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Abstract. A q-query Locally Decodable Code (LDC) encodes an n-bit message x as an N -bit code-
word C(x), such that one can probabilistically recover any bit xi of the message by querying only q
bits of the codeword C(x), even after some constant fraction of codeword bits has been corrupted.

We give new constructions of three query LDCs of vastly shorter length than that of previous con-
structions. Specifically, given any Mersenne prime p = 2t −1, we design three query LDCs of length
N = exp(O(n1/t )), for every n. Based on the largest known Mersenne prime, this translates to a length
of less than exp(O(n10−7

)), compared to exp(O(n1/2)) in the previous constructions. It has often been
conjectured that there are infinitely many Mersenne primes. Under this conjecture, our constructions

yield three query locally decodable codes of length N = exp(nO( 1
log log n )) for infinitely many n.

We also obtain analogous improvements for Private Information Retrieval (PIR) schemes. We
give 3-server PIR schemes with communication complexity of O(n10−7

) to access an n-bit database,
compared to the previous best scheme with complexity O(n1/5.25). Assuming again that there are
infinitely many Mersenne primes, we get 3-server PIR schemes of communication complexity

nO( 1
log log n ) for infinitely many n.

Previous families of LDCs and PIR schemes were based on the properties of low-degree multi-
variate polynomials over finite fields. Our constructions are completely different and are obtained by
constructing a large number of vectors in a small dimensional vector space whose inner products are
restricted to lie in an algebraically nice set.
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1. Introduction

Classical error-correcting codes allow one to encode an n-bit string x into in
N -bit codeword C(x), in such a way that x can still be recovered even if C(x)
gets corrupted in a number of coordinates. For instance, codewords C(x) of length
N = O(n) already suffice to correct errors in up to δN locations of C(x) for
any constant δ < 1/4. The disadvantage of classical error-correction is that one
needs to consider all or most of the (corrupted) codeword to recover anything
about x . Now suppose that one is only interested in recovering one or a few bits
of x . In such case more efficient schemes are possible. Such schemes are known
as locally decodable codes (LDCs). Locally decodable codes allow reconstruction
of an arbitrary bit xi , from looking only at q randomly chosen (correlated) co-
ordinates of C(x), where q can be as small as 2. Locally decodable codes have
found numerous applications in complexity theory and cryptography. See Trevisan
[2004] and Gasarch [2004] for a survey. Below is a slightly informal definition of
LDCs:

A (q, δ, ε)-locally decodable code encodes n-bit strings to N -bit codewords
C(x), such that for every i ∈ [n], the bit xi can be recovered with probability
1 − ε, by a randomized decoding procedure that makes only q queries, even if the
codeword C(x) is corrupted in up to δN locations.

One should think of δ > 0 and ε < 1/2 as constants. The main parameters of
interest in LDCs are the length N and the query complexity q. Ideally we would
like to have both of them as small as possible. The notion of locally decodable
codes was explicitly discussed in various places in the early 1990s, most notably
in Babai et al. [1991], Sudan [1992], and Polishchuk and Spielman [1994]. Katz and
Trevisan [2000] were the first to provide a formal definition of LDCs and prove lower
bounds on their length. Further work on locally decodable codes includes Beimel
et al. [2005, 2002], Deshpande et al. [2002], Obata [2002], Kerenidis and de Wolf
[2003], and Wehner and de Wolf [1997]. The length of optimal 2-query LDCs was
settled by Kerenidis and de Wolf [2003] and is exp(n).1 The length of optimal
3-query LDCs is unknown. The best upper bound prior to our work was exp(n1/2)
due to Beimel et al. [2005], and the best lower bound is �̃(n2) [Kerenidis and
de Wolf 2003; Woodruff 2007]. For general (constant) q the best upper bound
was exp(nO(log log q/(q log q))) due to Beimel et al. [2002] and the best lower bound is
�̃(n1+1/(�q/2�−1)) [Kerenidis and de Wolf 2003; Woodruff 2007].

The current state of knowledge raises a natural question: Is the poor rate of known
constructions an inherent property of locally decodable codes? Indeed, Gasarch
[2004, Section 9] and Goldreich [2005, conjecture 4.4] conjecture that the expo-
nential dependence on n, that is, the dependence of the form N = exp

(
n�(1)

)
,

is unavoidable for any constant number of queries. As our results suggest, such
behavior may well not be inherent.

1.1. OUR RESULTS. We give new families of locally decodable codes whose
length is vastly shorter than that of previous constructions. We show that every
Mersenne prime p (i.e., a prime of the form p = 2t − 1) yields a family of three
query locally decodable codes of length exp(n1/t ). The largest Mersenne prime
known currently has t = 32, 582, 657 > 107. Substituting this prime into our

1 Throughout the article, we use the standard notation exp(x) = eO(x).
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theorem we conclude that for every n there exists a three query locally decodable
code of length exp(n1/32,582,657).

It has often been conjectured that the number of Mersenne primes is infinite. If
indeed this conjecture holds, our constructions yield three query locally decodable

codes of length N = exp(nO( 1
log log n )) for infinitely many n. Finally, assuming that

the conjecture of Lenstra [1980], Pomerance [1980/81], and Wagstaff [1983, p.
388] regarding the density of Mersenne primes holds, our constructions yield three

query locally decodable codes of length N = exp(nO( 1
log1−ε log n

)
) for all n, for every

ε > 0.

1.2. APPLICATION TO PRIVATE INFORMATION RETRIEVAL. A q-server private
information retrieval (PIR) scheme allows a user to retrieve the i th bit of an
n-bit string x replicated between q servers while each server individually learns no
information about i. The main parameter of interest in a PIR scheme is its commu-
nication complexity Cq(n), namely the number of bits exchanged by the user and
the servers. Private information retrieval schemes were introduced by Chor et al.
[1995]. Further work on PIRs includes Ambainis [1997], Mann [1998], Itoh [1999,
2001], Beimel et al. [2005], Goldreich et al. [2006], Kerenidis and de Wolf [2003],
Beigel et al. [2006], Woodruff and Yekhanin [2007], and Razborov and Yekhanin
[2006]. Below is a brief summary of known bounds for Cq(n).

The best upper bound for C2(n) is O(n1/3) due to Chor et al. [1995]. The best
upper bounds for larger values of q are Cq(n) ≤ nO(log log q/(q log q)) due to Beimel
et al. [2002]. In particular, Beimel et al. [2002] show that C3(n) ≤ O(n1/5.25),
C4(n) ≤ O(n1/7.87) and C5(n) ≤ O(n1/10.83). The best lower bound for C2(n) is
5 log n due to Wehner and de Wolf [1997].

Private information retrieval schemes are closely related to locally decodable
codes. In particular, our constructions of LDCs yield three server private informa-
tion retrieval schemes with small communication complexity. We show that every
Mersenne prime p = 2t − 1 yields C3(n) ≤ O(n1/(t+1)). Instantiating this with the
largest known Mersenne prime we get C3(n) ≤ O(n1/32,582,658). Assuming that the

number of Mersenne primes is infinite our bound goes further down to nO( 1
log log n )

for infinitely many n. Finally, assuming the density conjecture of Lenstra [1980],

Pomerance [1980/81], and Wagstaff [1983, p. 388], we get C3(n) ≤ nO( 1
log1−ε log n

)

for all n, for every ε > 0.

1.3. OUR TECHNIQUE. All previously known constructions of locally decod-
able codes and private information retrieval schemes are (implicitly or explicitly)
centered around the idea of representing a message x by an evaluation of a cer-
tain low degree polynomial over a finite field. Our constructions take a completely
different approach. We start by reducing the problem of constructing locally de-
codable codes to the problem of designing certain families of sets with restricted
intersections. We use elementary algebra over finite fields to design such families.

The heart of our construction is the design of a set S ⊆ F
∗
p for a prime p that

simultaneously satisfies two properties: (1) There exist two large sequences of
vectors u1, . . . , un, v1, . . . , vn in some low dimensional space F

m
p , such that the

dot products (ui , vi ) = 0 for all i, and the dot products (u j , vi ) ∈ S for all i 	= j.
We refer to this property as the combinatorial niceness of S; (2) For a small integer
q there exists a q-sparse polynomial φ(x) ∈ F2[x] such that the common GCD of
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1:4 SERGEY YEKHANIN

all polynomials of the form φ(xβ), β ∈ S and the polynomial x p − 1 is non-trivial.
We refer to this property as the algebraic niceness of S. Our notion of combinatorial
niceness is related to the notion of set families with restricted intersections in Babai
and Frank [1998].

Our construction of locally decodable codes thus comes in three steps: First
we show that a set S exhibiting both combinatorial and algebraic niceness leads to
good locally decodable codes. In particular the length n of the sequences u1, . . . , un
and v1, . . . , vn corresponds to the number of message bits we can encode, while
the length of the codewords we build is N = pm . So the longer the sequence
and the smaller the dimension the better. The query complexity of our codes is
given by the parameter q from the definition of algebraic niceness of S. This
step of our construction is quite general and applies to vectors u1, . . . , vn and
subsets S over any field. It leads us to the task of identifying good sets that are
both combinatorially and algebraically nice, and these tasks narrow our choice of
fields. As our second step, we focus on combinatorial niceness. In general big sets
tend to be “nicer” (allow longer sequences) than small ones. We show that every
multiplicative subgroup of a prime field is combinatorially as nice as its cardinality
would allow. This still leaves us with a variety of fields and subsets to work with.
Finally, as the last step, we attempt to understand the algebraic niceness of sets. We
focus on the very narrow case of Mersenne primes p and the subgroup generated
by the element 2 in F

∗
p. We manage to show that this subgroup is nice enough to

get 3-query locally decodable codes, leading to our final result.

1.4. OUTLINE. In Section 3, we formally define locally decodable codes and
introduce certain combinatorial objects that we call regular intersecting families of
sets. Those objects later serve as our tool to construct binary LDCs. In Section 4, we
present a linear algebraic construction of a regular intersecting family that yields
locally decodable codes with good (although, not the best known) parameters.
The notions of combinatorial and algebraic niceness of sets are used implicitly in
this section. Our main construction in Section 5 builds upon the construction of
Section 4. We formally introduce combinatorial and algebraic niceness and show
how the interplay between these two notions yields new LDCs. The last subsection
of Section 5 and Section 6 contain our main results for LDCs and private information
retrieval schemes.

2. Notation

We use the following standard mathematical notation:

—[s] = {1, . . . , s};
—Fq is a finite field of q elements;

—F
∗
q is the multiplicative group of Fq ;

—dH (x, y) denotes the Hamming distance between binary vectors x and y;

—(u, v) stands for the dot product of vectors u and v .

—For a linear space L ⊆ F
m
2 , L⊥ denotes the dual space. That is, L⊥ = {u ∈

F
m
2 | ∀v ∈ L , (u, v) = 0}.
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3. A Combinatorial Approach to Locally Decodable Codes

In this section, we formally define locally decodable codes and introduce certain
combinatorial objects that we call regular intersecting families of sets. We show
that regular intersecting families of sets yield binary LDCs.

Definition 3.1. A binary code C : {0, 1}n → {0, 1}N is said to be (q, δ, ε)-
locally decodable if there exists a randomized decoding algorithm A such that

(1) For all x ∈ {0, 1}n, i ∈ [n] and y ∈ {0, 1}N such that dH (C(x), y) ≤ δN :
Pr[Ay(i) = xi ] ≥ 1 − ε,2 where the probability is taken over the random coin
tosses of the algorithm A.

(2) A makes at most q queries to y.

A locally decodable code is called linear if C is a linear transformation over F2.
A locally decodable code is called nonadaptive if A makes all its queries simulta-
neously. Our constructions of locally decodable codes are linear and nonadaptive.
They are obtained by viewing the basis elements of the code and the decoding sets
of the code as specifying a set system (where a vector corresponds to the set of
coordinates on which it is non-zero), with some special intersection properties. We
define these properties next.

Definition 3.2. Let N , R and n be positive integers. For i ∈ [n], r ∈ [R] let Ti
and Qir , be subsets of [N ]. We say that subsets Ti and Qir form a (q, n, N , R, s)
regular intersecting family if the following conditions are satisfied:

(1) q is odd;
(2) For all i ∈ [n], |Ti | = s;
(3) For all i ∈ [n] and r ∈ [R], |Qir | = q;
(4) For all i ∈ [n] and r ∈ [R], Qir ⊆ Ti ;
(5) For all i ∈ [n] and w ∈ Ti , |{r ∈ [R] | w ∈ Qir }| = (Rq)/s, (i.e., Ti is

uniformly covered by the sets Qir );
(6) For all i, j ∈ [n] and r ∈ [R] such that i 	= j,

∣∣Qir ∩ Tj
∣∣ ≡ 0 mod (2).

The following proposition shows that regular intersecting families imply locally
decodable codes.

PROPOSITION 3.3. A (q, n, N , R, s) regular intersecting family yields a binary
linear code encoding n bits to N bits that is (q, δ, δNq/s) locally decodable for
all δ.

PROOF. For a set S ⊆ [N ] let I (S) ∈ {0, 1}N denote its incidence vector.
Formally, for w ∈ [N ] we set I (S)w = 1, if w ∈ S; and I (S)w = 0 otherwise. We
define linear code C via its generator matrix G ∈ {0, 1}n×N . For i ∈ [n], we set the
i th row of G to be the incidence vector of the set Ti . Below is the description of the
decoding algorithm A. Given oracle access to y and input i ∈ [n], the algorithm A
(1) picks r ∈ [R] uniformly at random;
(2) outputs the dot product (y, I (Qir )) over F2.

2 We remark that many earlier papers about LDCs used the parameter ε in a different way. They
required Pr[Ay(i) = xi ] ≥ 1/2 + ε, rather than Pr[Ay(i) = xi ] ≥ 1 − ε. We choose to break with
this tradition.
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1:6 SERGEY YEKHANIN

Note that since |Qir | = q, A needs only q queries into y to compute the dot
product. It is easy to verify that the decoding is correct if A picks r ∈ [R] such that
all bits of xG in locations h ∈ Qir are not corrupted:

(xG, I (Qir )) =
n∑

j=1

x j (I (Tj ), I (Qir )) = xi (I (Ti ), I (Qir )) = xi . (1)

The second equality in formula (1) follows from part (6) of Definition 3.2 and the
last equality follows from parts (1), (3), and (4) of Definition 3.2. Now assume that
up to δN bits of the encoding xG have been corrupted. Part (5) of Definition 3.2
implies that there are at most (δN Rq)/s sets Qir that contain at least one corrupted
location. Thus, with probability at least 1 − (δNq)/s, the algorithm A outputs the
correct value.

4. Basic Construction

In this section, we present our basic construction of regular intersecting families
that yields q-query locally decodable codes of length exp(n1/(q−1)) for prime values
of q ≥ 3. We choose sets Ti to be unions of cosets of certain hyperplanes and sets
Qir to be lines. We argue the intersection properties based on elementary linear
algebra. Let p be an odd prime and m ≥ p − 1 be an integer.

LEMMA 4.1. Let n = ( m
p−1

)
. There exist two families of vectors {u1, . . . , un}

and {v1, . . . , vn} in F
m
p , such that

—For all i ∈ [n], (ui , vi ) = 0;
—For all i, j ∈ [n] such that i 	= j, (u j , vi ) 	= 0.

PROOF. Let e ∈ F
m
p be the vector that contains 1’s in all the coordinates. We set

vectors ui to be incidence vectors of all possible
( m

p−1

)
subsets of [m] of cardinality

(p − 1). For every i ∈ [n] we set vi = e − ui . It is straightforward to verify that
this family satisfies the condition of the lemma.

Now we are ready to present our regular intersecting family. Set N = pm and
n = ( m

p−1

)
. Assume some bijection between the set [N ] and the space F

m
p . For

i ∈ [n] set

Ti = {
x ∈ F

m
p

∣∣ (ui , x) ∈ F
∗
p

}
.

Set R = s = (p − 1) · pm−1. For each i ∈ [n] assume some bijection between
points of Ti and elements of [R]. For i ∈ [n] and r ∈ [R], let wir be the r th point
of Ti . Set

Qir = {wir + λvi | λ ∈ Fp}.3

LEMMA 4.2. For i ∈ [n] and r ∈ [R] sets Ti and Qir form a (p, n, N , R, s)
regular intersecting family.

3 Note that the sets Qir are not all distinct.
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PROOF. We simply need to verify that all 6 conditions listed in Definition 3.2
are satisfied.

(1) Condition 1 is trivial.
(2) Condition 2 is trivial.
(3) Condition 3 is trivial.
(4) Fix i ∈ [n] and r ∈ [R]. Given that (ui , wir ) ∈ F

∗
p let us show that Qir ⊆ Ti . By

Lemma 4.1 (ui , vi ) = 0. Thus for every λ ∈ Fp : (ui , wir + λvi ) = (ui , wir ) .
Condition 4 follows.

(5) Fix i ∈ [n] and w ∈ Ti . Note that
|{r ∈ [R] | w ∈ Qir }| = |{wir ∈ Ti | ∃λ ∈ Fp, w = wir + λvi }| =

|{wir ∈ Ti | ∃λ ∈ Fp, wir = w − λvi }| = p.

It remains to notice that Rp/s = p. Condition 5 follows.
(6) Fix i, j ∈ [n] and r ∈ [R] such that i 	= j. Note that

|Qir ∩ Tj | = |{λ ∈ Fp | (u j , wir + λvi ) ∈ F
∗
p}| =

|{λ ∈ Fp | ((u j , wir ) + λ(u j , vi )) ∈ F
∗
p}| = p − 1.

The last equality follows from the fact that (u j , vi ) 	= 0, and therefore the
univariate linear function (u j , wir ) + λ(u j , vi ) takes every value in Fp exactly
once. It remains to notice that p − 1 is even. Condition 6 follows.

Combining Lemma 4.2 and Proposition 3.3, we get

COROLLARY 4.3. Let p be an odd prime and m ≥ p − 1 be an integer. There
exists a binary linear code encoding

( m
p−1

)
bits to pm bits that is (p, δ, δp2/(p −1))

locally decodable for all δ.

It is now easy to convert the above result into a dense family (i.e., one that has
a code for every message length n, as opposed to infinitely many n’s) of p-query
LDCs of length exp(n1/(p−1)).

THEOREM 4.4. Let p be a fixed odd prime. For every positive integer n there
exists a code of length exp(n1/(p−1)) that is (p, δ, δp2/(p − 1)) locally decodable
for all δ.

PROOF. Given n, choose m to be the smallest integer such that n ≤ ( m
p−1.

)
Set

n′ =( m
p−1.

)
It is easy to verify that if n is sufficiently large we have n′ ≤ 2n. Given

a message x of length n, we pad it with zeros to length n′ and use the code from
Corollary 4.3 encoding x with a codeword of length pm = exp(n1/(p−1)).

5. Main Construction

In the previous section, we presented our basic linear algebraic construction of
regular intersecting families. We chose sets Ti to be unions of cosets of certain
hyperplanes. We chose sets Qir to be lines. The high-level idea behind our main
construction, is to reduce the number of codeword locations queried by choosing
sets Qir to be proper subsets of lines rather than whole lines. Before we proceed to
our main construction, we introduce two central technical concepts of our article,
namely combinatorial and algebraic niceness. Let p be an odd prime.
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1:8 SERGEY YEKHANIN

Definition 5.1. A set S ⊆ F
∗
p is called (m, n)-combinatorially nice if there exist

two families of vectors {u1, . . . , un} and {v1, . . . , vn} in F
m
p , such that

—For all i ∈ [n], (ui , vi ) = 0;
—For all i, j ∈ [n] such that i 	= j, (u j , vi ) ∈ S.

Remark 5.2. Note that, in Lemma 4.1, we established that the set S = F
∗
p is

(m,
( m

p−1

)
)-combinatorially nice for every integer m ≥ p − 1.

Definition 5.3. A set S ⊆ F
∗
p is called q-algebraically nice if q is odd and there

exist two sets S0, S1 ⊆ Fp such that

—S0 is not empty;
—|S1| = q;
—For all α ∈ Fp and β ∈ S : |S0 ∩ (α + βS1)| ≡ 0 mod (2).

Remark 5.4. It is easy to verify that the set S = F
∗
p is p-algebraically nice.

Simply pick S1 = Fp and S0 = F
∗
p.

5.1. REMOVING POINTS FROM LINES. The next proposition shows how an in-
terplay between combinatorial and algebraic niceness yields regular intersecting
families. It is the core of our construction.

PROPOSITION 5.5. Assume S ⊆ F
∗
p is simultaneously (m, n)-combinatorially

nice and q-algebraically nice. Let S0 be the set from the definition of algebraic
niceness of S. The set S yields a (q, n, pm, |S0|pm−1, |S0|pm−1) regular intersecting
family.

PROOF. For i ∈ [n] let ui , vi be the vectors from the definition of combinatorial
niceness. Set N = pm and R = s = |S0|pm−1. Assume a bijection between [N ]
and F

m
p . For all i ∈ [n] set

Ti = {
x ∈ F

m
p

∣∣ (ui , x) ∈ S0
}
.

For each i ∈ [n] assume some bijection between [R] and Ti . Let wir denote the r th
point of Ti . Set

Qir = {wir + λvi | λ ∈ S1} .

It remains to verify that all six conditions listed in Definition 3.2 are satisfied.

(1) Condition 1 is trivial.
(2) Condition 2 is trivial.
(3) Condition 3 is trivial.
(4) Fix i ∈ [n] and r ∈ [R]. Given that (ui , wir ) ∈ S0 let us show that

Qir ⊆ Ti . Definition 5.1 implies that (ui , vi ) = 0. Thus for every λ ∈ S1 :
(ui , wir + λvi ) = (ui , wir ) . Condition 4 follows.

(5) Fix i ∈ [n] and w ∈ Ti . Note that

|{r ∈ [R] | w ∈ Qir }| = |{wir ∈ Ti | ∃λ ∈ S1, w = wir + λvi }| =
|{wir ∈ Ti | ∃λ ∈ S1, wir = w − λvi }| = |S1| = q.

It remains to notice that Rq/s = q. Condition 5 follows.
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(6) Fix i, j ∈ [n] and r ∈ [R] such that i 	= j. Note that∣∣Qir ∩ Tj
∣∣ = ∣∣{λ ∈ S1 | (

u j , wir + λvi
) ∈ S0

}∣∣
= ∣∣{λ ∈ S1 | ((

u j , wir
) + λ(u j , vi )

) ∈ S0
}∣∣

= ∣∣S0 ∩ ((
u j , wir

) + (u j , vi )S1
)∣∣ ≡ 0 mod (2).

The last equality follows from the fact that (u j , vi ) ∈ S, and Definition 5.3.
Condition 6 follows.

Observe that one can derive a regular intersecting family with parameters from
Lemma 4.2 using Proposition 5.5 in combination with remarks 5.2 and 5.4.

5.2. ON COMBINATORIALLY NICE SUBSETS OF F
∗
p. For w ∈ F

d
p and a positive

integer l, let w⊗l ∈ F
dl

p denote the lth tensor power of w . Coordinates of w⊗l are

labelled by all possible sequences in [d]l and w⊗l
i1,... ,il

= ∏l
j=1 wi j . The goal of this

section is to establish the following:

LEMMA 5.6. Let p be an odd prime and d ≥ p − 1 be an integer. Suppose S is
a subgroup of F

∗
p; then S is

((d−1+(p−1)/|S|
(p−1)/|S|

)
,
( d

p−1

))
-combinatorially nice.

PROOF. Let n =( d
p−1.

)
For i ∈ [n] let vectors u′′

i and v ′′
i in F

d
p be the same as

vectors ui , vi in the proof of Lemma 4.1, that is, vectors u′′
i are incidence vectors of

all possible subsets of [d] of cardinality (p−1) and vectors v ′′
i are their complements.

Recall that

—For all i ∈ [n], (u′′
i , v ′′

i ) = 0;
—For all i, j ∈ [n] such that i 	= j, (u′′

j , v ′′
i ) 	= 0.

Let l be a positive integer and u, v be vectors in F
d
p. Observe that

(
u⊗l, v⊗l

) = ∑
(i1,... ,il )∈[d]l

(
l∏

j=1
ui j

l∏
j=1

vi j

)

= ∑
(i1,... ,il )∈[d]l

(
l∏

j=1
ui j vi j

)
=

( ∑
i1∈[d]

ui1vi1

)
. . .

( ∑
il∈[d]

uil vil

)
= (u, v)l .

(2)

Let l = (p − 1)/|S|. Lagrange’s theorem implies that l is an integer. For i ∈ [n],
set u′

i = u′′⊗l
i and v ′

i = v ′′⊗l
i . Formula (2) and cyclicity of F

∗
p yield

—For all i ∈ [n], (u′
i , v ′

i ) = 0;
—For all i, j ∈ [n] such that i 	= j, (u′

j , v ′
i ) ∈ S.

Note that vectors u′
i and v ′

i are of dimension d (p−1)/|S|. Therefore, at this point, we
have already shown that the set S is

(
d (p−1)/|S|,

( d
p−1

))
-combinatorially nice.

Let w be an arbitrary vector in F
d
p. Note that the value of w⊗l

i1,... ,il
depends on the

multi-set {i1, . . . , il} rather than the sequence i1, . . . , il . Thus many coordinates
of w⊗l contain identical (and therefore redundant) values. We are going to reduce
the dimension of the vectors u′

i and v ′
i using this observation. Let F(d, l) denote

the family of all multi-subsets of [d] of cardinality l. Note that |F(d, l)| = (d−1+l
l

)
.
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For a multi-set σ ∈ F(d, l), let c(σ ) denote the number of sequences in [d]l that
represent σ. Now we are ready to define vectors ui and vi in F

|F(d,l)|
p . The coordinates

of the vectors ui and vi are labelled by multi-sets σ ∈ F(d, l). For all i ∈ [n] and
σ ∈ F(d, l) we set

(ui )σ = c(σ )(u′
i )σ and (vi )σ = (v ′

i )σ .

It is easy to verify that for all i, j ∈ [n], (u j , vi ) = (u′
j , v ′

i ). Combining this
observation with the properties of vectors u′

i and v ′
i that were established earlier,

we conclude that the set S is
((d−1+(p−1)/|S|

(p−1)/|S|
)
,
( d

p−1

))
-combinatorially nice.

5.3. ON ALGEBRAICALLY NICE SUBSETS OF F
∗
p. In this section we construct

3-algebraically nice subsets of F
∗
p, for primes p that have the form p = 2t − 1.

Such primes are known as Mersenne primes. Our construction relies on some basic
properties of finite fields [Lidl and Niederreiter 1983]. Consider a natural one to
one correspondence between subsets S1 of Fp and polynomials φS1 (x) in the ring
F2[x]/(x p − 1) :

φS1 (x) =
∑
s∈S1

xs .

It is immediate to verify that for all sets S1 ⊆ Fp and all α, β ∈ Fp, such that
β 	= 0 :

φα+βS1 (x) = xαφS1 (x
β). (3)

LEMMA 5.7. Let p = 2t − 1 be a Mersenne prime. The set S =
{1, 2, 4, 8, . . . , 2t−1} ⊆ F

∗
p is three algebraically nice.

PROOF. Recall that the multiplicative group F
∗
2t is cyclic. Thus, for every x ∈

F
∗
2t , we have x2t −1 − 1 = x p − 1 = 0. Let g be a generator of F

∗
2t . Fix γ such that

1 + g + gγ = 0. Set S1 = {0, 1, γ }.
Let α be a variable ranging over Fp and β be a variable ranging over S. We

are going to argue the existence of a set S0 that has even intersections with all
sets of the form α + βS1, by showing that all polynomials φα+βS1 belong to a
certain linear space L ∈ F2[x]/(x p − 1) of dimension less than p. In this case,
any nonempty set T ⊆ Fp such that φT ∈ L⊥ can be used as the set S0. Let
τ (x) = GC D(x p − 1, φS1 (x)). Note that τ (x) 	= 1 since g is a common root of
x p − 1 and 1 + x + xγ . Let L be the space of polynomials in F2[x]/(x p − 1) that
are multiples of τ (x). Clearly, dim L = p − deg τ. Fix some α ∈ Fp and β ∈ S.
Let us prove that φα+βS1 (x) is in L :

φα+βS1 (x) = xαφS1 (x
β) = xα(φS1 (x))β.

The last identity above follows from the fact that for any polynomial f ∈ F2[x]
and any integer i : f (x2i

) = ( f (x))2i
and our choice of the set S.

The parameters of a regular intersecting family that one gets by applying Propo-
sition 5.5 to a certain (nice) set S depend on the size of the set S0 from the definition
of algebraic niceness of S. The next lemma shows that one can always pick the set
S0 to be large.
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LEMMA 5.8. Let S ⊆ F
∗
p be a q-algebraically nice set. Let S0, S1 ⊆ Fp be sets

from the definition of algebraic niceness of S. One can always redefine the set S0
to satisfy |S0| ≥ �p/2�.

PROOF. Let L ⊂ F2[x]/(x p − 1) be the linear space spanned by polynomials
of the form φα+βS1 (x), for α ∈ Fp and β ∈ S. Clearly, the space L is closed under
cyclic shifts. This implies that the space L⊥ is also closed under cyclic shifts. Note
that L⊥ has positive dimension since φS0 (x) ∈ L⊥. The last two observations imply
that L⊥ has full support, that is, for every coordinate i there exists a vector φ ∈ L⊥
such that φi 	= 0. It is easy to verify that any linear subspace of F

p
2 that has full

support contains a vector of Hamming weight at least �p/2�. Let φT (x) ∈ L⊥ be
such a vector. Redefining the set S0 to be the set T , we conclude the proof.

5.4. RESULTS. Let p = 2t − 1 be a Mersenne prime. Note that the set S =
{1, 2, 4, 8, . . . , 2t−1} is a multiplicative subgroup of F

∗
p. Combining Proposition 5.5

with Lemmas 5.6, 5.7, and 5.8, we conclude

LEMMA 5.9. Let p = 2t − 1 be a Mersenne prime and d ≥ p − 1 be an
integer. Let m = (d−1+(p−1)/t

(p−1)/t

)
. For some integer z ≥ �p/2� there exists a regular

intersecting family with parameters(
3,

(
d

p − 1

)
, pm, zpm−1, zpm−1

)
.

Combining Lemma 5.9 with Proposition 3.3, we obtain the key lemma of this
article.

LEMMA 5.10. Let p = 2t −1 be a Mersenne prime and d ≥ p−1 be an integer.
Let m = (d−1+(p−1)/t

(p−1)/t

)
. There exists a binary linear code encoding n = ( d

p−1

)
bits

to pm bits that is (3, δ, 6δ) locally decodable code for all δ.

For every fixed Mersenne prime p = 2t − 1, we get a family of 3-query LDCs
of length exp(n1/t ). We omit the proof since it is essentially identical to the proof
of Theorem 4.4.

THEOREM 5.11. Let p = 2t − 1 be a fixed Mersenne prime. For every positive
integer n there exists a code of length exp(n1/t ) that is (3, δ, 6δ) locally decodable
for all δ.

Mersenne primes have been a popular object of study in number theory for the
last few centuries. It is still unknown whether the number of Mersenne primes is
infinite. There has been a large amount of effort and computational power invested
in search for large Mersenne primes. The largest currently known Mersenne prime
(as of November 19, 2007) is p = 232,582,657 − 1. It was discovered by C. Cooper
and S. Boone [2006] on September 4, 2006. Plugging p into Theorem 5.11 we get

THEOREM 5.12. For every integer n, there exists a code of length
exp(n1/32,582,657) that is (3, δ, 6δ) locally decodable for all δ.

It has often been conjectured that the number of Mersenne primes is infinite. If
this conjecture holds, we get three query locally decodable codes of subexponential
length for infinitely many message lengths n.
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THEOREM 5.13. Suppose that the number of Mersenne primes is infinite; then
for infinitely many values of n there exists a code of length exp(nO( 1

log log n )), that is,
(3, δ, 6δ) locally decodable for all δ.

PROOF. Given a Mersenne prime p, set d = 2p. Substituting d and p into
Lemma 5.10 and making some basic manipulations we conclude that there exists a

(3, δ, 6δ) locally decodable code encoding n = d�(log d) bits to N = exp(d O( log d
log log d ))

bits. An observation that log log n = �(log log d) completes the proof.

Lenstra [1980], Pomerance [1980/81], and Wagstaff [1983, p. 388] have made
the following conjecture regarding the density of Mersenne primes.

CONJECTURE 5.14. Let M(t) be the number of Mersenne primes that are less
than or equal to 2t − 1; then

lim
t→∞ M(t)/ log2 t = eγ ,

where γ ≈ 0.577 is the Euler-Mascheroni constant.

If the conjecture above holds, we get three query locally decodable codes of
subexponential length for all message lengths n.

THEOREM 5.15. Let ε be a positive constant. Suppose the conjecture 5.14 holds;

then for all values of n there exists a code of length exp(nO( 1
log1−ε log n

)
) that is (3, δ, 6δ)

locally decodable for all δ.

PROOF. Conjecture 5.14 implies that for all sufficiently large integers z there
is a Mersenne prime between 2log1−ε z and z. Assume n is sufficiently large. Pick
a Mersenne prime p from the interval [2log1−ε

√
log n,

√
log n]. Let d be the smallest

integer such that n ≤ ( d
p−1

)
. Note that d = pn�(1/p). Given an n-bit message x ,

we pad it with zeros to length
( d

p−1

)
and use the code from Lemma 5.10 to encode

x into a codeword of length pm for m = (n1/p log p)O(p/ log p). It remains to notice
that log m = O( log n

log p + p log log p
log p ) = O( log n

log1−ε log n
).

6. Application to Private Information Retrieval

Private information retrieval (PIR) schemes are cryptographic protocols developed
in order to protect the privacy of the user’s query, when accessing a public database.
In such schemes a database (modelled by an n-bit string x) is replicated between
few noncommunicating servers. The user holds an index i and is interested in
obtaining the value of the bit xi . To achieve this goal, the user queries each of the
servers and gets replies from which the desired bit xi can be computed. The query
to each server is distributed independently of i and therefore each server gets no
information about what the user is after. Private information retrieval schemes were
introduced by Chor et al. [1995] and received a lot of attention in the subsequent
work [Ambainis 1997; Mann 1998; Itoh 1999, 2001; Beimel et al. 2005; Goldreich
et al. 2006; Kerenidis and de Wolf 2003; Beigel et al. 2006; Woodruff and Yekhanin
2007; Razborov and Yekhanin 2006].

The main parameters of interest in a PIR scheme are the number of servers
involved, and the communication complexity, namely the number of bits exchanged
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by the user accessing an n-bit database and the servers. Ideally one would like to
keep both of these parameters low. In what follows we show how our results from
previous sections yield improved upper bounds for communication complexity of
three server PIR schemes. A detailed comparison of our results with the earlier
work is given in Section 1.2.

We start with a formal definition of a three server PIR protocol. Let x ∈ {0, 1}n

be the database.

Definition 6.1. A three server PIR protocol is a triplet of nonuniform algo-
rithms P = (Q,A, C). We assume that each algorithm is given n as an ad-
vice. At the beginning of the protocol, the user U tosses random coins and ob-
tains a random string r. Next U invokes Q(i, r ) to generate a triple of queries
(que1, que2, que3). For j ∈ [3], U sends que j to S j . Each server S j responds
with an answer ans j = A( j, x, que j ). (We can assume without loss of general-
ity that servers are deterministic; hence, each answer is a function of a query and
a database.) Finally, U computes its output by applying the reconstruction algo-
rithm C(ans1, ans2, ans3, i, r ). A protocol as above should satisfy the following
requirements:

—Correctness: For any n, x ∈ {0, 1}n and i ∈ [n], the user outputs the correct
value of xi with probability 1 (where the probability is over the random strings
r ).

—Privacy: Each server individually learns no information about i. To formalize
this let Q j denote the j th output of Q. We require that for j = 1, 2, 3 and any
n, i1, i2 ∈ [n] the distributions Q j (i1, r ) and Q j (i2, r ) are identical.

There are known generic procedures [Katz and Trevisan 2000] to convert q-query
LDCs into q-server PIR schemes. However a simple application of such a proce-
dure to our LDCs will either yield a PIR protocol with perfect privacy, but small
probability of error, or a PIR protocol with perfect correctness and some slight pri-
vacy leakage. Fortunately, it is possible to achieve both perfect privacy and perfect
correctness simultaneously via a specially designed reduction.

LEMMA 6.2. Let p = 2t −1 be a Mersenne prime and d ≥ p −1 be an integer.
Let n = ( d

p−1

)
and m = (d−1+(p−1)/t

(p−1)/t

)
. There exists a one-round three-server PIR

protocol with questions of length m log p and answers of length p that allows
private retrieval of bits from databases of length n.

PROOF. In the preprocessing stage the servers encode the database x with a
three query locally decodable code C from Lemma 5.10. We are going to use the
notation from that lemma and Proposition 5.5. Recall that the coordinates of C(x)
are in one to one correspondence with points in F

m
p . In order to decode xi the user

has to query three locations {w + λvi | λ ∈ S1} for some w ∈ Ti , where Ti is the
union of certain cosets of the hyperplane {y ∈ F

m
p | (ui , y) = 0}. Unlike the LDC

setup, in the PIR setup the user can not pick w ∈ Ti uniformly at random and then
query locations {w + λvi | λ ∈ S1} from three different servers, since in such case
the servers would observe the uniform distribution on Ti rather than the uniform
distribution on F

m
p . Here is our way to go around this problem.

Let e ∈ F
m
p be the all-ones vector. The definition of vectors ui in Lemma 5.6

implies that (e, ui ) 	= 0 mod (p) for all i ∈ [n]. Thus for every i ∈ [n] and every
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w ∈ F
m
p there is some γ0 ∈ Fp such that w + γ0e ∈ Ti . The user picks w ∈ F

m
p

uniformly at random and (simultaneously) asks p triples of queries of the form
{w + γ e + λvi | λ ∈ S1} for all γ ∈ Fp. For every triple, the first query always
goes to server 1, the second to server 2 and the last to server 3. (Note that, in order
to ask all those queries, the user needs to communicate only a single point in F

m
p to

each of the servers.) It is easy to verify that in such case each server individually
observes a uniform distribution independent of i, while the user always successfully
reconstructs xi from one of the triples.

Below is a step-by-step summary of our protocol. The protocol involves three
servers {Sh}h∈[3] and a user U . The sets S1 = {λ1, λ2, λ3} ⊆ Fp, {Ti ⊆ F

m
p }i∈[n],

and vectors {vi ∈ F
m
p }i∈[n] are those used in code construction in Lemma 5.10.

Sh : Encodes the database x with the code C from Lemma 5.10.
U : Picks w ∈ F

m
p uniformly at random.

U → Sh : w + λhvi

U ← Sh : {C(x)w+γ e+λh vi }γ∈Fp

U : Picks γ0 ∈ Fp such that w + γ0e ∈ Ti and outputs
∑

h∈[3] C(x)w+γ0e+λh vi .

The next theorem captures the asymptotic behavior of our PIR schemes for a
fixed Mersenne prime p. We omit the proof since it is essentially identical to the
proof of Theorem 4.4.

THEOREM 6.3. Let p = 2t − 1 be a fixed Mersenne prime. For every positive
integer n there exists a three server PIR protocol with questions of length O

(
n1/t

)
and answers of length O(1).

A generic balancing technique of Chor et al. [1995, Section 4.3] allows to convert
any PIR protocol with O(n1/t ) long queries and O(1) long answers into a new PIR
protocol with O(n1/(t+1)) total communication. Such a conversion yields

THEOREM 6.4. Let p = 2t − 1 be a fixed Mersenne prime. For every positive
integer n there exists a three server PIR protocol with O(n1/(t+1)) communication.

Plugging the value of the largest known Mersenne prime p = 232,582,657 − 1 into
Theorem 6.4, we conclude

THEOREM 6.5. For every positive integer n, there exists a three-server PIR
protocol with communication complexity of O(n1/32,582,658).

The next two theorems capture the asymptotic parameters of our PIR schemes
under the number-theoretic assumptions. Both theorems follow immediately from
Lemma 6.2 using the arguments that are essentially identical to the proofs of The-
orems 5.13 and 5.15.

THEOREM 6.6. Suppose that the number of Mersenne primes is infinite; then,
for infinitely many values of n, there exists a three-server PIR protocol with com-
munication complexity of nO( 1

log log n )
.

THEOREM 6.7. Let ε be a positive constant. Suppose the conjecture 5.14 holds;
then for all values of n, there exists a three-server PIR protocol with communication

complexity of nO( 1
log1−ε log n

)
.
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7. Conclusion

We presented a novel approach to constructing locally decodable codes and vastly
improved the known upper bounds. However, the gap between the upper and lower
bounds for LDCs still remains very large. It might be the case that the technique
proposed in this paper has not yet been pushed to its limit and further improvements
will be obtained in this way. In particular, Proposition 5.5 can be generalized to
arbitrary finite fields (rather than just prime fields), and even finite commutative
rings. It may happen that a clever choice of a ring R and a subset S ⊆ F that is
simultaneously combinatorially and algebraically nice will yield shorter LDCs.

After the preliminary version of this article [Yekhanin 2006], was published
some progress towards understanding the limits of our technique has been made
in Kedlaya and Yekhanin [2007]. Specifically, it was shown that our constructions do
not necessarily require Mersenne primes. It suffices to have Mersenne numbers (i.e.,
integers of form 2t − 1) with large prime factors. It was also shown that obtaining
locally decodable codes of constant query complexity and length exp

(
no(1)

)
through

constructing nice subsets of finite fields would imply progress on an old number
theory problem, and therefore seems unlikely in the near future.
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