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Abstract. We describe a new auction protocol that enjoys the following proper-
ties: the biddings are submitted non-interactively and no information beyond the
result is disclosed. The protocol is efficient for a logarithmic number of players.
Our solution uses a semi-trusted third party T who learns no information pro-
vided that he does not collude with any participant. The robustness against active
cheating players is achieved through an extra mechanism for fair encryption of a
bit which is of independent interest. The scheme is based on homomorphic encryp-
tion but differs from general techniques of secure circuit evaluation by taking into
account the level of each gate and allowing efficient computation of unbounded
logical gates. In a scenario with a small numbers of players, we believe that our
work may be of practical significance, especially for electronic transactions.
Keywords: auctions, bidding, homomorphic encryption, secure circuit evalua-
tion.

1 Introduction

In web electronic commerce, the question of auctions has become a major issue. They
offer a very flexible way to exchange goods while minimizing negotiation costs, and as
expected, a variety of software architecture have been discussed [1,15]. Additionally,
it is desirable to ensure privacy of each customer through cryptographic mechanisms.
Ideally, at the end of the protocol, no information on the submitted bids should be
disclosed. Depending on the auction settings, only the winner and the highest (or 2nd
highest) bid should be revealed. So far, several approaches have been considered. Based
on multi-party computation [2,6] and secret sharing [22], Harkavy, Tygar and Kikuchi
[14] have described a distributed protocol, that ensures privacy but needs several rounds
of interaction between the auctionners. In a novel direction, Cachin has proposed a
non-interactive protocol [3] based on the so-called #-hiding assumption that allows to
secretly compare two numbers. However bidders have to interact in a direct manner
and, furthermore, for a number of users greater than 2, it is necessary to consider two
non-colluding third parties and partial order of bids is leaked to one of them. Finally,
a more promising and efficient technique using two third parties has been introduced
by Naor, Pinkas and Sumner [19]; it uses pseudo-randomness and oblivious transfer to
securely compute arbitrary circuits.

Our solution uses a different approach which is built on a new one round secure circuit
evaluation [23,10,9,11] tailored for our specific problem. Although, it is more efficient
than general techniques, it is limited to a logarithmic number of players. In practice, 5 or
6 participants keep the amount of network traffic at a reasonable level. We also require a
semi-trusted third party T' (the server), who learns no information provided that he does
not collude with any participant. To achieve robustness against active cheating players,
the hardness of deciding composite residuosity classes is assumed. We point out that no



interaction between the bidders is required, which is a main achievement of our work. A
high level description of the protocol is as follows.

1. Registration. Bidders who wish to participate publish their public encryption key.

2. Submission. Each bidder encrypts the figure of his choice under all participant’s
public keys and sends the result to the server using a secure communication channel.

3. Results. The server publishes, in a encrypted way, whether each participant is the
winner.

4. The winner reveals himself by proving to the server that he has actually won.

5. The server sends to each subscriber (or to the winner only) an encryption of the
highest (or 2nd highest) bid.

The core of the problem is to decide whether a given participant has submitted the high-
est bid. This is accomplished in the next section. In section 3, we extend the submission
scheme to withstand cheating players. In section 4, we propose some solutions to deal
with a larger number of players. The conclusion comes in section 5.

2 Computing over encrypted bids

2.1 Preliminaries

We consider a protocol with p participants, who submit ¢-bit numbers representing their
bids. A probabilistic encryption scheme E satisfying the following properties is fixed:

— The set of plaintext messages M is a group of order N such that 1/N is a negligible
function of the security parameter k. In the sequel we will use an additive notation.

— F is self-randomizable: there exists a probabilistic polynomial time function R such
that for any m € M, R(E(m)) is uniformly distributed over the sets of encryptions
of m.

— E is homomorphic: for any mq,me € M, E(m1 + me) = E(mq).E(ms).

— E is semantically secure against a chosen plaintext attack: no probabilistic polyno-
mial time adversary can distinguish, with a non-negligible success, between encryp-
tions of two plaintexts of its choice [12].

— There exists a full decryption algorithm D: for any pair of public key and secret
key (pk, sk), for any encryption ¢ of m under pk, Dy (c) outputs (m,r) such that
Ep(m,r) =c.

Known efficient schemes meeting these requirements are: Naccache-Stern [16], Okamoto-
Uchiyama [17] and Paillier [18]. The latter will be used for the robust version of our
protocol together with proofs of membership, so it should be given more attention.
Each participant encrypts p times each bit of his bid using the p candidates’ public
key (including his own one). The output, of length £x p times the length of an encryption,
is sent to the server through a private channel. The ultimate goal of this section is for the
?

server, to compute, for each integer i in {1, ...,n} the predicate: (P;) : a; > maz(ai, ..., a,)
where the a; = (aﬁ_laﬁ_2 . --ag) are the binary representations of the biddings. To
perform the comparison of two numbers using logical bit operations, we observe that
a; > a; if and only if there exists an index s in {0,...,£ — 1} such that the following

predicate is satisfied
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(Qis) : /\ (a" & aT") /\af—s—1 /\ (maf™*) (1)
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Namely, the first s bits of a; match the first s bits of a; and the (s + 1)** bit of a; is

greater than the (s+1)%" bit of a;. Observe that the predicate deciding the equality of a;

and a; is given by (Q;,¢) : /\fn;lo (a" & a;-"). In the next stage, the existential quantifier

is evaluated by OR-ing over the various boolean formulae. Finally, to decide whether a
number a; is the maximum of a set of p numbers (a1, ...,ap), it remains to compute a
logical AND of the p — 1 subexpressions comparing a; with all others a;. Consequently,
the circuits representing the predicates (F;), using unbounded AND nd OR gates, are
given by
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Considerable efforts have been made to provide general protocols that enable a third
party to blindly compute each logical gate of a circuit with the help of the secret inputs’
owners. However, efficient protocols require a number of interaction rounds linear in the
depth of the circuit. As told in the introduction, it is essential from a practical viewpoint
to perform the whole circuit evaluation non-interactively. Recently, Sander, Young and
Yung showed how to compute in a single round any NC" circuit over encrypted data [21].
They recursively define structures allowing the computation of logical gates. However,
it must be pointed out that an OR-gate inflates the length of the input datas by a
factor of 8, and the same holds for AND-gates. Thus, considering our initial circuit of
the max function, the algorithm would produce a string of length @ (8208 {+leg(p—1)) —
O(£8(p — 1)3) encryptions.

Our solution differs from Sander et al. by applying different rules to a given gate ac-
cording to its level in the circuit. Also, the use of a message space of order N enables us
to build an efficient method for computing unbounded gates directly, rather than consid-
ering the equivalent binary sub-circuit. Against a curious but honest server, the privacy
of the submitted inputs is ensured throughout the semantic security of the encryption
scheme E. Similarly, privacy towards curious participants is guaranteed provided the
encryption of the result is independent of the posted data. This is achieved throughout
the self-randomization of F.

2.2 Efficient computation of the max function

We now precisely describe our specific solution to compute the various predicates P;.
The security parameter k is fixed. We denote by C the space of ciphertexts: C = £(M).
We define (Enc))iem {oy and (Enci)ienfo} two family of sets representing encryptions
of bit 0 and bit 1 respectively. For each ¢ € N\{0}, Enc? is the set of t-coordinates
vectors in C? such that the decryption of any coordinate is non zero, and Enc} is the
set of t-coordinates vectors in C* such that there exists exactly one coordinate which
encrypts zero. We also define Enc; to be the set Enc? U Enc}. In symbols:

Encd ={(c1,...,ct) €Ct | Vie{l,...,t} D(c;) # 0}
Enct ={(c1,---,¢0) €Ct | Flie{l,...,t} D(¢;) =0}

Each logical gate GG takes as input elements from Encyg) and outputs an element in
Encyq), where f and g are positive integer functions which only depend on the type
and the level of the given gate G. Namely, f(G) is the length of the inputs of G and
g(@) is the length of its output, both in number of encryptions. The server propagates
the cipher bits in the circuit by the following algorithm:

— Inputs: cipher bits are elements of the sets:



In®={ceC|D(c)=1} ¢ Enc?
and In'!={ceC| D(c) =0} = Enc}

We note In = In® U Int.

— Level 1, mgates: f=1,g=1
NOT; : In — Ency
E(z) — R([E(z)/EQ1)]") = R(E(r(z — 1)))
where 7 is uniformly drawn in Z 5\{0}.

— Level 1, & gates: f=1,9g=1
EQUIV; : In x In — Enc
(E(z), E(y)) — R([E(z)/E(y)]") = R(E(r(z — y)))
where 7 is uniformly drawn in Zy\{0}.

— Level 2, A gates: f=1,g=1
ANDs : (Enc,)® — Ency
(B(z1),- -, E(x,)) — R(IT, E(xi)]") = R(E(r i :))
where 7 is uniformly drawn in Zx\{0}.

— Level 3, V gates: f=1,g=1¢
OR3 : (Ency)® — Ency
(cla s ch) — (00(1)7 s aca(e))
where o is a random permutation of £ elements.

— Level 4, A gate: f = {, g = (P!
AND4 : (E’I’LC[)p_l — E’anp—l

E(z?),...,E(z))1<i<p— TP E(xt
(B(21),-- > B@)h<isp 1'_)(71( =1 (mﬁ)))(jl,..,j,-)e[l,p—ﬂ"

coordinates of the final vector are randomly permuted.

The final result is a string of ©(f?~1) encryptions. Although it is asymptotically expo-
nential in the number of participants, it is better than what can be achieved by general
techniques for a limited number of players. For example, considering 32-bit precision of
bids and 4 participants, our scheme leads to strings of length 2!'® whereas [21] would
produce strings of length 2348, Now, we prove that our computation is correct and
leaks no information on the inputs. First the following lemma results from the particular
structure of the boolean circuit.

Lemma 1. For any s and s’ such that s # s', the predicates Q;,s and Q;,s are mutually
exclusive.

Proof. Without loss of generality, assume that s < s'. We focus on the particular bit
position r = /—s—11in the integers a; and a;. As s < £, it follows that Q; s is a conjunction
of terms including af A —aj. Similarly, (; s is a conjunction of terms including a]" < af",
for each m in {£—s',£—1}. Since r lies in this interval, the conjunction includes a] < aj.
Consequently, either aj = a} and Qs is false, either af # aj and Q; s is false.

Then, we prove correctness of the crypto computing algorithm.

Theorem 1. For any bit precision £, for any number of participants p, for any integer
i € {1,...,p} the proposed algorithm correctly outputs with probability 1 — O(fP~1/N) a
random element uniformly distributed in Enc}p_l (resp. Encgp_l ) iff the predicate P; is
true (resp. false).



Proof. We will prove that the probabilistic computation is correct at each level of the
circuit. For the input encrypted data, and the first level, the verification is obvious
and true with probability 1. For the AND gates at the second level: if some bits are
0 then r >} | z; # 0 holds with probability (N — 1)/N and if all the bits are 1 then
>4 @; = 0 with probability 1. Since this layer includes £(p—1) such AN D gates, the set
of its output is correctly computed with probability ((N —1)/N)¥?—1). We now consider
the OR gates at the third level. If each of the input bits is 0, then the sequence of such
bits is also 0. Otherwise, from the previous Lemma, it follows that exactly one input is
1, so the output sequence lies in the correct space. In both cases, it is easily verified that
the output is uniformly distributed in Encg. Furthermore, assuming correct inputs, the
whole computation of this /-gate layer is correct with probability 1. Finally, the AND
gate at the fourth level outputs a sequence of encryptions that performs the product of
each (p — 1)-tuples of Ency. Thus, if each input is 1, each input includes one encryption
of zero, and this combination leads to exactly one zero. If there exists a zero input, then,
assuming inputs are correct, it is encryptions of only non zero terms, and thus each sum
is non-zero with probability (N — 1)/N. The conditional probability of correctness of
this whole layer is then (N —1)/N)¥~". The uniformity is easily seen. In conclusion, it
results that the success of the computation holds with probability (1 — 1/N)&p-D+e~"
which is greater than 1 — (¢(p — 1) + ¢*—1)/N. 0

Having performed these computations, the server publishes a bulletin board containing
the results of the predicates P; encrypted under the public key of the i* player. The
amount of data is ©(pfP~!) which is reasonably small for 4 to 5 players. Then each
player decrypts its sequence of encrypted data, which either leads to a set of non-zero
values, in case he has lost the auction, or to exactly one zero in case he is the winner. To
prove his status, the winner sends the full decryption of the encrypted value of zero to
the server. This transaction may occur publicly, or through a secure channel. If several
players have submitted the same maximum bid, then they may all prove they did and an
additional round can take place. It should be noticed that the initial input bits are only
a small subset of the plaintext space. Therefore, dishonest bidders could encrypt values
that are not real bits (ie: not 0 nor 1). Then the whole protocol would collapse, since
circuit evaluation would produce only false value, for example if the leading bit is “2”.
The next section proposes an enhanced version of our scheme where each participant
proves that he has only encrypted fair bits. Before doing so, we turn to the last part of
the protocol.

2.3 End of the protocol

In the standard case, it is assumed that the winner makes himself known. Otherwise, if
he remains silent, one may consider various solutions, e.g. asking other users to prove
that they really lose the auction by decrypting each of the messages announcing the
results. We underline that such a hiding player does not compromise privacy. Next, it
remains to set the price. First, we consider a scenario where the transaction is done at
the highest price (sealed-bid auctions). Since the server has no information on the initial
plaintexts, the winner has to reveal the full decryptions of his bid and the zero message
proving that he has won. Remind that a full decryption provides the cleartext message
and the random coins that enables to check the validity of a given encryption. Using the
homomorphism of E, this phase is very efficient: from the initial data FE(z;) he has sent,



the winner computes the encrypted message

-1 -1 )
E (Z .7:2) = H E(x;)? (3)

and sends its full decryption to the server. Then this one checks the validity of the com-
putation. In a second scenario, where we consider that the value of the transaction is set
at the 2nd highest price (as is well known, this scheme is equivalent to a public “English”
auction) further computation and an additional round of interaction are needed. Basi-
cally, once the winner has revealed himself by decrypting a zero from the bulletin board,
the server withdraws this encrypted bid and computes the maximum predicates over the
remaining bids. Then, it sends a random permutation of the predicates to the winner
and asks him to provide the full decryption of the zero value it contains, together with
the underlying ¢-bit bid. Then the server checks the decryption values he has received,
and publicly announce the price of the transaction as in the previous case.

3 A robust protocol against cheating players

We now turn to a scenario where some dishonest players may send arbitrary data,
possibly not encrypting fair bits or encrypting different bids under the different public
keys. We have already observed that this could compromise the auction: if the j** player
submits the encryption of an ¢-bit integer a; with an unfair leading “bit” then for each
predicate (P;), the evaluations of (ﬁaffl) and (af ! & aﬁfl) would both leads to false.
The same holds for the predicate (P;) considering aﬁfl and (aff1 & al™h). As aresult,
none of the participant could be declared the winner. It may be asked to each player to
decrypt his own data, but contrary to the situation where we considered a fair but silent
player, this would compromise privacy and is not acceptable here. Therefore, in order
to achieve robustness, each participant adds a short proof of fairness to his encrypted
bid. We will consider the specific homomorphic encryption scheme proposed by Paillier
[18] at Eurocrypt’99 whose overview is given below. Using this system, we will design a
proof of fair encryption of bits.

3.1 Overview of Paillier’s encryption scheme

Key Generation. Let N be a RSA modulus of k+ 1 bits, where k is a security parameter.
Let g be an element of Z}, whose order is a large multiple of N. The public parameters
are N and g whilst the factorization of N, or equivalently A(N), remains secret. Recall
that in this case the Carmichael function A is A(N) = lem(p — 1,4 — 1).

Encryption. The space of plaintext messages M is Zy. The encryption of a message
m € M is E(m) = g™r" mod N? where r is randomly chosen in Z%. m is called the
Nth residuosity class of ¢ with respect to g.

Decryption. Let L be the function L(u) = (u — 1)/N defined over the subgroup Sy =
{u < N?|u=1 mod N}. For any ciphertext ¢ = g™r" mod N?, using the trapdoor
L™ mod N?)
L(gMN) mod N?)
the N** root mod N of (cg~™ mod N).

A(N), it holds that m = . Full decryption is achieved by extracting

Assuming the hardness of deciding composite residuosity classes, this encryption scheme



is proven to be semantically secure against a chosen plaintext attack. Using appropri-
ate optimizations, the workload for encryption and decryption is of the same order of
magnitude as RSA. The required properties for our auction protocol are efficient and
easily verified: self-randomization is achieved through a single modular exponentiation
and the additive homomorphic property is obvious. Furthermore, the scheme enjoys the
advantage of encrypting 0 in a N** residue. Therefore, using the additive homomorphic
property, ¢ encrypts a fair bit if and only if either ¢ or ¢/E(1) is a N-residue. This leads
to an efficient proof of fair encryption described below.

3.2 Zero-knowledge proof of fair encryption of a bit

To prove that one correctly encrypted a plaintext in {0,1}, we combine a Guillou-
Quisquater proof of knowledge of a N** root [13] with a proof of knowledge of one
discrete log out of two [7, 8, 4]. Firstly, we propose a 3-round interactive protocol between
a prover P and a verifier V, then we turn it into an non interactive protocol using hash
functions, as usual.

Settings: k € N and A are security parameters. N is a RSA modulus of £ bits. P owns
a secret value b € {0,1} and publishes ¢ = g®7V mod N? where r is a random secret
value in Z%. We note ¢g = ¢ and ¢; = ¢/g. The following 3 rounds of interaction is
iterated ¢ times.

1st round : P - V

P picks at random two values pg and p; in Z%. He has to commit to uo and wuq, as if
he was trying to prove in parallel that both ¢y and ¢; are N-residues. To this end, since
only ¢ is an actual residue, further messages indexed by b are fairly computed, whereas
messages indexed by 1 — b take advantage of the malleability of the challenge. So, the
prover chooses half of the challenge in advance, by picking at random e;_j € Z 4. This
knowledge enables him to choose at random the corresponding final answer vy _p in Z .
Then he computes a fake commitment u; _; satisfying the verifier’s equality and a fair
commitment u; such that

ui—p =vi,/c;'y mod N2

{ub =pN mod N?

Finally he sends ug and u; to the prover.

ond round : V— P
V picks a random a challenge € in Z 4 and sends it to P.

3rd round : P —» V
P computes the regular challenge ep such that e = eg + e; mod A. It also computes
vp = ppre®. Then he sends vg,v1,€0,€1 to V.

vy =wupcy® mod N?
V verifies that < v} = uicf*  mod N2
e —ey+e modA

Remark 1. In the last round of interaction, the prover may be asked not to send e;
since it is deducible from e and eq. Also, the last test performed by the verifier may be
discarded by using e — ¢ instead of e;. This presentation is for convenience only. The
figure shows the actual protocol.



Prover | Verifier

N = p.q such that |[N| =k
A : security parameter
g € Z’y» of order multiple of N

secret : p,q
be{0,1}
r€Zy
public : ¢ = ¢*7" mod N2

po,p1 € Zx

v1-p € L2

e1-p € [O,A[

1-b\ €1-b 9
g ) uo, w1 mod N
&

\
7

P (
€ e €10, Af

<
¢
ep =e—e1_p mod A
2 ?
vo,v1 mod N? ep v = uoct®
N
>

ol £ ui(c/g)ee0

vp = port

Fig. 1. Zero-knowledge proof of fair encryption of a bit

Theorem 2. For any positive constants a and (3, for any non-zero parameters A and
t such that A = O(k*) and t = 2(log' TP k), it holds that t iterations of the previous
protocol is a perfect zero-knowledge proof of membership that c is a fair encryption of a
bit.

Proof. We note L the language of fair encrypted bits:
L={g¢""" mod N? |be {0,1},r € Z}}

Completeness. Assume ¢ € L. Then either ¢ or ¢/g is a N** residue. For this residue,
the prover may answer to any challenge e;. Thanks to the degree of freedom, he has
the ability to fix in advance the challenge e;_; and forge the appropriate answer vy _p.
Therefore the prover is accepted with probability 1.

Soundness. Assume ¢ & L. Suppose that a cheating prover P* successfully completes an
iteration of the protocol. From the final verifying equations and the expression of ¢ we
have

vy = ug gbeoreoN mod N?

oIV = uy g DerperN mod N?

Taking the logarithms of each expression, it follows

logug + beg =0 mod N
logu; + (b—1)e; =0 mod N
So we have the system of 3 equations in the variables eg and e;
beg = —loguy mod N

(b—1)e; = —logu; mod N
ey + e1=e mod A



If b is different from 0 and 1, it follows that ep and e; are functions of b and the original
commitment {ug, u; }. Therefore, the third equation holds with probability at most 1/A.
If the protocol is iterated ¢ times, then standard arguments show that the probability
that P* passes the protocol cannot significantly exceed 1/A?. Since A is a positive integer
and t = 2(log" " k) the probability of success is O(k~ 108 4108” k) which is a negligible
function of k.

Simulation. Fix any verifier V*. First guess the challenge: pick e’ randomly in [0, A[. Then
choose eg and e; such that e’ = eg+e;. Next compute ug = v{¥ /¢ and u; = vi¥ /(c/g)®*
and send ug and u; ( mod N?2) to V*. If V* answers e such that e = e’ then this iteration
is successfully completed by sending vg,v1, €9 and e;. Otherwise, rewind the simulation
to the beginning of the iteration. It results that the whole protocol is perfectly simulated
in expected time O(A.t). O

From a practical point of view, it may be desirable to perform a single iteration of the
3-round protocol. Then, since a large A is require to ensure soundness of the protocol,
the resulting scheme is not zero-knowledge anymore. However, no strategy is known to
increase the probability of accepting a dishonest prover.

3.3 [Equalities of bids under multiple encryptions

To achieve robustness of the submission protocol, it is also required that each bidder
proves that he has encrypted the same bits under the different public keys. As shown in
equation (3), the server learns an encryption of the ¢-bit integer submission. Therefore
it remains to prove equality of p discrete logs lying in a given interval [5]. Following the
previous section, we first propose an interactive zero-knowledge proof between a prover
P and a verifier V.

Settings: k, k' and A are security parameters such that 2¢A < 2¥+% . The set {Ni}1<i<p
are RSA moduli of & + 1 bits. P owns a secret value z € [0, 2¢ and publishes {¢; = g¥r;"*
mod N7}i<i<p where the r; are p random secret values in Z% .

Ist round : P —» V

P picks at random p € [0,2%[, and s; € Zy, for each ¢ = 1,...,p. Then he commits to
{u; = gfs7"* mod N7hi<icp-

2nd round : V. — P

P picks at random a challenge e € [0, A[ and sends it to P.

3rd round : P — V
P computes z = p + e, and {v; = s;r{ mod N?}i<i<p and sends them to V. Then V
verifies that z < 2¥ and g7v]"' = u;c{ mod N7 for each i = 1,...,p.

Theorem 3. For any positive constants a, 8 and v, for any non-zero parameters A,
t and € such that A = O(k*), t = Q(log'*P k) and £ = k — Q(log"™ k), it holds
that t iterations of the previous protocol provides a statistical zero-knowledge proof of
membership that elements {c1,...,cp} encrypt the same £-bit message.

Proof.

Completeness. For any i € {1, ..., p}, it holds that gzv)¥' = gf/T*¢sNireNi = y,c¢ mod N2,
with probability 1. Furthermore, since 2 = p + e, the inequality z < 2* holds with
probability at least 1 —2¢A4/2%. Thus, a honest prover successfully completes ¢ iterations

of the protocol with probability at least 1 — 2¢-*At. Since t and A are upper-bounded



by polynomials and 2¢~% = O(k~ 198" k), this probability is overwhelming.

Soundness. Assume there exists ¢; and is in {1,...,p} such that ¢;, encrypts z; and ¢;,
encrypts x2 with 1 # x5. Then, from the equalities verified by V

N; eN;
z 1 __ ,,. oT1€ i1 2
{gilvi1 = w4, 9;,' Uy, mod N;,
N; eN;
z ia _ , . .T2€ i2 2
9505, = Wiy gi mod N
Taking the logarithms it follows

z =logu;, +ex; mod N;
z =logu;, + exs mod N,

Since 2z < 2% then 2z — e < N;;,N;, and both equalities hold without the moduli. It
results that logu;, + ex; = logu;, + exs in the integers. So, if x1 # x2, € = (logu;, —
log ui,) /(22 — 1), which occurs with probability at most A.

Simulation. Following the previous proof, the same resettable simulation works. However,
since the simulator uniformly picks z in [0, 2*[ and not in [ze, 2F + ze], only a statistical
indistinguishability can be achieved (see [20] for a complete proof).

We are now ready to design a robust auction protocol. The main operation is to replace
the verifiers by a secure hash function such as SHA-1. This leads to non-interactive
proofs that has to be stuck to the bit encryptions. To reduce the amount of data, the
following trick may be used. The fp proofs of fair encryption consist of their last two
rounds {e;vg,v1, e} and a hash of the parallel commitments. To check the proof, these
commitments are first computed from the last predicates of equality, then the whole
verifications are performed. As a result the total lengththese £p proofs is no more than
3¢p encryptions. In the same way, the proof of equality of logs consists of the last p + 2
messages from rounds 2 and 3. Thus its length is about p + 2 encryptions. One can also
ask that the proofs are given only in the case that the server is unable to provide any
winner. This makes an additional round of interaction, but still preserves the privacy of
each bidder.

4 Dealing with many participants

To cope with real-life Internet business application, it is obvious that the number of
total participants should be increased. Under the hypothesis that we accept a partial
leak of information and reasonable interaction, we can substantially gain efficiency and
deal with a polynomial number of players. A possible approach is to form small groups
of users and perform the protocol to decide who owns the maximum bid inside of them.
Assume that we allow ¢ participants in each group, then we can build a g-ary tree
and achieve the whole protocol of bid submission in a number of rounds proportional
to log,(p). Next, if we have to find the second highest bid, we consider the following
algorithm: form the path of the progression of the winner in the g-ary tree and select all
the participants that are present in one of the winner’s subgroup along this path. This
list contains at most glog, p players where it remains to extract the highest bid.

5 Conclusion

We have proposed a practical protocol of auctions with a high degree of confidence
and very few interaction. Compared to existing schemes, we focused on security. The
drawback resides in the limited number of players that may simultaneously participate
in a scenario where absolute privacy is needed. Nonetheless, we believe that in many
scenarii these parameters meet real life applications.
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{Ni = pigi}1<i<p, such that each |N;| =k +1
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secret : {pi, ¢ }1<i<p
z € 0,2
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~

) ¢ e € [0, A[
z=p+xe
. 2y ,
{v; = s;r§{ mod Nf}1§isp % {vi mod Nihicicy R z < 2k
{gzv]"i < w;c mod N?}

1<i<p

Fig. 2. Zero-knowledge proof of equality of logs
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