithm can solve the perturbations of
linear programs efficiently, it seems natural to ask if we can follow the solutions
as weunperturbthe linear programs. For example, having solved an instance of
type (4), it makes sense to follow the solution as we'lapproach zero. Such an
approach is often calledmotopyor path-followingmethod. So far, we know of
no reason that there should exist4fior which one cannot follow these solutions
in expected polynomial time, where the expectation is taken over the choice of
G. Of course, if one could follow these solutions in expected polynomial time for
every A, then one would have a randomized strongly polynomial time algorithm
for linear programming!

6.2. DEGENERACY. One criticism of our model is that it does not allow for
degenerate linear programs. It is an interesting problem to find a model of local
perturbations that will preserve meaningful degeneracies. It seems that one might
be able to expand upon the ideas of Todd [1991] to construct such a model. Until
such a model presents itself and is analyzed, we make the following observations
about two types of degeneracies.

—In primal degeneracy, a single feasible vertex may correspond to multiple bases,
I . In the polar formulation, this corresponds to an unexpectedly large number of
thea;is lying in a d — 1)-dimensional affine subspace. In this case, a simplex
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method may cycle—spending many steps switching among bases for this vertex,
failing to make progress toward the objective function. Unlike many simplex
methods, the shadow-vertex method may still be seen to be making progress in
this situation: each successive basis corresponds to a simplex that maps to an
edge further along the shadow. It just happens that these edges are co-linear.

A more severe version of this phenomenon occurs when the set of feasible
points of a linear program lies in an affine subspace of fewerdhdimensions.
By considering perturbations to the constraints under the condition that they do
not alter the affine span of the set of feasible points, the results on the sizes
of shadows obtained in Section 4 carry over unchanged. However, how such a
restriction would affect the results in Section 5 is presently unclear.

—In dual degeneracy, the optimal solution of the linear program is a face of the
polyhedron rather than a vertex. This does not appear to be a very strong condi-
tion, and we expect that one could extend our analysis to a model that preserves
such degeneracies.

6.3. SMOOTHED ANALYSIS. We believe that many algorithms will be better
understood through smoothed analysis. Scientists and engineers routinely use al-
gorithms with poor worst-case performance. Often, they solve problems that appear
intractable from the worst-case perspective. While we do not expect smoothed anal-
ysis to explain every such instance, we hope that it can explain away a significant
fragment of the discrepancy between the algorithmic intuitions of engineers and
theorists. To make it easier to apply smoothed analyses, we briefly discuss some
alternative definitions of smoothed analysis.

Zero-Preserving Perturbations One criticism ofsmoothed complexitys de-
fined in Section 1.2 is that the additive Gaussian perturbations destroy any zero-
structure that the problem has, as it will replace the zeros with small values. One
can refine the model to fix this problem by studyr@yo-preserving perturbations
In this model, one applies Gaussian perturbations only to non-zero entries. Zero
entries remain zero.

Relative Perturbations A further refinement is the model odlative perturba-
tions Under a relative perturbation, an input is mapped to a constant multiple of
itself. For example, a reasonable definition would be to map each variable by

X+ X(14+ 0Q),

whereg is a Gaussian random variable of mean zero and variance 1. Thus, each
number is usually mapped to one of similar magnitude, and zero is always mapped
to zero. When we measure smoothed complexity under relative perturbations, we
call it relative smoothed complexitgmooth complexity as defined in Section 1.2
above can be calledbsolute smoothed complexifyclarification is necessary. It
would be very interesting to know if the simplex method has polynomial relative
smoothed complexity.

e-Smoothed-Complexity Even if we cannot bound the expectation of the run-
ning time of an algorithm under perturbations, we can still obtain computationally
meaningful results for an algorithm by proving that it kasmoothed-complexity
f(n, o, €), by which we mean that the probability that it takes time more than
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f(n, o, €) is at mosk:
YxeXn Pgr [C(A, X + 0 maxix)g) < f(n,0)] > 1—e.
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