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Abstract. Lattices are regular arrangements of points in space, whose
study appeared in the 19th century in both number theory and crystal-
lography. The goal of lattice reduction is to find useful representations
of lattices. A major breakthrough in that field occurred twenty years
ago, with the appearance of Lovész’s reduction algorithm; also known
as LLL or L3. Lattice reduction algorithms have since proved invaluable
in many areas of mathematics and computer science, especially in al-
gorithmic number theory and cryptology. In this paper, we survey some
applications of lattices to cryptology. We focus on recent developments of
lattice reduction both in cryptography and cryptanalysis, which followed
seminal works of Ajtai and Coppersmith.

1 Introduction

Lattices are discrete subgroups of R™. A lattice has infinitely many Z-bases,
but some are more useful than others. The goal of lattice reduction is to find
interesting lattice bases, such as bases consisting of reasonably short and almost
orthogonal vectors. From the mathematical point of view, the history of lattice
reduction goes back to the reduction theory of quadratic forms developed by
Lagrange [71], Gauss [44], Hermite [55], Korkine and Zolotarev [67,68], among
others, and to Minkowski’s geometry of numbers [85]. With the advent of al-
gorithmic number theory, the subject had a revival around 1980 with Lenstra’s
celebrated work on integer programming (see [74]), which was, among others,
based on a novel but non-polynomial time! lattice reduction technique. That
algorithm inspired Lovész to develop a polynomial-time algorithm that com-
putes a so-called reduced basis of a lattice. It reached a final form in the seminal
paper [73] where Lenstra, Lenstra and Lovasz applied it to factor rational poly-
nomials in polynomial time (back then, a famous problem), from which the name
LLL comes. Further refinements of the LLL algorithm were later proposed, no-
tably by Schnorr [101,102].

Those algorithms have proved invaluable in many areas of mathematics and
computer science (see [75,64,109,52,30,69]). In particular, their relevance to

! The technique is however polynomial-time for fixed dimension, which was enough
in [74].



cryptology was immediately understood, and they were used to break schemes
based on the knapsack problem (see [99, 23]), which were early alternatives to the
RSA cryptosystem [100]. The success of reduction algorithms at breaking vari-
ous cryptographic schemes over the past twenty years (see [61]) have arguably
established lattice reduction techniques as the most popular tool in public-key
cryptanalysis. As a matter of fact, applications of lattices to cryptology have
been mainly negative. Interestingly, it was noticed in many cryptanalytic ex-
periments that LLL, as well as other lattice reduction algorithms, behave much
more nicely than what was expected from the worst-case proved bounds. This
led to a common belief among cryptographers, that lattice reduction is an easy
problem, at least in practice.

That belief has recently been challenged by some exciting progress on the
complexity of lattice problems, which originated in large part in two seminal
papers written by Ajtai in 1996 and in 1997 respectively. Prior to 1996, little
was known on the complexity of lattice problems. In his 1996 paper [3], Ajtai
discovered a fascinating connection between the worst-case complexity and the
average-case complexity of some well-known lattice problems. Such a connection
is not known to hold for any other problem in NP believed to be outside P.
In his 1997 paper [4], building on previous work by Adleman [2], Ajtai further
proved the NP-hardness (under randomized reductions) of the most famous lat-
tice problem, the shortest vector problem (SVP). The NP-hardness of SVP has
been a long standing open problem. Ajtai’s breakthroughs initiated a series of
new results on the complexity of lattice problems, which are nicely surveyed by
Cai [24, 25].

Those complexity results opened the door to positive applications in cryp-
tology. Indeed, several cryptographic schemes based on the hardness of lattice
problems were proposed shortly after Ajtai’s discoveries (see [5,49, 56,26, 83,
41]). Some have been broken, while others seem to resist state-of-the-art at-
tacks, for now. Those schemes attracted interest for at least two reasons: on the
one hand, there are very few public-key cryptosystems based on problems dif-
ferent from integer factorization or the discrete logarithm problem, and on the
other hand, some of those schemes offered encryption/decryption rates asymp-
totically higher than classical schemes. Besides, one of those schemes, by Ajtai
and Dwork [5], enjoyed a surprising security proof based on worst-case (instead
of average-case) hardness assumptions.

Independently of those developments, there has been renewed cryptographic
interest in lattice reduction, following a beautiful work by Coppersmith [32] in
1996. Coppersmith showed, by means of lattice reduction, how to solve rigor-
ously certain problems, apparently non-linear, related to the question of finding
small roots of low-degree polynomial equations. In particular, this has led to
surprising attacks on the celebrated RSA [100] cryptosystem in special settings
such as low public or private exponent. Coppersmith’s results differ from “tradi-
tional” applications of lattice reduction in cryptanalysis, where the underlying
problem is already linear, and the attack often heuristic by requiring (at least)
that current lattice reduction algorithms behave ideally, as opposed to what is



theoretically guaranteed. The use of lattice reduction techniques to solve poly-
nomial equations goes back to the eighties [54, 110]. The first result of that kind,
the broadcast attack on low-exponent RSA due to Hastad [54], can be viewed as
a weaker version of Coppersmith’s theorem on univariate modular polynomial
equations.

The rest of the paper is organized as follows. In Section 2, we give basic
definitions and results on lattices and their algorithmic problems. In Section 3,
we survey an old topic of lattice reduction in cryptology, the well-known sub-
set sum or knapsack problem. Subsequent sections cover more recent applica-
tions. In Section 4, we discuss lattice-based cryptography, somehow a revival for
knapsack-based cryptography. In Section 5, we review the only positive applica-
tion known of the LLL algorithm in cryptology, related to the hidden number
problem. In Section 6, we discuss developments on the problem of finding small
roots of polynomial equations, inspired by Coppersmith’s discoveries in 1996.
In Section 7, we survey the surprising links between lattice reduction, the RSA
cryptosystem, and integer factorization.

2 Lattice problems

2.1 Definitions

Recall that a lattice is a discrete (additive) subgroup of R". In particular, any
subgroup of Z" is a lattice, and such lattices are called integer lattices. An
equivalent definition is that a lattice consists of all integral linear combinations
of a set of linearly independent vectors, that is,

d
L= {Znibi | n; ez},
i=1

where the b;’s are linearly independent over R. Such a set of vectors b;’s is called
a lattice basis. All the bases have the same number dim(L) of elements, called
the dimension (or rank) of the lattice.

There are infinitely many lattice bases. Any two bases are related to each
other by some unimodular matrix (integral matrix of determinant +1), and
therefore all the bases share the same Gram determinant det;<; j<4(bi,b;). The
volume vol(L) (or determinant) of the lattice is by definition the square root
of that Gram determinant, thus corresponding to the d-dimensional volume of
the parallelepiped spanned by the b;’s. In the important case of full-dimensional
lattices where dim(L) = n, the volume is equal to the absolute value of the
determinant of any lattice basis (hence the name determinant). If the lattice is
further an integer lattice, then the volume is also equal to the index [Z™: L] of
Lin Z™.

Since a lattice is discrete, it has a shortest non-zero vector: the Euclidean
norm of such a vector is called the lattice first minimum, denoted by A;(L) or
|IL||. Of course, one can use other norms as well : we will use ||L||o to denote



the first minimum for the infinity norm. More generally, for all 1 <4 < dim(L),
Minkowski’s i-th minimum X;(L) is defined as the minimum of max;<;<; |||
over all ¢ linearly independent lattice vectors v, ..., v; € L. It will be convenient
to define the lattice gap as the ratio Ao (L)/A1 (L) between the first two minima.
Minkowski’s Convex Body Theorem guarantees the existence of short vec-
tors in lattices: a careful application shows that any d-dimensional lattice L
satisfies || L||oo < vol(L)'/¢, which is obviously the best possible bound. It fol-
lows that A; (L) < v/dvol(L)'/¢, which is not optimal, but shows that the value
A1(L)/vol(L)'/? is bounded when L runs over all d-dimensional lattices. The
supremum of A; (L)?/vol(L)?/? is denoted by 74, and called Hermite’s constant?
of dimension d, because Hermite was the first to establish its existence in the
language of quadratic forms. The best asymptotic bounds known for Hermite’s
constant are the following ones (see [84, Chapter II] for the lower bound, and [31,

Chapter 9] for the upper bound):
d  log(nd) 1.744d
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Minkowski proved more generally:
Theorem 1 (Minkowski). For all d-dimensional lattice L and all v < d :

H Xi(L) < \/yivol(L)™/e.

More information on lattice theory can be found in numerous textbooks, such
as [53,108, 76].

2.2 Algorithmic problems

In the rest of this section, we assume implicitly that lattices are rational lattices
(lattices in @), and d will denote the lattice dimension.

The most famous lattice problem is the shortest vector problem (SVP), which
was apparently first stated by Dirichlet in 1842: given a basis of a lattice L, find
v € L such that ||v|| = A1(L). SVP will denote the analogue for the infinity
norm. One defines approximate short vector problems by asking a non-zerov € L
with norm bounded by some approximation factor: ||v|| < f(d)A;(L).

The closest vector problem (CVP), also called the nearest lattice point prob-
lem, is a non-homogeneous version of the shortest vector problem: given a lattice
basis and a vector v € R”, find a lattice vector minimizing the distance to v.
Again, one can define approximate versions.

Another problem is the smallest basis problem (SBP), which has many vari-
ants depending on the exact meaning of “smallest”. The variant currently in
vogue (see [3,11]) is the following: find a lattice basis minimizing the maximum
of the lengths of its elements. A more geometric variant asks instead to minimize
the product of the lengths (see [52]).

2 For historical reasons, Hermite’s constant refers to max A1(L)?/vol(L)*¢ and not
max A (L) /vol(L)Y/.



2.3 Complexity results

We refer to Cai [24,25] for an up-to-date survey of complexity results. Ajtai [4]
recently proved that SVP is NP-hard under randomized reductions. Miccian-
cio [82,81] simplified and improved the result by showing that approximating
SVP to within a factor < v/2 is also NP-hard under randomized reductions. The
NP-hardness of SVP under deterministic (Karp) reductions remains an open
problem.

CVP seems to be a more difficult problem. Goldreich et al. [50] recently
noticed that CVP cannot be easier than SVP: given an oracle that approximates
CVP to within a factor f(d), one can approximate SVP in polynomial time
to within the same factor f(d). Reciprocally, Kannan proved in [64] that any
algorithm approximating SVP to within a non-decreasing function f(d) can be
used to approximate CVP to within d3/2 f(d)?. CVP was shown to be NP-hard
as early as in 1981 [40] (for a simplified proof, see [65]). Approximating CVP to
within a quasi-polynomial factor 208" * d js NP-hard [6,38].

However, NP-hardness results for SVP and CVP have limits. Goldreich and
Goldwasser [46] showed that approximating SVP or CVP to within y/d/O(log d)
is not NP-hard, unless the polynomial-time hierarchy collapses.

Interestingly, SVP and CVP problems seem to be more difficult with the
infinity norm. It was shown that SVP, and CVP are NP-hard in 1981 [40].
In fact, approximating SVP. /CVPy to within an almost-polynomial factor
d'/1o81o8d jg NP-hard [37]. On the other hand, Goldreich and Goldwasser [46]
showed that approximating SVP,/CVP to within d/O(logd) is not NP-hard,
unless the polynomial-time hierarchy collapses.

We will not discuss Ajtai’s worst-case/average-case equivalence [3,27], which
refers to special versions of SVP and SBP (see [24,25,11]) such as SVP when
the lattice gap A2/A; is at least polynomial in the dimension.

2.4 Algorithmic results

The main algorithmic results are surveyed in [75,64,109,52, 30,69, 24,97]. No
polynomial-time algorithm is known for approximating either SVP, CVP or
SBP to within a polynomial factor in the dimension d. In fact, the existence
of such algorithms is an important open problem. The best polynomial time
algorithms achieve only slightly subexponential factors, and are based on the
LLL algorithm [73], which can approximate SVP and SBP. However, it should
be emphasized that these algorithms typically perform much better than is theo-
retically guaranteed, on instances of practical interest. Given as input any basis
of a lattice L, LLL provably outputs in polynomial time a basis (by,...,bg)
satisfying :
d
byl < 200D 4vol(L)/4, by < 24D/2xy(L) and [ IIbill < 2)/2vol(L).
i=1
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Thus, LLL can approximate SVP to within 2(4=1/2, Schnorr® [101] improved the
bound to 20(d(loglogd)?/logd) Ty fact, he defined an LLL-based family of algo-
rithms [101] (named BKZ for blockwise Korkine-Zolotarev) whose performances
depend on a parameter called the blocksize. These algorithms use some kind of
exhaustive search exponential in the blocksize. So far, the best reduction algo-
rithms in practice are variants [104,105] of those BKZ-algorithms, which apply
a heuristic to reduce exhaustive search. But little is known on the average-case
(and even worst-case) complexity of reduction algorithms.

Babai’s nearest plane algorithm [7] uses LLL to approximate CVP to within
24/2in polynomial time (see also [66]). Using Schnorr’s algorithm [101], this
can be improved to 20(d(loglog d)*/log 9 due to Kannan’s link between CVP
and SVP (see previous section). In practice however, the best strategy seems
to be the embedding method (see [49,90]), which uses the previous algorithms
for SVP and a simple heuristic reduction from CVP to SVP. Namely, given a
lattice basis (by,...,bg) and a vector v € R", the embedding method builds
the (d + 1)-dimensional lattice (in R**1) spanned by the row vectors (b;,0) and
(v,1). It is hoped* that a shortest vector of that lattice is of the form (v —u, 1)
where u is a closest vector to v, in the original lattice . Depending on the lattice,
one should choose a coefficient different than 1 in (v,1).

For exact SVP or CVP, the best algorithms known (in theory) are Kannan’s
super-exponential algorithms [63,65], with running time 20(¢108d),

3 Knapsacks

Cryptology and lattices share a long history with the knapsack (also called subset
sum) problem, a well-known NP-hard problem considered by Karp: given a set
{a1,as,...,a,} of positive integers and a sum s = 5"

—1 Tia;, where z; € {0,1},
recover the z;’s.

In 1978, Merkle and Hellman[80] invented one of the first public-key cryp-
tosystems, by converting some easy knapsacks into what they believed were
hard knapsacks. It was basically the unique alternative to RSA until 1982, when
Shamir [106] proposed an attack against the simplest version of the Merkle-
Hellman scheme. Shamir used Lenstra’s integer programming algorithm [74] but,
the same year, Adleman [1] showed how to use LLL instead, making experiments
much easier. Brickell [21, 22] later extended the attacks to the more general “it-
erated” Merkle-Hellman scheme, and showed that Merkle-Hellman was insecure
for all realistic parameters. The cryptanalysis of Merkle-Hellman schemes was
the first application of lattice reduction in cryptology.

Despite the failure of Merkle-Hellman cryptosystems, researchers continued

%e—sea&eh—fef knapsack cryptosystems because such systems are very easy to
Schnorr’s result is usually cited in the literature as an approximation algorithm to

within (14+¢)™ for any constant ¢ > 0. However, Goldreich and Héstad noticed about
a year ago that one can choose some € = 0(1) and still have polynomial running time,
for instance using the blocksize k = logd/loglogd in [101].

* Note that there exist simple counter-examples (see for instance [81]).



implement and can attain very high encryption/decryption rates. But basically,
all knapsack cryptosystems have been broken (for a survey, see [99]), either
by specific (often lattice-based) attacks or by the low-density attacks. The last
significant candidate to survive was the Chor-Rivest cryptosystem [29], broken
by Vaudenay [112] in 1997 with algebraic (not lattice) methods.

3.1 Low-density attacks

We only mention some of the links between lattices and knapsacks. Note that
Ajtai’s original proof [4] for the NP-hardness (under randomized reductions) of
SVP used a connection between the subset sum problem and SVP.

The knapsack density is defined as d = n/ max; <i<nlog, a;. The low-density
attacks establish a reduction from the subset sum problem to the lattice short-
est vector problem. The first low-density attack used the n-dimensional lat-
tice L(ay,...,an,s) in Z™! formed by the vectors (yi,...,yns1) such that
y1a1 + -+ + Ynan = Ynt1S. Such a lattice can easily be built in polynomial
time from the a;’s and s. It was proved by Lagarias and Odlyzko [70] that
if d < 0.6463..., the target vector (z1,...,Zn,1) was the shortest vector of
L(ay,...,an,s) with high probability over the choice of the a;’s. The proof relies
on bounds [77] on the number of integer points in n-dimensional balls. Thus,
if one has access to an SVP-oracle, one can solve most subset sum problems of
density d < 0.6463. .. .. Coster et al. [34] later improved the connection between
SVP and the knapsack problem. By using a simple variant of L(ay,...,an,$),
they showed that if d < 0.9408..., the knapsack problem can be reduced to
a lattice shortest vector problem (in dimension n) with high probability. In a
different context (polynomial interpolation in the presence of noise), another
example of attack based on provable reduction to SVP appeared recently in [10].

In the light of recent results on the complexity of SVP, those reductions from
knapsack to SVP may seem useless. Indeed, the NP-hardness of SVP under ran-
domized reductions suggests that there is no polynomial-time algorithm that
solves SVP. However, it turns out that in practice, one can hope that standard
lattice reduction algorithms behave like SVP-oracles, up to reasonably high di-
mensions. Experiments carried out in [70, 104, 105] show the effectiveness of such
approach for solving low-density subset sums, up to n about the range of 100-
200. It does not prove nor disprove that one can solve, in theory or in practice,
low-density knapsacks with n over several hundreds. But it was sufficient to
show that knapsack cryptography was impractical: indeed, the keysize of knap-
sack schemes grows in general at least quadratically with n, so that high values
of n (as required by lattice attacks) are not practical.

One might wonder whether those reductions can lead to provable polynomial-
time algorithms for certain subset sums. Recall that LLL is an SVP-oracle when
the lattice gap is exponential in the lattice dimension. For lattices used in knap-
sack reductions, the gap increases as the knapsack density decreases, however
the gap can be proved to be large enough only in extremely low density (see [42,
43]). Hence, lattice methods to solve the subset sum problem are very heuris-
tic. And lattice attacks against knapsack cryptosystems are somehow even more



heuristic, because the reductions from knapsack to SVP assume some (natural)
property on the distribution of the weights a;’s, which is in general not satisfied
by knapsacks arising from cryptosystems.

3.2 The orthogonal lattice

Recently, Nguyen and Stern proposed in [91] a natural generalization of the
Lagarias-Odlyzko [70] lattices. More precisely, they defined for any integer lattice
L in Z", the orthogonal lattice L+ as the set of integer vectors orthogonal to L,
that is, the set of x € Z™ such that the dot product (x,y) = 0 for all y € L.
Note that the lattice L+ has dimension n — dim(L), and can be computed in
polynomial time from L (see [30]). Interestingly, the links between duality and
orthogonality (see Martinet’s book [76, pages 34-35]) enable to prove that the
volume of L' is equal to the volume of the intersection L of Z™ with the linear
span of L. Thus, if a lattice in Z" is low-dimensional, its orthogonal lattice is
high-dimensional with a volume at most equal: the successive minima of the
orthogonal lattice are likely to be much shorter than the ones of the original
lattice. That property of orthogonal lattices has led to effective (though heuristic)
lattice-based attacks on various cryptographic schemes [91,93,94,92,95]. We
refer to [96,97] for more information. In particular, it was used in [95] to solve
the hidden subset sum problem (used in [20]) in low density. The hidden subset
sum problem was apparently a non-linear version of the subset sum problem:
given M and n in N, and by,...,b,, € Zyy, find ay,...,q, € Z s such that each
b; is some subset sum modulo M of aq,...,a;,.

We sketch the solution of [95] to give a flavour of cryptanalyses based on
orthogonal lattices. We first restate the hidden subset sum problem in terms of

vectors. We are given an integer M, and a vector b = (by,...,by) € Z™ with
entries in [0..M — 1] such that there exist integers aq,...,a, € [0..M — 1], and
vectors Xi,...,X, € Z™ with entries in {0, 1} satisfying:

b =a1x; + asxs + - -+ + apx, (mod M).
We want to determine the «;’s. There exists a vector k € Z™ such that:
b = a1x1 + asxy + -+ - + ap X, + Mk.

Notice that if u in Z" is orthogonal to b, then py = ((u,x1),...,{u,x,), (u,k))
is orthogonal to the vector v, = (a1, ...,a,, M). But v, is independent of m,
and so is the n-dimensional lattice v:. On the other hand, as m grows for a
fixed M, most of the vectors of any reduced basis of the (m — 1)-dimensional
lattice bL should get shorter and shorter, because they should have norm close
to vol(bh)/(m=1) < yol(b)!/(m=1) = ||b||*/(m-1) ~ (M\/m)"/(m=1_ For such
vectors u, the corresponding vectors p,, also get shorter and shorter. But if p,,
gets smaller than A (vZ1) (which is independent of m), then it is actually zero,
that is, u is orthogonal to all the x;’s and k. Note that one expects A (vy) to
be of the order of ||va||'/™ ~ (My/n)'/™.



This suggests that if (u,...,u,—_1) is a sufficiently reduced basis of b+, then
the first m — (n + 1) vectors ui, ..., Upm_(n+1) should heuristically be orthogonal
to all the x;’s and k. One cannot expect that more than m — (n + 1) vectors
are orthogonal because the lattice L, spanned by the x;’s and k is likely to
have dimension (n + 1). From the previous discussion, one can hope that the
heuristic condition is satisfied when the density n/log(M) is very small (so
that A\;(vL) is not too small), and m is sufficiently large. And if the heuristic
condition is satisfied, the lattice L, is disclosed, because it is then equal to the
orthogonal lattice (uy, .. .,um_(n+1))J-. Once L, is known, it is not difficult to
recover (heuristically) the vectors x;’s by lattice reduction, because they are
very short vectors. One eventually determines the coefficients «;’s from a linear
modular system. The method is quite heuristic, but it works in practice for small
parameters in low density (see [95] for more details).

4 Lattice-based cryptography

We review state-of-the-art results on the main lattice-based cryptosystems. To
keep the presentation simple, descriptions of the schemes are intuitive, referring
to the original papers for more details. Only one of these schemes (the GGH
cryptosystem [49]) explicitly works with lattices.

4.1 The Ajtai-Dwork cryptosystem

Description. The Ajtai-Dwork cryptosystem [5] (AD) works in R”, with some
finite precision depending on n. Its security is based on a variant of SVP.

The private key is a uniformly chosen vector u in the n-dimensional unit
ball. One then defines a distribution H, of points a in a large n-dimensional
cube such that the dot product (a,u) is very close to Z.

The public key is obtained by picking w1, ..., Wn, V1,...,Vm (Where m = n?)
independently at random from the distribution #,, subject to the constraint
that the parallelepiped w spanned by the w;’s is not flat. Thus, the public key
consists of a polynomial number of points close to a collection of parallel affine
hyperplanes, which is kept secret.

The scheme is mainly of theoretical purpose, as encryption is bit-by-bit. To

encrypt a ’0’, one randomly selects by, ...,b,, in {0,1}, and reduces >.™ b
=1 Yt "1

modulo the parallelepiped w. The vector obtained is the ciphertext. The cipher-
text of '1’ is just a randomly chosen vector in the parallelepiped w. To decrypt
a ciphertext x with the private key u, one computes 7 = (x,u). If 7 is suffi-
ciently close to Z, then x is decrypted as ’0’, and otherwise as ’1’. Thus, an
encryption of ’0’ will always be decrypted as '0’, and an encryption of '1’ has a
small probability to be decrypted as ’0’. These decryption errors can be removed
(see [48]).

Security. The Ajtai-Dwork [5] cryptosystem received wide attention due to a
surprising security proof based on worst-case assumptions. Indeed, it was shown
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that any probabilistic algorithm distinguishing encryptions of a ’0’ from encryp-
tions of a 1’ with some polynomial advantage can be used to solve SVP in any
n-dimensional lattice with gap A2/\; larger than n8. There is a converse, due to
Nguyen and Stern [93]: one can decrypt in polynomial time with high probability,
provided an oracle that approximates SVP to within n%5~¢, or one that approxi-
mates CVP to within n'-33. It follows that the problem of decrypting ciphertexts
is unlikely to be NP-hard, due to the result of Goldreich-Goldwasser [46].

Nguyen and Stern [93] further presented a heuristic attack to recover the
secret key. Experiments suggest that the attack is likely to succeed up to at
least n = 32. For such parameters, the system is already impractical, as the
public key requires 20 megabytes and the ciphertext for each bit has bit-length
6144. This shows that unless major improvements® are found, the Ajtai-Dwork
cryptosystem is only of theoretical importance.

Cryptanalysis overview. At this point, the reader might wonder how lattices
come into play, since the description of AD does not involve lattices. Any cipher-
text of ’0’ is a sum of v;’s minus some integer linear combination of the w;’s.
Since the parallelepiped spanned by the w;’s is not too flat, the coefficients of
the linear combination are relatively small. On the other hand, any linear com-
bination of the v;’s and the w;’s with small coefficients is close to the hidden
hyperplanes. This enables to build a particular lattice of dimension n + m such
that any ciphertext of ’0’ is in some sense close to the lattice, and reciprocally,
any point sufficiently close to the lattice gives rise to a ciphertext of ’0’. Thus,
one can decrypt ciphertexts provided an oracle that approximates CVP suffi-
ciently well. The analogous version for SVP uses related ideas, but is technically
more complicated. For more details, see [93].

The attack to recover the secret key can be described quite easily. One knows
that each (v;,u) is close to some unknown integer V;. It can be shown that any
sufficiently short linear combination of the v;’s give information on the V}’s.
More precisely, if ), A\;v; is sufficiently short and the \;’s are sufficiently small,
then ), \;V; = 0 (because it is a too small integer). Note that the V;’s are
disclosed if enough such equations are found. And each V; gives an approximate
linear equation satisfied by the coefficients of the secret key u. Thus, one can
compute a sufficiently good approximation of u from the V;’s. To find the V;’s, we
produce many short combinations El A;v; with small )A;’s, using lattice reduc-
tion. Heuristic arguments can justify that there exist enough such combinations.
Experiments showed that the assumption was reasonable in practice.

4.2 The Goldreich-Goldwasser-Halevi cryptosystem

The Goldreich-Goldwasser-Halevi cryptosystem [49] (GGH) can be viewed as
a lattice-analog to the McEliece [78] cryptosystem based on algebraic coding
theory. In both schemes, a ciphertext is the addition of a random noise vector

5 A variant of AD with less message expansion was proposed in [26], however without
any security proof. It mixes AD with a knapsack.
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to a vector corresponding to the plaintext. The public key and the private key
are two representations of the same object (a lattice for GGH, a linear code for
McEliece). The private key has a particular structure allowing to cancel noise
vectors up to a certain bound. However, the domains in which all these operations
take place are quite different.

Description. The GGH scheme works in Z™. The private key is a non-singular
n X n integral matrix R, with very short row vectors® (entries polynomial in n).
The lattice L is the full-dimensional lattice in Z"™ spanned by the rows of R.
The basis R is then transformed to a non-reduced basis B, which will be public.
In the original scheme, B is the multiplication of R by sufficiently many small
unimodular matrices. Computing a basis as “good” as the private basis R, given
only the non-reduced basis B, means approximating SBP.

The message space is a “large enough” cube in Z™ A message m € Z"
is encrypted into ¢ = mB + e where e is an error vector uniformly chosen
from {—o,0}™, where o is a security parameter. A ciphertext c is decrypted as
[cR711RB™! (note: this is Babai’s round method [7] to solve CVP). But an
eavesdropper is left with the CVP-instance defined by ¢ and B. The private
basis R is generated in such a way that the decryption process succeeds with
high probability. The larger o is, the harder the CVP-instances are expected to
be. But ¢ must be small for the decryption process to succeed.

Improvements. In the original scheme, the public matrix B is the multi-
plication of the secret matrix by sufficiently many unimodular matrices. This
means that without appropriate precaution, the public matrix can be as large
as O(n®logn) bits.” Micciancio [83] therefore suggested to define instead B as
the Hermite normal form (HNF) of R. Recall that the HNF of an integer square
matrix R in row notation is the unique lower triangular matrix with coefficients
in N such that: the rows span the same lattice as R, and any entry below the
diagonal is strictly less than the diagonal entry in its column. Here, one can see
that the HNF of R is O(n? logn) bits, which is much better but still big. When
using the HNF, one should encode messages into the error vector e instead of a
lattice point, because the HNF is unbalanced. The ciphertext is defined as the
reduction of e modulo the HNF, and hence uses less than O(nlogn) bits. One
can easily prove that the new scheme (which is now deterministic) cannot be
less secure than the original GGH scheme (see [83]).

Security. GGH has no proven worst-case/average-case property, but it is much
more efficient than AD. Specifically, for security parameter n, key-size and en-
cryption time can be O(n?logn) for GGH (McEliece is slightly better though),

6 A different construction for R based on tensor product was proposed in [41], but
seems to worsen the decryption process.

7 Since the determinant has O(nlogn) bits, one can always make the matrix smaller
than O(n? log n) bits.
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vs. at least O(n*) for AD. For RSA and El-Gamal systems, key size is O(n) and
computation time is O(n?®). The authors of GGH argued that the increase in size
of the keys was more than compensated by the decrease in computation time.
To bring confidence in their scheme, they published on the Internet a series of
five numerical challenges [47], in dimensions 200, 250, 300, 350 and 400. In each
of these challenges, a public key and a ciphertext were given, and the challenge
was to recover the plaintext.

The GGH scheme is now considered broken, at least in its original form,
due to an attack recently developed by Nguyen [90]. As an application, using
small computing power and Shoup’s NTL library [107], Nguyen was able to solve
all the GGH challenges, except the last one in dimension 400. But already in
dimension 400, GGH is not very practical: in the 400-challenge, the public key
takes 1.8 Mbytes without HNF or 124 Kbytes using the HNF.8

Nguyen’s attack used two “qualitatively different” weaknesses of GGH. The
first one is inherent to the GGH construction: the error vectors used in the
encryption process are always much shorter® than lattice vectors. This makes
CVP-instances arising from GGH easier than general CVP-instances. The second
weakness is the particular form of the error vectors in the encryption process.
Recall that ¢ = mB + e where e € {£0}™. The form of e was apparently
chosen to maximize the Euclidean norm under requirements on the infinity norm.
However, by looking at that equation modulo some well-chosen integer (such as
o or even better, 20), it is possible to derive information on the message m,
which in turn leads to a simplification of the original closest vector problem, by
shortening the error vector e. The simplified closest vector problem happens to
be within reach (in practice) of current lattice reduction algorithms, thanks to
the embedding strategy that heuristically reduces CVP to SVP. We refer to [90]
for more information.

It is easy to fix the second weakness by selecting the entries of the error
vector e at random in [—o--- + o] instead of {+o}. However, one can argue
that the resulting GGH system would still be impractical, even using [83]. In-
deed, Nguyen’s experiments [90] showed that SVP could be solved in practice
up to dimensions as high as 350, for (certain) lattices with gap as small as 10.
To be competitive, the new GGH system would require the hardness (in lower
dimensions due to the size of the public key, even using [83]) of SVP for certain
lattices of only slightly smaller gap, which means a rather smaller improvement
in terms of reduction. Note also that those experiments do not support the prac-
tical hardness of Ajtai’s variant of SVP in which the gap is polynomial in the
lattice dimension. Besides, it is not clear how to make decryption efficient with-
out a huge secret key (Babai’s rounding requires the storage of R=! or a good
approximation, which could be in [49] over 1 Mbytes in dimension 400).

& The challenges do not use the HNF, as they were proposed before [83]. Note that
124 Kbytes is about twice as large as McEliece for the recommended parameters.

9 In all GGH-like constructions known, the error vector is always at least twice as
short. The situation is even worse in [41].
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4.3 The NTRU cryptosystem

Description. The NTRU cryptosystem [56], proposed by Hoffstein, Pipher and
Silverman, works in the ring R = Z[X]/(X" — 1). An element F € R is seen as
a polynomial or a row vector: F' = Zﬁi_ol Fxt = [Fy, Fy,...,Fn_1]. To select
keys, one uses the set £(d;,ds) of polynomials F' € R such that d; coefficients
are equal to 1, ds coeflients are equal to -1, and the rest are zero. There are two
small coprime moduli p < ¢ : a possible choice is ¢ = 128 and p = 3. There are
also three integer parameters dy,d, and dg quite a bit smaller than N (which is
around a few hundreds).

The private keys are f € L£(dy,dy — 1) and g € £(dy,d,). With high proba-
bility, f is invertible mod g. The public key h € R is defined as h = g/f mod g.
A messagem € {—(p—1)/2---+ (p—1)/2}" is encrypted into: e = (ppx h+m)
mod ¢, where ¢ is randomly chosen in £(dy,ds). The user can decrypt thanks
to the congruence ex f = pdxg+mx* f (mod q), where the reduction is centered
(one takes the smallest residue in absolute value). Since ¢, f, g and m all have
small coefficients and many zeroes (except possibly m), that congruence is likely
to be a polynomial equality over Z. By further reducing e * f modulo p, one thus
recovers m *x f mod ¢, hence m.

Security. The best attack known against NTRU is based on lattice reduction.
The simplest lattice-based attack can be described as follows. Coppersmith and
Shamir [33] noticed that the target vector f|lg € Z2N (the symbol | denotes
vector concatenation) belongs to the following natural lattice:

Les ={F||Ge€Z*™ | F=hxG mod q where F,G € R}.

It is not difficult to see that Lcog is a full-dimensional lattice in Z2N, with
volume ¢"V. The volume suggests that the target vector is a shortest vector of
L¢s (but with small gap), so that a SVP-oracle should heuristically output the
private keys f and g. However, based on numerous experiments with Shoup’s
NTL library [107], the authors of NTRU claimed in [56] that all such attacks
are exponential in N, so that even reasonable choices of N ensure sufficient
security. Note that the keysize of NTRU is only O(N log ¢), which makes NTRU
the leading candidate among knapsack-based and lattice-based cryptosystems,
and allows high lattice dimensions. It seems that better attacks or better lattice
reduction algorithms are required in order to break NTRU. To date, none of the
numerical challenges proposed in [56] has been solved. However, cryptographic
concerns have been expressed about the lack of security proofs for NTRU: there is
no known result proving that NTRU or variants of its encryption scheme satisfy
standard security requirements (such as semantic security or non-malleability,'°
see [79]), assuming the hardness of a sufficiently precise problem. Besides, there
exist simple chosen ciphertext attacks [60] that can recover the secret key, so
that appropriate padding is necessary.

10 NTRU without padding cannot be semantically secure since e(1) = m(1) (mod g) as
polynomials. And it is easily malleable using multiplications by X of polynomials
(circular shifts).
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5 The hidden number problem

5.1 Hardness of Diffie-Hellman bits

There is only one example known in which the LLL algorithm plays a positive
role in cryptology. In [18], Boneh and Venkatesan used LLL to solve the hidden
number problem, which enables to prove the hardness of the most significant bits
of secret keys in Diffie-Hellman and related schemes in prime fields. Recall the
Diffie-Hellman key exchange protocol [36]: Alice and Bob fix a finite cyclic G
and a generator g. They respectively pick random a,b € [1,|G|] and exchange g°
and g°. The secret key is g%°. Proving the security of the protocol under “rea-
sonable” assumptions has been a challenging problem in cryptography (see [12]).
Computing the most significant bits of g?® is as hard as computing ¢ itself, in
the case of prime fields:

Theorem 2 (Boneh-Venkatesan). Let g be an n-bit prime and g be a gener-
ator of Z;,. Let € > 0 be fized, and set £ = {(n) = [e/n]. Suppose there exists
an expected polynomial time (in n) algorithm A, that on input q, g, g and g°,
outputs the £ most significant bits of g**. Then there is also an expected poly-
nomial time algorithm that on input q, g, g%, g® and the factorization of ¢ — 1,
computes all of g*°.

The above result is slightly different!! from [18]. The same result holds for the
least significant bits. For a more general statement when g is not necessarily a
generator, and the factorization of ¢ — 1 is unknown, see [51]. No such results are
known for other groups (there is some kind of analogous result [113] for finite
fields though).

The proof goes as follows. We are given some g% and g°, and want to compute
g®. We repeatedly pick a random  until g2*" is a generator of Zy (thanks to the
factorization of ¢ — 1). For each r, the probability of success is ¢(¢—1)/(¢—1) >
1/loglogq. Next, we apply A to the points g®*" and g*** for many random
values of t, so that we learn the most significant bits of g(a+)bg(e+mt  where
¢(@t"t is a random element of Z; since g°t" is a generator. Note that one can
easily recover ¢?° from a = ¢g(®*t™? The problem becomes the hidden number
problem (HNP): given #1,...,t; chosen uniformly and independently at random
in Zy, and MSBy(at; mod q) for all 4, recover a € Z,. Here, MSBy(z) for z € Z,
denotes any integer z satisfying |z — z| < ¢/2¢+.

To achieve the proof, Boneh and Venkatesan presented a simple solution
to HNP when £ is not too small, by reducing HNP to a lattice closest vector
problem. We sketch this solution in the next section. One can try to prove
the hardness of Diffie-Hellman bits for different groups with the same method.
Curiously, for the important case of elliptic curve groups, no efficient solution
is known for the corresponding hidden number problem, except when one uses
projective coordinates to represent elliptic curve points.

1 Due to an error in the proof of [18] spotted by [51].
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5.2 Solving the hidden number problem by lattice reduction

Consider an HNP-instance: let ¢1,. .. ,t; be chosen uniformly and independently
at random in Zy, and a; = MSBy(at; mod g) where o € Z, is hidden. Clearly, the
vector t = (f1a mod g, ... tqa mod ¢, a/2¢+1) belongs to the (d+ 1)-dimensional
lattice L = L(q, ¥, t1,...,ts) spanned by the rows of the following matrix:

g 0 ---0 0
0 ¢q :
SRR
0 0¢g O
t... ... tg 1/2¢H1
The vector a = (ay,...,aq,0) is very close to L, because it is very close to t.

Indeed, ||t —a|| < gv/d + 1/2%1. Tt is not difficult to show that any lattice point
sufficiently close to a discloses the hidden number a (see [18, Theorem 5] or [98]):

Lemma 3 (Uniqueness). Set d = 2[/logq]| and p = 1+/logq+3. Let o be in
Z,. Choose integers ty, ..., tq uniformly and independently at random in Z;,. Let
a=(a,-..,aq,0) be such that |(at; mod q) — a;| < q/2*. Then with probability
at least 1, all u € L with |lu—a|| < 2% are of the form:

u = (t; mod q, .. .t48 mod q,6/2£+1) where a = (mod q).

Since a is close enough to L, Babai’s nearest plane CVP approximation algo-
rithm [7] yields a lattice point sufficiently close to a, which leads to:

Theorem 4 (Boneh-Venkatesan). Let « be in Zj. Let O be a function defined
by O(t) = MSB¢(at mod q) with £ = [\/logq] + [loglog q]. There ezists a deter-
ministic polynomial time algorithm A which, on inputty, ..., tq, O(t1),...,0(tq),
outputs a with probability at least 1/2 over ty,...,tq chosen uniformly and in-
dependently at random from Z7, where d = 2[+/logq].

Thus, the hidden number problem can be solved using ¢ = /log g +loglog ¢ bits.
Using Schnorr’s improved lattice reduction algorithms, this can be asymptoti-
cally improved to £4/log ¢ for any fixed € > 0. One may also replace the bound %
by ﬁ and reduce the number of bits required by loglog q. Then, the expected

run time goes up by a factor /logq. One can alternately run +/loggq copies of
the algorithm in parallel. Theorem 2 is a simple consequence.

5.3 Lattice attacks on DSA

Interestingly, the previous solution of the hidden number problem also has a dark
side: it leads to a simple attack against the Digital Signature Algorithm [88, 79]
(DSA) in special settings (see [59, 98]). Recall that the DSA uses a public element
g € Zy of order g, a 160-bit prime dividing p— 1 where p is a large prime (at least
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512 bits). The signer has a secret key o € Z; and a public key 8 = g% mod p.
The DSA signature of a message m is (r,s) € Z2 where r = (g¥ mod p) mod ¢,
s = k71(h(m)+ar) mod g, h is SHA-1 hash function and k is a random element
in Z} chosen at each signature.

It is well-known that the secret key « can easily be recovered if the random
nonce k is disclosed, or if k is produced by a cryptographically weak pseudo-
random generator such as Knuth’s linear congruential generator with known
parameters [8]'2 and a few signatures are available. Recently, Howgrave-Graham
and Smart [59] noticed that Babai’s nearest plane algorithm could heuristically
recover «, provided that sufficiently many signatures and sufficiently many bits
of the corresponding nonces k are known. This is not surprising, because the
underlying problem is in fact very close to the hidden number problem.

Indeed, assume that for d signatures (r;, s;) of messages m;, the £ least signif-
icant bits of the random nonce k; are known to the attacker: one knows a; < 2¢
such that k; — a; is of the form 2%b;. Then ar; = s;(a; + b;2%) — h(m;) (mod q),
which can be rewritten as: ar;27¢s; !t = (a; — 57 h(m;)) - 274 +b; (mod q). Let-
ting t; = rﬂ‘fs;l mod g, one sees that MSB;(at; mod ¢) is known. Recovering
the secret key « is therefore a slightly different hidden number problem in which
the ¢;’s are not assumed to be independent and uniformly distributed over Zg,
but are of the form 7;27¢s; ' where the underlying k;’s are independent and
uniformly distributed over Zj. In other words, HNP is an idealized version of
the problem of breaking DSA (or related signature schemes) when the £ least
significant bits (or more generally, £ consecutive bits) of the random nonce k are
known for many signatures. It follows that Theorem 4 does not directly imply a
provable attack on DSA in such settings.

But an attacker can ignore the difference between the distribution of r;2=¢s;"
and the uniform distribution, and simply identify the DSA problem to HNP.
Since lattice reduction algorithms can behave much better than theoretically
expected, one can even hope to solve CVP exactly, yielding better bounds to
Theorem 4. It is straightforward to extend Theorem 4 to the case where a CVP-
oracle is available, by going through the proof of Lemma 3. For the case of a 160-
bit prime ¢ as in DSA, one obtains that HNP can be solved using respectively
¢ = 2 bits and d = 160, or £ = 6 bits and d = 100 respectively, when an
oracle for CVP,, or CVP is available (see [98]). In fact, the bounds are even
better in practice. It turns out that using standard lattice reduction algorithms
implemented in Shoup’s NTL library [107], one can often solve HNP for a 160-bit
prime ¢ using £ = 3 bits and d = 100 (see [98]).

6 Finding small roots of low-degree polynomial equations

We survey an important application of lattice reduction found in 1996 by Cop-
persmith [32], and its developments. These results illustrate the power of lin-
earization combined with lattice reduction.

12 Note that even in the simple case where the parameters of the linear congruential
generator are hidden, the attack of [8] does not apply.
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6.1 Univariate modular equations

The general problem of solving univariate polynomial equations modulo some
integer IV of unknown factorization seems to be hard. Indeed, notice that for
some polynomials, it is equivalent to the knowledge of the factorization of V.
And the particular case of extracting e-th roots modulo N is the problem of
decrypting ciphertexts in the RSA cryptosystem, for an eavesdropper. Curiously,
Coppersmith [32] showed using LLL that the special problem of finding small
roots is easy:

Theorem 5 (Coppersmith). Let P be a monic polynomial of degree & in one
variable modulo an integer N of unknown factorization. Then one can find in
time polynomial in (log N, ) all integers xo such that P(zo) = 0 (modN) and
|.’IJO| S Nl/‘s.

Related (but weaker) results appeared in the eighties [54,110].13 We sketch a
proof of Theorem 5, as presented by Howgrave-Graham [57], who simplified
Coppersmith’s original proof (see also [62]). Coppersmith’s method reduces the
problem of finding small modular roots to the (easy) problem of solving poly-
nomial equations over Z. More precisely, it applies lattice reduction to find an
integral polynomial equation satisfied by all small modular roots of P. The in-
tuition is to linearize all the equations of the form x*P(z)/ = 0 (mod N7) for
appropriate integral values of ¢ and j. Such equations are satisfied by any so-
lution of P(z) = 0 (mod N). Small solutions zy give rise to unusually short
solutions to the resulting linear system. To transform modular equations into
integer equations, the following elementary lemma'# is used, with the notation

lr(z)|| = v/ a? for any polynomial r(z) = Y a;z* € Z[z]:

Lemma 6. Let r(x) € Z[z] be a polynomial of degree n and let X be a positive
integer. Suppose ||r(zX)|| < N*//n. If r(zo) =0 (mod N") with |z| < X, then
r(zo) = 0 holds over the integers.

Now the trick is to, given a parameter h, consider the n = (h + 1)d polynomials
Qup(x) = NP2 P(z)?, where 0 < u < § — 1 and 0 < v < h. Notice that any
root 7o of P(z) modulo N is a root modulo N* of g, ,(x), and therefore, of
any integer linear combination r(z) of the g, (z)’s. If such a combination r(z)
further satisfies ||r(zX)| < N"/y/n, then by Lemma 6, solving the equation
r(z) = 0 over Z yields all roots of P(z) modulo N less than X in absolute
value. This suggests to look for a short vector in the lattice corresponding to the
qu,v(zX)’s. More precisely, define the n x n matrix M whose i-th row consists
of the coefficients of g, (2X), starting by the low-degree terms, where v =
[(i—1)/48| and u = (i — 1) — dv. Notice that M is lower triangular, and a simple
calculation leads to det(M) = X™(»~1/2N""/2 We apply an LLL-reduction to

13 Hastad [54] presented his result in terms of system of low-degree modular equations,
but he actually studies the same problem, and his approach achieves the weaker
bound N2/GG+1),

1* A similar lemma is used in [54]: the bound eventually obtained in [54] is weaker
because only h =1 is considered. Note also the resemblance with [73, Prop. 2.7].
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the full-dimensional lattice spanned by the rows of M. The first vector of the
reduced basis corresponds to a polynomial of the form r(zX), and has Euclidean
norm ||r(zX)]|. The theoretical bounds of the LLL algorithm ensure that:

”’I'(QTX)H < 2(n—1)/4 det(M)l/n — 2("_1)/4X(n_1)/2Nh/2.

Recall that we need ||r(zX)|| < N*/\/n to apply the lemma. Hence, for a given
h, the method is guaranteed to find modular roots up to X if:

1
X < L h/(n-1), ~1/(n-1)
V2 "

The limit of the upper bound, when h grows to oo, is %N /6 Theorem 5
follows from an appropriate choice of h. This result is practical (see [35, 58] for
experimental results) and has many applications. It can be used to attack RSA
encryption when a very low public exponent is used (see [13] for a survey). Boneh
et al. [17] applied it to factor efficiently numbers of the form N = p"q for large r.
Boneh [14] used a variant to find smooth numbers in short interval. See also [10]

for an application to Chinese remaindering in the presence of noise.

Remarks. Theorem 5 is trivial if P is monic. Note also that one cannot hope to
improve the (natural) bound N 1/8 for all polynomials and all moduli N. Indeed,
for the polynomial P(z) = x® and N = p® where p is prime, the roots of P mod N
are the multiples of p. Thus, one cannot hope to find all the small roots (slightly)
beyond N'/% = p, because there are too many of them. This suggests that even a
SVP-oracle (instead of LLL) should not help Theorem 5 in general, as evidenced
by the value of the lattice volume (the fudge factor 2(»~1)/4 yielded by LLL is
negligible compared to det(M)!/™). Tt was recently noticed in [10] that if one
only looks for the smallest root mod N, an SVP-oracle can improve the bound
N'/% for very particular moduli (namely, squarefree N of known factorization,
without too small factors). Note that in such cases, finding modular roots can
still be difficult, because the number of modular roots can be exponential in the
number of prime factors of N.

6.2 Multivariate modular equations

Interestingly, Theorem 5 can heuristically extend to multivariate polynomial
modular equations. Assume for instance that one would like to find all small
roots of P(z,y) = 0 (modN), where P(z,y) has total degree § and has at
least one monic monomial z%y°~® of maximal total degree. If one could obtain
two algebraically independent integral polynomial equations satisfied by all suf-
ficiently small modular roots (z,y), then one could compute (by resultant) a
univariate integral polynomial equation satisfied by x, and hence find efficiently
all small (z,y). To find such equations, one can use an analogue of lemma 6
2
i @ j for

z!

to bivariate polynomials, with the (natural) notation ||r(z,y)|| = />

r(z,y) = Zz‘,j a; ja'yl
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Lemma 7. Let r(z,y) € Z[z,y] be a sum of at most w monomials. Assume
lr(zX,yY)|| < N"/\/w for some X,Y > 0. If r(z0,y0) = 0 (mod N") with
|zo] < X and |yo| <Y, then r(zo,y0) = 0 holds over the integers.

By analogy, one chooses a parameter h and select r(z,y) as a linear combination
of the polynomials qu, u, »(z,y) = NP0z y%2 P(x,y)?, where u; +us+dv < hd
and uy,ug,v > 0 with u; < @ or ug < § — a. Such polynomials have total degree
less than hd, and therefore are linear combinations of the n = (hd +1)(hd + 2)/2
monic monomials of total degree < dh. Due to the condition u; < aorus < i—a,
such polynomials are in bijective correspondence with the n monic monomials
(associate to Gu, uy.v(2,y) the monomial z¥1+v@yu2+v(6=2)) One can represent
the polynomials as n-dimensional vectors in such a way that the n x n matrix
consisting of the gy, u,,v(2X,yY)’s (for some ordering) is lower triangular with
coefficients Nh—v X w+vdyux+v(6—a) on the diagonal.

Now consider the first two vectors r1 (zX,yY) and rq(zX,yY) of an LLL-
reduced basis of the lattice spanned by the rows of that matrix. Since any root
(%0,y0) of P(z,y) modulo N is a root of Gu, u,.(z,y) modulo N*, we need
lr1(zX,yY)| and ||r2(zX,yY)| to be less than N"/\/n to apply Lemma 7. A
(tedious) computation of the triangular matrix determinant enables to prove that
r1(z,y) and ro(z,y) satisfy that bound when XY < N'/9—¢ and h is sufficiently
large (see [62]). Thus, one obtains two integer polynomial bivariate equations
satisfied by all small modular roots of P(z,y).

The problem is that, although such polynomial equations are linearly inde-
pendent as vectors, they might be algebraically dependent, making the method
heuristic. This heuristic assumption is unusual: many lattice-based attacks are
heuristic in the sense that they require traditional lattice reduction algorithms
to behave as SVP-oracles. An important open problem is to find sufficient con-
ditions to make Coppersmith’s method provable for bivariate (or multivariate)
equations. Note that the method cannot work all the time. For instance, the
polynomial = — y has clearly too many roots over Z?2 and hence too many roots
mod any N (see [32] for more general counterexamples).

Such a result may enable to prove several attacks which are for now, only
heuristic. Indeed, there are applications to the security of the RSA encryption
scheme when a very low public exponent or a low private exponent is used
(see [13] for a survey), and related schemes such as the KMOV cryptosystem
(see [9]). In particular, the experimental evidence of [15, 9] shows that the method
is very effective in practice for certain polynomials.

Remarks. In the case of univariate polynomials, there was basically no choice
over the polynomials g, ,(z) = N*~17vz%P(z)? used to generate the appropri-
ate univariate integer polynomial equation satisfied by all small modular roots.
There is much more freedom with bivariate modular equations. Indeed, in the
description above, we selected the indices of the polynomials gy, u,..»(Z,y) in
such a way that they corresponded to all the monomials of total degree < hd,
which form a triangle in Z? when a monomial 2%y’ is represented by the point
(7, 7)- This corresponds to the general case where a polynomial may have several
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monomials of maximal total degree. However, depending on the shape of the
polynomial P(z,y) and the bounds X and Y, other regions of (uj,us,v) might
lead to better bounds.

Assume for instance P(z,%) is of the form z%=y% plus a linear combination
of z'y?’s where i < &, j < §, and i + j < 8, + d,. Intuitively, it is better
to select the (u1,us,v)’s to cover the rectangle of sides hd, and héy instead of
the previous triangle, by picking all gy, v, (z,y) such that uy + vd, < hd, and
uz + véy < hdy, with u; < 0, or uz < dy. One can show that the polynomials
r1(z,y) and r9(x,y) obtained from the first two vectors of an LLL-reduced basis
of the appropriate lattice satisfy Lemma 7, provided that h is sufficiently large,
and the bounds satisfy X% Y% < N?/3-¢_ Boneh and Durfee [15] applied similar
and other tricks to a polynomial of the form P(z,y) = zy + ax + b. This allowed
better bounds than the generic bound, leading to improved attacks on RSA with
low secret exponent.

6.3 Multivariate integer equations

The general problem of solving multivariate polynomial equations over Z is also
hard, as integer factorization is a special case. Coppersmith [32] showed that
a similar!® lattice-based approach can be used to find small roots of bivariate
polynomial equations over Z:

Theorem 8 (Coppersmith). Let P(z,y) be a polynomial in two variables over
Z, of mazimum degree § in each variable separately, and assume the coefficients
of f are relatively prime as a set. Let X,Y be bounds on the desired solutions
Zo,Yo. Define P(z,y) = P(Xz,Yy) and let D be the absolute value of the largest
coefficient of P. If XY < D39 then in time polynomial in (logD,6), we can
find all integer pairs (xo,yo) such that P(xq,y0) =0, |zo] < X and |yo| < Y.

Again, the method extends heuristically to more than two variables, and there
can be improved bounds depending on the shape!® of the polynomial (see [32]).
Theorem 8 was introduced to factor in polynomial time an RSA-modulus!'”
N = pq provided that half of the (either least or most significant) bits of either
p or g are known (see [32,14,16]). This was sufficient to break an ID-based
RSA encryption scheme proposed by Vanstone and Zuccherato [111]. Boneh et
al. [16] provide another application, for recovering the RSA secret key when a
large fraction of the bits of the secret exponent is known. Curiously, none of the
applications cited above happen to be “true” applications of Theorem 8. It was
later realized in [58,17] that those results could alternatively be obtained from
a (simple) variant of the univariate modular case (Theorem 5).

5 However current proofs are somehow more technical than for Theorem 5. A simpli-
fication analogue to what has been obtained for Theorem 5 would be useful.

16 The coefficient 2/3 is natural from the remarks at the end of the previous section for
the bivariate modular case. If we had assumed P to have total degree d, the bound
would be XY < D*.

17 p and ¢ are assumed to have similar size.
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7 Lattices and RSA

Section 6 suggests to clarify the links existing between lattice reduction and
RSA [100], the most famous public-key cryptosystem. We refer to [79] for an
exposition of RSA, and to [13] for a survey of attacks on RSA encryption. Recall
that in RSA, one selects two prime numbers p and g of approximately the same
size. The number N = pq is public. One selects an integer d coprime with
¢(N) = (p—1)(g — 1). The integer d is the private key, and is called the RSA
secret exponent. The public exponent is the inverse e of d modulo ¢(NN).

7.1 Lattice attacks on RSA encryption

Small public exponent. When the public exponent e is very small, such as 3,
one can apply Coppersmith’s method (seen in the previous section) for univariate
polynomials in various settings (see [13,32, 35] for exact statements):

— An attacker can recover the plaintext of a given ciphertext, provided a large
part of the plaintext is known.

— If a message is randomized before encryption, by simply padding random
bits at a known place, an attacker can recover the message provided the
amount of randomness is small.

— Hastad [54] attacks can be improved. An attacker can recover a message
broadcasted (by RSA encryption and known affine transformation) to suf-
ficiently many participants, each holding a different modulus V. This pre-
cisely happens if one sends a similar message with different known headers
or time-stamps which are part of the encryption block.

None of the attacks recover the secret exponent d: they can only recover the
plaintext. The attacks do not work if appropriate padding is used (see current
standards and [79]), or if the public exponent is not too small. For instance, the
popular choice e = 65537 is not threatened by these attacks.

Small private exponent. When d < N°25 an old result of Wiener [114] shows
that one can easily recover the secret exponent d (and thus the factorization
of N) from the continued fractions algorithm. Boneh and Durfee [15] recently
improved the bound to d < N%292 by applying Coppersmith’s technique to
bivariate modular polynomials and improving the generic bound. Note that the
attack is heuristic (see Section 6), but experiments showed that it works well in
practice (no counterexample has ever been found). All those attacks on RSA with
small private exponent also hold against the RSA signature scheme. A related
result (using Coppersmith’s technique for either bivariate integer or univariate
modular polynomials) is an attack [16] to recover d when a large portion of the
bits of d is known (see [13]).
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7.2 Lattice attacks on RSA signature

The RSA cryptosystem is often used as a digital signature scheme. To prevent
various attacks, one must apply a preprocessing scheme to the message, prior to
signature. The recommended solution is to use hash functions and appropriate
padding (see current standards and [79]). However, several alternative simple
solutions not involving hashing have been proposed, and sometimes accepted as
standards. Today, all such solutions have been broken (see [45]), some of them
by lattice reduction techniques (see [86,45]). Those lattice attacks are heuristic
but work well in practice. They apply lattice reduction algorithms to find small
solutions to (affine) linear systems, which leads to signature forgeries for certain
proposed RSA signature schemes. Finding such small solutions is seen as a closest
vector problem for some norm.

7.3 Factoring and lattice reduction

In the general case, the best attack against RSA encryption or signature is
integer factorization. Note that to prove (or disprove) the equivalence between
integer factorization and breaking RSA encryption remains an important open
problem in cryptology (latest results [19] suggest that breaking RSA encryption
may actually be easier). We already pointed out that in some special cases,
lattice reduction leads to efficient factorization: when the factors are partially
known [32], or when the number to factor has the form p"q with large r [17].

Schnorr [103] was the first to establish a link between integer factorization
and lattice reduction, which was later extended by Adleman [2]. Schnorr [103]
proposed a heuristic method to factor general numbers, using lattice reduction
to approximate the closest vector problem in the infinity or the L; norm. Adle-
man [2] showed how to use the Euclidean norm instead, which is more suited
to current lattice reduction algorithms. Those methods use the same underlying
ideas as sieving algorithms (see [30]): to factor a number n, they try to find
many congruences of smooth numbers to produce random square congruences
of the form z? = y? (mod n), after a linear algebra step. Heuristic assumptions
are needed to ensure the existence of appropriate congruences. The problem of
finding such congruences is seen as a closest vector problem. Still, it should be
noted that those methods are theoretical, since they are not adapted to currently
known lattice reduction algorithms. To be useful, they would require very good
lattice reduction for lattices of dimension over at least several thousands.

We close this review by mentioning that current versions of the Number Field
Sieve (NFS) (see [72,30]), the best algorithm known for factoring large integers,
use lattice reduction. Indeed, LLL plays a crucial role in the last stage of NFS
where one has to compute an algebraic square root of a huge algebraic number
given as a product of hundreds of thousands of small ones. The best algorithm
known to solve this problem is due to Montgomery (see [87,89]). It has been used
in all recent large factorizations, notably the record factorization [28] of a 512-
bit RSA-number of 155 decimal digits proposed in the RSA challenges. There,
LLL is applied many times in low dimension (less than 10) to find nice algebraic
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integers in integral ideals. But the overall running time of NFS is dominated by
other stages, such as sieving and linear algebra.

8 Conclusions

Lovéasz’s algorithm and other lattice basis reduction algorithms have proved in-
valuable in cryptology. They have become the most popular tool in public-key
cryptanalysis. In particular, they play a crucial role in several attacks against
the RSA cryptosystem. The past few years have seen new, sometimes provable,
lattice-based methods for solving problems which were a priori not linear, and
this definitely opens new fields of applications. Paradoxically, at the same time,
a series of complexity results on lattice reduction has emerged, giving rise to an-
other family of cryptographic schemes based on the hardness of lattice problems.
The resulting cryptosystems have enjoyed different fates, but it is probably too
early to tell whether or not secure and practical cryptography can be built using
hardness of lattice problems. Indeed, several questions on lattices remain open.
In particular, we still do not know whether or not it is easy to approximate the
shortest vector problem up to some polynomial factor, or to find the shortest
vector when the lattice gap is larger than some polynomial in the dimension.
Besides, only very few lattice basis reduction algorithms are known, and their
behaviour (both complexity and output quality) is still not well understood. And
so far, there has not been any massive computer experiment in lattice reduction
comparable to what has been done for integer factorization or the elliptic curve
discrete logarithm problem. Twenty years of lattice reduction yielded surprising
applications in cryptology. We hope the next twenty years will prove as exciting.
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