SIGNING ON A POSTCARD

David Naccache Jacques Stern
Gemplus Card International Ecole Normale Supérieure
34 rue Guynemer 45 rue d’Ulm
Issy-les-Moulineaux, F-92447, France Paris CEDEX 5, F-75230, France
naccache@gemplus.com jacques.stern@ens.fr

Abstract. We investigate the problem of signing short messages using
a scheme that minimizes the total length of the original message and the
appended signature. This line of research was motivated by several postal
services interested by stamping machines capable of producing digital
signatures. Although several message recovery schemes exist, their secu-
rity is questionable. This paper proposes variants of DSA and ECDSA
allowing partial recovery: the signature is appended to a truncated mes-
sage and the discarded bytes are recovered by the verification algorithm.
Still, the signature authenticates the whole message. Our scheme has
some form of provable security, based on the random oracle model. Us-
ing further optimizations we can lower the scheme’s overhead to 26 bytes
with for a 278 security level, compared to forty bytes for DSA or ECDSA
and 128 bytes 1024-bit RSA.

1 Introduction

Twenty years or so after the discovery of public key cryptography and digital
signatures, the world appears ready for their large-scale deployment. Several sig-
nature schemes have been designed by the research community, either based on
the celebrated RSA algorithm or on the discrete logarithm problem modulo a
prime or over an elliptic curve. Standards have been crafted. Security proofs,
notably using the so-called random oracle model have been proposed. Surpris-
ingly, there still remain specific needs that appear in relation with some trading
scenarii and which are not properly served by the current technology.

In some situations, it is desirable to use very short signatures; more accu-
rately, one wishes to minimize the total length of the original message and the
appended signature. In some respect, this is very similar to the problem one
faces while trying to sign on a postcard without sacrificing too much of the
(already limited) space available for the text. This analogy is not fortuitous:
the motivation for short signatures has arisen from the needs of various postal
services, which are currently investigating the possibility of integrating digital
signatures into stamping machines. The space limitation here comes from the
combined abilities of low-cost barcode printing machines and optical readers.
Every byte one can save is of importance and the overhead of 128 bytes, implied

by standard RSA signatures is not always acceptable. Even the forty byte over-
head associated with DSA is hard to cope with using traditional (1-D) barcode
technology.

1.1 1-D barcodes

Barcodes are alternating patterns of light and dark that encode specific infor-
mation chunks. When scanned, barcodes can be converted back into the original
string of text. Most barcodes consist of patterns of rectangles although some of
the newer standards use other shapes. Barcodes can be scanned on the fly with
little or no error under less than ideal conditions (e.g. folded envelops or dam-
aged letters). The scanners that read barcodes emit a laser beam of a specific
frequency that works by distinguishing the edges within a symbol allowing them
to be scanned omnidirectionally. Each symbology (type of barcode) has unique
start and stop bars (or some other unique pattern) that allows the scanner to
discriminate between symbologies without human intervention. Most systems
sacrifice one or more CRC digits to insure accuracy when scanned. Typical bar-
codes (such as Postnet, UPC, EAN, JAN, Bookland, ISSN or Code 39) have a
capacity of a few bytes, normally up to thirty characters. A typical 1-D barcode
is shown in figure 1.

1 “ d

gdH5R"7RA01
Figure 1 : 1-D barcode. Figure 2 : 2-D barcode.

Amongst the extensive bibliography about the 1-D barcodes available on-line,
we particularly recommend [14]’s FAQ.

1.2 2-D barcodes

More sophisticated standards exist. These are based on two dimensional sym-
bologies. Ordinary barcode is vertically redundant, meaning that the same in-
formation is repeated vertically. The heights of the bars can thus be truncated
without any information loss. However, the vertical redundancy allows a symbol
with printing defects, such as spots or voids to still be read. The higher the bars
are, bigger is the probability that at least one path (horizontal section along
the barcode) is still readable. A two dimensional (2-D) code stores information
along the height as well as the length of the symbol (in fact, all human alpha-
bets are 2-D codes). Since both dimensions contain information, at least some
of the vertical redundancy is lost and error-correction techniques must be used
to prevent misreads and produce acceptable read rates.

2-D code systems (for instance the PDF417 standard shown in figure 2) have
become more feasible with the increased use of moving beam laser scanners and

CCD (charge coupled device) scanners. The 2-D symbol can be read with hand
held moving beam scanners by sweeping the horizontal beam down the symbol.

Initially, 2-D symbologies were first applied to unit-dose packages in the
healthcare industry. These packages were small and had little room to place
a barcode. The electronics industry also showed an early interest in very high
density barcodes, and 2-D symbologies since free space on electronics assemblies
was scarce.

There are well over twenty different 2-D symbologies available today. Some
look like multiple lines of barcodes stacked on top of each other and others
resemble a honeycomb like-matrix. The reader can get a better idea of this
diversity by consulting [13]. The capacity of 2-D codes is typically between a few
hundreds to a couple of thousands of bytes.

1.3 Internet postage

More recently, the ability to encode a portable database has made 2-D sym-
bologies attractive in postal applications: one example is storing name, address
and demographic information on direct mail business reply cards. A good direct
mail response is often less than two percent. If the return card is only coded with
a license plate, the few replies must be checked against a very large database,
perhaps millions of names. This can be quite expensive in computer time. If all
the important information is printed in 2-D code at the time the mailing label
is printed, there is very little additional cost, and a potential for great savings
when the cards are returned. Similar savings can occur in field service applica-
tions where servicing data is stored in a 2-D symbol on equipment. The field
engineer uses a portable reader to get the information rather than dialing up the
home office’s computer.

J— sq.aga

stamps) [[[] st
o

.com

HIIIJI\“IIIlH“H\lHHIII‘HHHIlHl
STAMPS.COM

2900 31ST ST STE 150

SANTA MONICA CA 90405-3035

Figure 3 : Internet Postage.

In 1998, The United States Postal Service (USPS) introduced a new form of
postage : Internet postage. Internet Postage is a combination of human-readable
information and a 2-D barcode. To help the post office protect against fraud, the
2-D barcode contains information about the mail piece including the destination

zip code, amount of postage applied, date and time the envelope was posted and
a digital signature so that the post office can validate the authenticity of the
postage.

Several companies were certified to distribute Internet postage (e.g. Pitney
Bowes, Stamps.com etc.). In practice, such operators run postage servers that
communicate with the USPS. When customers log on such a server, they can
print Internet postage directly onto envelopes and labels using an ordinary laser
or inkjet printer. A typical final result is shown in figure 3.

1.4 Short signatures

Although message recovery techniques seem to solve the signature size problem,
they still suffer from several drawbacks. Firstly, they usually deal with messages
of fixed length and it is unclear how to extend them when the message exceeds
some given size. For example, the Nyberg-Rueppel scheme described in [6] ap-
plied to “redundant” messages of twenty bytes. This presumably means ten bytes
for the message and ten for the redundancy but what if the message happens to
be fourteen bytes long? Secondly, their security is not well understood. This is
even an understatement: recently, a flaw has been found in the 1S0/1EC 9796-1/2
standards (see [5, 4]). While completing this paper, we have been informed that
Abe and Okamoto had independently investigated the matter and proposed a
message recovery scheme proven secure in the random oracle model (see [1]).
Still, they do not address the format question.

In this paper, we propose variants of DSA and ECDSA allowing partial re-
covery. The signature is appended to a truncated message and the discarded
bytes are recovered by the verification algorithm. Still, the signature (which
somewhat behaves as an error-correcting code) authenticates the whole message.
Furthermore, we offer some form of proof for our scheme, based on the random
oracle model. More accurately, the proof applies to a version of the scheme that
slightly departs from the DSA/ECDSA design. Should closer compatibility with
the standard be desired, one has to go over to a weaker security model (namely
the so-called generic model). Still, this model gives strong evidence that the
scheme’s design is indeed sound.

Our scheme allows to recover ten bytes of the message with a security level
2780, This reduces the overhead of DSA/ECDSA signatures to thirty bytes. Fur-
ther optimizations lower this figure to 26 bytes while keeping the same security
level. They use several tricks such as transmitting additional bytes of the mes-
sage as a subliminal part of the signature or slightly truncating the signature.
This is traded-off against heavy (but still perfectly acceptable) preprocessing
during signature generation and a slight increase of the verification time.

This paper focuses on signatures, not on certificates. We are perfectly aware
that many trading scenarii will require appending a certificate to the signature
and that the resulting overhead should be considered. For this reason, the size
of the public key matters and the choice of elliptic curve signatures has been

advocated in this context. Accordingly, we have chosen to describe our results
in the elliptic curve setting. However, it is only the shorter length of the public
key that makes EC signatures more attractive in terms of size. If the public key
is known to the verifier, then, ordinary discrete logarithm signatures such as
DSA are strictly equivalent (as far as size is concerned) to their EC analogs. In
particular all our techniques go through, mutatis mutandis, when ordinary DL
signatures are considered and the same optimizations in size that we suggest for
EC signatures will equally apply to DL ones.

We close this introduction by briefly describing the organization of the paper:
we first review the random oracle model and explain what kind of security it may
provide; then, we introduce our partial recovery scheme and assess its soundness.
Finally, we describe two possible optimizations and evaluate their cost in terms
of memory requirement and computing time.

2 The random oracle model

2.1 The basic paradigm

The random oracle paradigm was introduced by Bellare and Rogaway in [2] as
a practical tool to check the validity of cryptographic designs. It has been used
successfully by Bellare and Rogaway ([3]) in connection with RSA signatures and
by Pointcheval and Stern ([11]) to prove the security of El Gamal signatures. The
model replaces hash functions by truly random objects and provides probabilistic
security proofs for the resulting schemes, showing that attacks against these can
be turned into efficient solutions of well-known mathematical problems such as
factoring, the discrete logarithm problem (DL) or the ECDL problem.

Although the random oracle model is both efficient and useful, it has received
a lot of criticism. It is absolutely true that proofs in the random oracle model are
not proofs: they are simply a design validation methodology capable of spotting
defective or erroneous designs when they fail. Besides, we will freely use the
random oracle model in the context of DSA-like signatures. As is known, DSA
uses for the generation of each signature a randomly chosen one-time key-pair
{u,v}, with v = g* mod p (with standard notations) and derives a part of the
signature ¢ by considering v as an integer and reducing it modulo r. Similarly,
ECDSA generates a random one-time key-pair {u,V} (where V is a point on
the elliptic curve defined by V = u.G), encodes V' as an integer ¢ and computes
¢ = i mod r, where r is the order of G. As usual, the curve and the base point G
are elements of the key. To provide proofs or spot design errors, we will replace
the function v — ¢, and similarly the function V' — ¢ by a random function
R with range [0, r — 1[. Practically, this can be achieved by hashing the encoding
of v or V using a standard hash function such as SHA-1 [9]. Still, we do not
necessarily suggest to hash the encoding. Of course this can be criticized in
an even stronger way than the original paradigm underlying the random oracle
model. For example, in DSA, we know that if vy, vy are given, and if ¢, co
are their corresponding outputs, then v, + v, mod p is exactly (v; mod p) +

(v2 mod p) or (vq mod p) + (ve mod p) — p and therefore produces either the
output ¢1 4¢3 or ¢; +c¢o — 1 since r divides p— 1. Thus, the function v — ¢ is by
no means random. Still, we note that it seems very difficult to control the value
of v since it is produced by exponentiation and, accordingly, it is very difficult
to distinguish ¢ from an output drawn by a random function R. For this reason,
we believe that random oracle proofs are still significant. In the next paragraph
we give further arguments in support of the random oracle model by relating
our approach to the so-called generic algorithms used by Shoup ([12]).

2.2 A note on generic algorithms

A generic algorithm is an algorithm that uses a group structure but can only
handle the group elements by either calling arguments passed to the algorithm
or by applying the group operations to previously accessed elements. The con-
cept has been introduced by Nechaev ([8]) and has been successfully applied by
Shoup ([12]) to the discrete logarithm problem and the Diffie-Hellman problem.
Basically, it rules out techniques that would take advantage of the actual repre-
sentation of the group elements. Typically, methods such as the Index-calculus,
which try to factor elements of the group into small prime factors do not fall
under the scope of generic algorithms. Similarly, any method that would process
in any way the coordinates of an elliptic curve point would be beyond reach of
generic algorithms. The interesting point is that no such method is known.

The concept of a generic algorithm is not easy to explain and we give our own
definition, which is inspired by [12] while not being exactly similar. Any group
element V receives a name V. The mapping that assigns a name to an element
is random and the algorithm can only access group elements by invoking their
names. To compute V + V' (or V — V'), the algorithm submits V and V' to a
random oracle that returns a name for V 4+ V' (or V — V’). In such a model, the
only way to compute an analog of the various functions R(V) introduced in the
previous section, is to use the random name V. In other words, by considering
that R(V) is a random function, we are simply working in the generic model using
R(V) in place of V. In essence, the mechanism is similar to the manipulation of
data (V ,V') using pointers (V,V') and functions (+,—).

3 The partial recovery scheme

3.1 Nyberg-Rueppel signatures

We say that a signature scheme allows message recovery if the message m is a
deterministic function of the signature. Such signatures make it possible to avoid
sending the message together with the signature. However, one should be very
careful since such schemes are inherently subject to forgeries. In other words,
some redundancy should be added to the message.

A DSA-like signature with message recovery has been considered by Nyberg
and Rueppel ([10], hereafter NR) and an ECDSA variant of this scheme, included
in [6], is described in figure 4.

Signature

1. generate a random key-pair {u, V'}
2. form f from m by adding the proper redundancy
3. encode V' as an integer i
4.c+i+ fmodr
5.if ¢ =0 go to step 1
6.d < u— scmodr
7. output the pair {c,d} as the signature
Verification
1. input a signature {c, d}
2.ifc¢g 1,7 — 1] or d & [1,r — 1], output invalid and stop
3. P+—dG+cW
4. if P = O, output invalid and stop
5. encode P as an integer ¢
6. f«<c—imodr
7. if the redundancy of f is incorrect output invalid and stop
8. output valid and the underlying message m

Figure 4 : Nyberg-Rueppel signatures (outline).

In the above, f is a message with appendix. It simply means that it has an
adequate redundancy. The encoding mentioned in step 2 of figure 1 is defined
in the standard. Its particular format is not important to us. Applying a hash
function to this encoding consists of replacing step 2 by: “2. encode-and-hash V
as an integer ¢”.

Modified that way, the scheme can be proven secure in the random oracle
model, with arguments very close to those used in the sequel. We will not un-
dertake this task as we feel that NR signatures are not flexible enough for our
purposes. Assuming that f consists of ten message bytes and ten redundancy
bytes, NR is perfectly suitable for messages shorter than ten bytes but leaves
unanswered the question of dealing with messages of, say, fifteen bytes.

3.2 An ECDSA variant with partial recovery

There are numerous ways to modify the NR design in order to achieve partial
message recovery. In this section, we propose a possible choice that is as close
as possible to the original ECDSA. A similar construction, that we omit, applies
to the regular DSA.

Our proposal allows to sign a message m = m; ||ma2, where || denotes concate-
nation and to only transmit ms- together with the signature. The partial message
recovery concept is, of course, not new; the RSA-oriented iso 9796-2 standard [7]
specifies explicitly two recovery modes (total and partial) but to the best of our
knowledge, this notion was never extended to the DLP context. We propose to

sign m, using the algorithm described in figure 5 where H denotes any standard
hash function such as SHA-1.

Signature

. generate a random key pair {u,V'}

. form f; from m; by adding the proper redundancy
. encode-and-hash V' as an integer ¢

.c+ i+ fymodr

.if ¢ =0 go to step 1

. fa < H(mz), d < u=1(f2 + sc) mod r

.ifd=0go tostep 1

. output the pair {c,d} as the signature

00 ~J O U i LN

Verification

. input a signature {c,d} and a partial message mq
.ifeg[l,r —1] or d & [1,r — 1], output invalid and stop

. fo+ H(mz), h+ d ' mod r, hy + fohmodr

. h2 <+ ch mod r, P « h1G+ h2W

. if P = O output invalid and stop

. encode-and-hash P as an integer 4

.fitc—imodr

. if the redundancy of f; is incorrect output invalid and stop
. output valid and the underlying message m1

00 IO U i W N

©

Figure 5 : Partial recovery signatures (outline).

Note that we do not necessarily advocate our encode-and-hash paradigm.
Replacing encode-and-hash by encode in the above yields a scheme that is more
closely modeled after ECDSA. Still, even if it remains significant, the security
proof has a weaker status as explained in section 2.

3.3 Security proof

We use the random oracle model to provide evidence in favor of the security of
the new scheme. We will thus assume that the function R(V') which encodes the
point V' as an integer ¢ and computes ¢ mod r is random. Finally, we will assume
that the probability e that a random element f of [0, — 1] has the expected
redundancy is very small. Basically, we want to show that an adversary who can
forge a message/signature pair with probability €+« significantly above € can be
used to solve the ECDL problem with non-negligible probability. This is along
the lines of [11]. However, we will not be careful about the security estimates for
we only wish to support the correctness of our design.

Referring to the scheme described in figure 5, we let .4 be an attacker able
to forge a pair consisting of a message m = mq||m2 and a signature {c,d} with

a success probability > € + a. We consider the queries asked to the oracles as
ordered lists and let 5 and k be the respective indices corresponding to the time
when P and ms are respectively queried from the R-oracle and the H-oracle,
during the computation of A. If j or k does not exist, we set j = oo or k = oo.
Similarly, we let § be the truth-value of the statement “P is queried before ms”,
where the truth value is one if neither question is asked.

By standard arguments from [11], we see that there is a set of triples A such
that:

i) A has probability > «/2
ii) For any {j,k,0} the conditional probability of success of A when P is

queried at j, H queried at k£ and the statement “P is queried before ms” has
value 4 is > € + a/2.

We first claim that no triple {j, k,d} in A can have an infinite value. Assume
that 7 = oo. Checking the signature precisely corresponds to computing ¢ =
R(P) mod r and verifying that ¢ — ¢ mod 7 has the proper redundancy. Now, if
R is controlled by a random oracle, and if P has not been queried during the
computation performed by A, then, R(P) can be any value and the test will
fail with probability 1 — e. From this, we may infer that the conditional success
probability corresponding to the triple cannot be > e + «/2. We turn to the
case k = oo. If the value of H at my has not been queried by A4 during its
computation, then, it is only computed at the verification step and, again, with
probability > 1 — ¢, the resulting value of P differs from values queried to the
R-oracle.

We now apply the forking lemma from [11] by playing the attacker a first time
and generating a replay attack as explained below. Note that, with probability
> a/2, the triple {4, k,d} corresponding to the first execution belongs to A, in
which case neither j nor £ is infinite.

We now distinguish two cases depending on the value of § :

e If 6 = 0, then my is queried before P. We apply the forking technique at
P and obtain, by a replay attack, another signature pair m' = m{||m}, {¢,d'}.
From the facts that both computations are similar until P is queried we infer
that m}, = my and that

P =h1.G+ hy.W = hi.G+ hy W
Equivalently
(fod™").G+ (cd V)W = (f3d ").G + (dd "W
From the first equality, we obtain fo = f; and from the second
fod —d).G = (dd—cd). W

This discloses the secret logarithm of W in base G unless cd' — ¢'d vanishes,
in which case fo(d — d') also vanishes. Observe that fs which has been queried

from H is non zero with overwhelming probability. Thus, the secret key has
been found, except if d = d'. Since d is non zero, this implies ¢ = ¢', which reads
i+ f1 =i + f{, where i and i’ are the respective answers of the R-oracle to the
P question. Due to the redundancy of f', this can only happen with probability
< e. Since the conditional probability of success at {j,k,d} is > € + a/2, the
replay discloses the discrete logarithm of the public key with probability > a/2
(once we know that {j, k,d} lies in A).

e If § = 1 we fork at the point where my is queried. We obtain a second
message-signature pair m' = m/||m}, {¢',d'} and, this time, we note that i = i,
since the answer of the R-oracle to the P query is similar and, again, that

P=h.G+ h W = hllG + hIZW
We get
(fod' — f3d).G = (d'd — cd'). W

From this, we can compute the discrete logarithm of W in base G unless ¢'d—cd’
and fod' — fid both vanish modulo r. To complete the security proof as above,
we only have to see that this exceptional case can only happen with probability
< €. Indeed, if it actually happens, we have

dd=cd modr

fod = fid mod r

from which we get
faed' = fod'd = fyed mod r

and, since d is not zero
foc' = ficmod r
which gives
f2(fi +1) = f5(f1 + i) mod r

and, finally, taking into account the fact that fa, queried from R is non zero with
overwhelming probability

fil=ff " (fi+i)—imodr

Since f4 is randomly chosen by the H-oracle, f; has the requested redundancy
with probability < e. This completes the proof.

3.4 Adaptive attacks

In the previous proof, we have considered the case of an attacker forging a
message-signature pair from scratch. In more elaborate scenarii an attacker may
adaptively request signatures corresponding to messages of his choice. In other
words, the attacker, modeled as a machine, interacts with the legitimate signer
by submitting messages that are computed according to its program.

We show how to modify the security proof that was just given to cover the
adaptive case. We have to explain how to turn the attacker into a machine that
discloses the logarithm of a given element W in base G. Basically, we wish to
use the attacker in the same way and apply the forking technique. The main
difficulty comes from the fact that we have to mimic the signer’s action without
knowing the secret key.

To simulate the signer when he has to output the signature of a message
m = my||ma2, we pick the signature {c,d} at random, query the H-oracle at ms
and compute the point

V = (fod 1).G + (cd V)W

with fo = H(ms). Next, we “force” the R-oracle to adopt ¢ at its value at V.
Since ¢ has been chosen randomly, this does not produce any noticeable difference
unless the same V is forced to two different values. It can be checked that this
happens with negligible probability.

3.5 Practical consequences

Thus, we have shown, in the random oracle model, that an attacker can be turned
into an algorithm that solves the ECDL problem. This establishes the soundness
of the new design, provided that the probability € attached to the redundancy
is small enough. From a practical standpoint, the only attack suggested by the
above analysis consists in picking the signature {c,d} at random, generating a
message mao, computing the hash value fo = H(m2) and applying the message
recovery algorithm, hoping that the resulting value of f;, computed at step 7
has the correct redundancy. This strategy succeeds with a probability < e. Note
that we have not used any assumption on the format of the redundancy, which
can simply consist of a requested number of fixed leading or trailing bytes. Since
the security level required for signatures is about 28°, we recommend to take
€ < 2780, When signing messages with £ bytes, £ > 10, the new design allows
to only append to the signature {c,d} a part of the message ms which is £— 10
bytes long. The rest of the message m; is recovered by the verification algorithm.

4 Bandwidth optimizations

We now investigate possible optimizations of our scheme that allow to save a
few extra bytes. We use two different tricks:

1. transmitting additional message bytes as a subliminal part of the signature,
by suitably choosing the random part during signature generation.

2. truncating the signature, leaving completion to be performed during the
verification phase.

Of course, both suggestions increase the time complexity of signature gener-
ation (in the first case) or verification (in the second case). For this reason, we
cannot expect to gain too many bytes per trick. Still, we show that it is quite
reasonable to squeeze three bytes out of the first trick by using some form of
preprocessing and one extra byte from the second.

There are many ways in which the above ideas can be applied; bytes of the
message can be embedded into ¢, d or i. Similarly, either ¢ or d can be truncated.
We will only cover the case where i is used for subliminal information and d is
truncated. The rest is left to the reader.

4.1 Embedding bytes into ;

Assume that one wishes to embed £ bytes of m in i, where £ is a small integer.
For example, assume that we try to stuff these bytes into the trailing part of
1. One would then repeat the first steps of the signature generation algorithm
until a correct value of ¢ appears, i.e. an ¢ whose trailing bytes match the given
£ bytes of the message. Clearly, this is possible only if £ is small and yields the
scheme presented in figure 6 that allows to sign a message m = my||ma, where
my has 10 4+ £ bytes and to only transmit msy. The security proof of section 3.3
goes through, word for word, for the modified scheme.

4.2 Preprocessing

Preprocessing appears very helpful in relation with the optimization described
in the previous section. Basically, one should store pairs {u,i} and access these
pairs by the value of i mod 2%¢. Signature generation might fail if the table’s list
of elements is empty at some £ byte location. Thus, it is important to keep a
sufficiently large number 7 of elements for each ¢ byte values and to refresh the
table regularly.

The size of the table is ~ 40728 bytes; £ = 3 corresponds to 6407 Mbytes
which is quite acceptable; £ = 4 goes up to 1607 Gbytes, which appears too
much. Note that £ is not necessarily an integer: bytes can be cut into nibbles
and ¢ = 3.5 could also be considered (107 Gbytes).

4.3 Truncating d

We now turn to the second optimization suggested above. It consists in truncat-
ing k signature bytes. For example, one could omit the k trailing (or leading)
bytes of c. This basically means issuing 28% candidate signatures. The correct
signature is spotted at signature verification: only the correct choice is accepted
by the verification algorithm.

It is easily seen that the security of the truncated signature is closely related
to the security of the original scheme. An attacker able to forge a truncated
signature will complete his forgery to an actual signature by using the verification
algorithm. Thus, the only difference is the verifier’s workload.

Signature

Verification

1
2
3
4
5
6.
7
8
9
1

. generate a random key pair {u,V'}

. discard the £ trailing bits of m;

. form f; from the result m] by adding the proper redundancy
. encode-and-hash V as an integer i

c+ i+ fimodr

.if ¢ =0 or i # m; mod 28 go to step 1

. fa + H(mz), d < u=1(f2 + sc) mod r

.ifd =0 go to step 1

. output the pair {c,d} as the signature

. input a signature {c¢,d} and a partial message mo
.ifcg[l,r—1]or d ¢ [1,7 — 1], output invalid and stop

. fo+ H(mz), h+ d ' mod r, hy + fohmodr

.hy <~ chmodr , P+ hi.G+ ho W

.if P = O, output invalid and stop

encode-and-hash P as an integer i

.fi+c—imodr

. if the redundancy of f; is incorrect output invalid and stop
. append to m/ the £ trailing bytes of ¢

0. output valid and the underlying message m;

Figure 6 : Partial recovery signatures (outline).

At first glance, it seems that, in order to check truncated signatures, the

verifier will have to verify
k = 1. However, optimizations are possible since the various elliptic curve points
that the verifier should compute are

28% signatures, which appears prohibitive even for

P =h1.G+ hy W

where only hy = cd~! mod r depends on c. Let ¢y be the completion of the

truncated value of ¢ by zeros. Writing P as

P; = h1.G + Cod_l.W + jd_l.W

we see that the verification algorithm can be organized as follows:

1. Z+d W

2. P+ Py+cg.Z

3. while a correct signature has not been found P «+ P + Z

Considering that ¢, d are 160 bit integers and that a standard double-and-

add algorithm is used, one can estimate the number of elliptic curve operations

needed to compute Py as close to 240. Z and Py can be simultaneously computed
in about 320 additions by sharing the “double” part. Finally, step 3 is expected
to require 128 extra additions. For k¥ = 1, the overhead does not exceed the
verification time needed of a regular signature.

There is a trick which slightly improves performances: instead of producing
the signature as {c,d}, one can produce {hz,d}, with hy = ¢cd~' mod h. Trun-
cating hs yields slightly better computational estimates.

5 Conclusion

We have shown how to minimize the overall length of an elliptic curve signature
i.e. the sum of the lengths of the signature itself and of the message (or part of the
message) that has to be sent together with the signature. Up to thirteen message
bytes can be recovered in a secure way from a signature and an additional one-
byte saving on the signature itself can be achieved.

The proposed schemes have been validated by a proof in the random oracle
model and can therefore be considered sound. All our schemes have ordinary
discrete logarithm analogs.

6 Acknowledgments

The authors are grateful to Jean-Sébastien Coron for his help and comments.
We also thank Holly Fisher for sending us figure 3. Stamps.com’s Internet
Postage system (http://www.stamps.com) is covered by Stamps.com Inc. copy-
right (1999). We underline that the image is only given for illustrative purposes
and that this specific system does not implement the signature scheme proposed
in this paper.

References

1.

10.

11.

12.

13.
14.

M. Abe and T. Okamoto, A signature scheme with message recovery as secure
as discrete logarrithms, Proceedings of Asiacrypt’99, LNCS, Springer-Verlag, to
appear, 1999.

. M. Bellare and P. Rogaway, Random oracles are practical: a paradigm for designing

efficient protocols, Proceedings of the 1-st ACM conference on communications and
computer security, pp. 62-73, 1993.

M. Bellare and P. Rogaway, The exact security of digital signatures - How to sign
with RSA and Rabin, Proceedings of Eurocrypt’96, LNCS 950, Springer-Verlag,
pp. 399-416, 1996.

. D. Coppersmith, S. Halevi and C. Jutla, 150 9796-1 and the new forgery strategy.,

manuscript, July 28, 1999.

J.-S. Coron, D. Naccache and J.P. Stern, On the security of RSA padding, Pro-
ceedings of Crypto’99, LNCS 1666, Springer-Verlag, pp. 1-18, 1999.

IEEE P1363 Draft, Standard specifications for public key cryptography, (available
from http://grouper.ieee.org/groups/1363/index.html), 1998.

ISO/IEC 9796-2, Information technology - Security techniques - Digital signature
scheme giving message recovery, Part 2 : Mechanisms using a hash-function, 1997.

V.I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm.
Mathematical Notes, 55(2), pp. 165-172, 1994. Translated from Matematicheskie
Zametki 55(2), pp. 91-101, 1994.

National Institute of Standards and Technology, Secure hash standard, FIPS pub-
lication 180-1, April 1994.

K. Nyberg and R. Rueppel, A new signature scheme based on the DSA, giving
message recovery, Proceedings of the 1-st ACM conference on communications and
computer security, pp. 58-61, 1993.

D. Pointcheval and J. Stern, Security proofs for signature schemes. Proceedings of
Eurocrypt’96, LNCS 950, Springer-Verlag, pp. 387-398, 1996.

V. Shoup, Lower bounds for discrete logarithms and related problems. Proceedings
of Eurocrypt’97, LNCS 1233, Springer-Verlag, pp. 256266, 1997.

http://www.adams1.com/pub/russadam/stack.html

http://www.azalea.com

This article was processed using the BTEX macro package with LLNCS style

