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ABSTRACT

In response to the current need for fast, secure and cheap
public-key cryptography largely induced by the fast devel-
opment of electronic commerce, we propose a new on the
fly signature scheme, i.e. a scheme that requires very small
on-line work for the signer. It combines provable security
based on the factorization problem, short public and secret
keys, short transmission and minimal on-line computation.
It is the first RSA-like signature scheme that can be used
for both efficient and secure applications based on low cost
or contactless smart cards.

1 INTRODUCTION

The rapid world-wide development of electronic transac-
tions, largely associated with the growth of the Internet,
stimulates a strong demand for fast, secure and cheap public-
key cryptography. Besides confidentiality, cryptographers
also face two important problems: authentication and sig-
nature or, in plain words, how to prove one’s identity and
how to digitally sign a document such as an electronic mes-
sage or a purchase order. Several proposals have already
addressed the problem of designing efficient and secure sig-
nature scheme, putting forward elegant solutions [32, 30, 11,
33, 34, 20, 6, 16, 17, 10, 25, 13, 1].

In order to assess the performances of those schemes,
several properties have to be considered. The most impor-
tant concern is security. Basically, a system is supported
by the claim that nobody has been able to jeopardize it so
far. This is of course important but, in many applications,
it is not a satisfactory guarantee. A much better paradigm
tries to prove security in a mathematical sense, i.e. to es-
tablish theorems claiming that illegal actions such as imper-
sonation are as difficult as solving a specific problem whose
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difficulty is well-established. Among these problems are in-
teger factorization or the computation of discrete logarithms
in a finite group. Half way between heuristic validation and
formal proofs are proofs in models where concrete objects
are replaced by ideal substitutes: applying this paradigm to
hash functions yields the random oracle model described by
Bellare and Rogaway in [2]. Although this approach may
not be considered as offering absolute proofs of security for
specific schemes, it provides a strong indication that their
overall design is not flawed.

Next, the size of the data involved in the scheme is of cru-
cial practical significance. We usually need short public and
private keys, mainly when they have to be stored in portable
devices like smart cards which have small storage capabil-
ities. We also want to reduce the amount of transmissions
and the length of the signatures. The latter is an important
parameter in applications for which many signatures have
to be stored (e.g. electronic commerce) or transmitted (e.g.
pay TV).

Another key property is the time complexity since it di-
rectly controls the cost of the devices on which a scheme may
be implemented. Here, we have to distinguish between pre-
computations that can be performed off-line and stored in
memory and calculations that have to be done on-line during
authentication or signature. The latter is often the bottle-
neck of many applications, especially when smart cards are
used. Naccache et al. [24] proposed to precompute use &
throw coupons in order to make the DSA [25] signature pro-
cess much more efficient. This first attempt for designing on
the fly signature schemes still requires a modular multipli-
cation so that it does not allow very fast signature without
the help of a crypto-processor.

The first on the fly signature scheme with minimal on-
line computation, which we call GPS, was proposed by Gi-
rault [17] and proven secure by Poupard and Stern [29]. The
security analysis shows that, if an attacker is able to forge
valid signatures for a non-negligible fraction of the possible
public keys, then he is able to compute discrete logs mod N
and therefore to factor V. On the other hand if an attacker
is only able to forge signatures for a fixed key then he must
be able to compute the discrete log of this key or to solve
the so-called strong RSA problem as it was noticed by Ca-
menisch and Michels in [7]. Thus, the underlying problem
depends on the model of attack that is considered.

The coupon-based signature algorithm GPS allows to
implement public-key signature scheme on low cost smart
cards without crypto-processor. Another promising appli-
cation is the implementation of such schemes on contactless



smart cards. Such cards just look like credit cards but they
have an electronic microchip and an embedded antenna.
These components allow the card to communicate with an
antenna/coupler unit without any physical contact. Con-
tactless cards are the ideal solution when transactions must
be processed very quickly, as in mass-transit or toll collec-
tion but, since the power supply comes from electromagnetic
induction, heavy-consumption crypto-processors cannot be
used.

Our Results

In this paper, we propose the first signature scheme that
combines provable security based on the intractability of fac-
torization, short keys, short signature size and minimal on-
line computation. This provides a solution for applications
which require very efficient and secure signature generation
while using only low cost individual devices. In comparison
with GPS, our proposal appears more secure in the one-key
attack scenario.

Intuitively, the signature scheme we propose is based on
a non-interactive proof of knowledge of a small discrete 2

logarithm of z" mod N, where N is the product of two
safe primes. The proof is similar to Schnorr’s proof of knowl-
edge but it is carried out in Z y and the answer to the chal-
lenge is computed in Z, like in GPS.

We now briefly describe the organization of the paper.
In section 2 we propose a new identification scheme and we
prove that it is secure against active adversaries provided
the factorization of the product of two large primes is hard.
In section 3, we introduce a derived signature scheme and
we show that, if an adversary is able to forge a signature
under an adaptively chosen message attack, then he is able
to factor large numbers.

The aim of this work is not just to propose one more
signature scheme. Accordingly, in section 4, we compare
the security and the performances of our scheme with its
most common competitors in order to convince the reader
that our protocol compares advantageously with others in
many applications related to electronic commerce.

Section 5 is more practical in character: we discuss how
to choose secure parameters in order to withstand the most
efficient known attacks against factorization (5.1), we ex-
plain how use coupons (5.2), and, finally, we give the per-
formances observed in experiments with smart cards.

2 THE IDENTIFICATION SCHEME

We first introduce some notation and definitions. For any
integer z, |z| is the number of bits (|log,(z)] + 1) of z. For
any integer N, we use p(IN) to denote the Euler totient
function, i.e. the cardinality of the set Z of invertible in-
tegers modulo N. A prime number p is said to be a safe
prime if (p — 1)/2 is also a prime number. Our computing
model is the probabilistic polynomial time Turing machine
(PptM(k)), whose running time is bounded by a polynomial
in the security parameter k.

Description

Let A, B, k and ¢ be four integers. We will latter explain
how those parameters are related. Those values are public
parameters; there are no system-wide keys.

Each user chooses two k-bit safe primes P = 2p + 1 and
@ = 2q + 1. Then he computes his 2k-bit public key N =
PxQ and his (k+1)-bit secret key S = N—p(N) = P+Q—1.

Finally, each user chooses a public element z of Z% whose
order is divisible by p x ¢. In section 5.1, we will explain
how such data can be efficiently generated.

A round of identification (see figure 1) consists of sev-
eral steps. First, the prover randomly chooses an integer
r in [0, A[ and computes the commitment x = 2" mod N.
Then, he transmits  to the prover who answers a chal-
lenge e randomly chosen in [0, B[. The prover computes
y=r+ S X e (in Z) and sends it to the verifier who checks
2Y"V%¢ = x mod N and y < A. A complete identification
is obtained by repeating ¢ times the elementary round.

Prover Verifier
r €r [0, A
=2 modN —L
—t e €r [0, B[
y=r+Se — Yy check y < A and
Vel rmod N

Figure 1: Identification scheme

The performances of this scheme are given in section 5.
Just notice that the on-line computation of the prover re-
duces to the non-modular multiplication & = S x e followed
by the non-modular addition y = r + &. Those arithmetical
operation are very efficient and can be implemented on very
basic microprocessors.

Security Analysis

In order to prove the security of the protocol, complexity
theory security proofs are given in appendix A.1. We essen-
tially observe three properties:

e An honest user is accepted with overwhelming proba-
bility.

e Given a public key N, if an attacker is accepted with
non-negligible probability, then he can be used to ef-
ficiently factor N. In other words, if we assume that
factoring large integers is intractable, such attacks can-
not exist.

e Even if a prover is identified many times, no informa-
tion about his secret can be learned by eavesdroppers
or verifiers.

3 THE SIGNATURE SCHEME

We now turn the identification scheme into a signature scheme
using a technique originally proposed by Fiat and Shamir
[11, 12] and used by Schnorr [33] and others. In order to
go from identification to signature, the challenges e are no
longer randomly chosen by a verifier but computed through
a hash function H such as SHA-1 [26] or MD5 [31]. Such a
function maps a binary strings of arbitrary length to binary
string of some fixed length. For security reasons it must
be computationally impossible to find two strings S1 and S2
with the same image H(S1) = H(S2). If @ and 3 are two in-
tegers, we note H(a, 8) the image by H of the concatenation
of their two bit string representations.



Input:

— the signer’s public key (N, z)

— the signer’s private key S

— the message representative, which is an integer m > 0

Assumptions: private key S and public key (N, z) are
valid and associated with each other; m > 0

Output: the signature, which is a triplet of integers
(z,e,y), where 1 <z < N,0<e<Band0<y< A

Operation. The signature (z,e,y) shall be computed
by the following or an equivalent sequence of steps:

1. Randomly generate an integer r from the range [0, A[.
. Compute z = z" mod N.

. Compute e = H(m, z).

. Compute y = r + Se.

. If y > A return to step 1.

. Output (z,e,y).

S O W N

Figure 2: Signature generation

Description

The signature of a message m is computed by taking a ran-
dom r in [0, A[ and computing z = 2" mod N, e = H(m, z)
and y = r + Se. This produces the signature (z,e,y) that
can be checked by anybody with the equations e = H(m, x),
y < Aand 2~V = x mod N. An IEEE P1363 like descrip-
tion [1] appears in figures 2 and 3.

We now note [0, B[ the output range of H. In the identi-
fication scheme, B was a fixed constant but, in the signature
setting, we need to let B depend on the security parameter
k since there is only one round.

Input:

— the signer’s public key (N, z)

— the message representative, which is an integer m > 0
— the signature to be verified, which is a triplet of inte-
gers (z,e,y)

Assumptions: public key (N, z) is valid; m > 0

Output: “valid” if m and (z,e,y) are consistent given
the public key; “invalid” otherwise

Operation. The output shall be computed by the fol-
lowing or an equivalent sequence of steps:

1. If z is not in [1, N — 1] or e is not in [0, B[ or y is not
in [0, A[, output “invalid” and stop.

2. Compute €' = H(m, ).

3. Compute z’' = 2¥" ¢ mod N.

4. If ¢’ = e and &’ = x, then output “valid”; else, output
“invalid”.

Figure 3: Signature verification

Security Analysis

Complexity theory security proofs are given in appendix A.2.
The basic idea is to prove that if the hash function H is re-
placed by a random function and if an attacker is able to
forge a valid signature then he must know the factorization
of the associated public key. Once again, if we assume that

factoring large integers is intractable, forging valid signa-
tures is impossible.

4 Comparison with other signature schemes

RSA and Rabin schemes

The famous RSA signature scheme [32] is based on the in-
tractability of the RSA problem which consists in computing
et? roots modulo a product of two unknown large primes.
An impressive literature has appeared on this scheme so we
just recall a few basic facts.

Firstly, the RSA problem has never been proven to be
equivalent to the factorization problem. Boneh and Venkate-
san have even provided evidence that breaking low-exponent
RSA might not be equivalent to factoring integers [5].

Secondly, when the RSA scheme is used with modulus
N, each user has to choose a pair (d,e) such that d x e =
1 mod ¢(N). The integer d is the secret key and should not
be chosen much smaller than N (see the attacks against low
exponent RSA of Wiener [36] and Boneh-Durfee [4]). On the
contrary, the public exponent e can be chosen very small.

Finally, signature generation consists in raising some num-
ber to the power d modulo N. This computation is heavy. It
can be improved using the Chinese reminder theorem (CRT)
but this strategy implies the storage of the two factors of N.

Rabin [30] has proposed an interesting variant of RSA
with public exponent e = 2. Its security relies on the diffi-
culty of computing square-roots modulo N which is equiv-
alent to factoring N. We refer to [3] for a precise analysis
of the security of those two schemes in the random oracle
model.

Feige-Fiat-Shamir and Guillou-Quisquater schemes

The Feige-Fiat-Shamir signature scheme [11] is derived from
the Fiat-Shamir zero-knowledge authentication scheme [12].
Like Rabin’s scheme, it is based on the difficulty of com-
puting square-roots modulo N. The secret key consists of
k elements of Z} and the related public key is the list of
their squares. As a consequence, for a reasonable value of
k such that k = 80, both the public and the private keys
are about 10 kilobytes long. In comparison with RSA, the
advantage comes from the low computational complexity of
the signature generation.

Guillou and Quisquater [20] have proposed a variant with
smaller keys but whose security is only based on the RSA
problem.

El Gamal, DSA and Schnorr schemes

Those three signature schemes are based on the intractabil-
ity of computing discrete logarithms in various finite sub-
groups of Zj where p is a prime number. El Gamal’s proto-
col [10] directly uses discrete logs in Zj but the authors of
DSA [25] have noticed that this type of scheme is much more
efficient using a generator of multiplicative order g where ¢
is a 160-bit factor of p — 1.

Schnorr’s signature scheme [33, 34] is very similar to DSA
but produces short signatures (about 30 bytes with reason-
able size of parameters).

Other schemes

Many other signature schemes have been proposed. Most of
them are just variants of those already mentioned. Let us



Underlying Complexity of Size (in bits) of Verification
problem pre- on-line Public | Secret | Signa- | complexity
comput. comput. Key Key ture
80 bits x
Proposed scheme 1008 x 1656 x
FACT —_— 512 bit 1024 1 2 —_—
(IN| = 1024, |A| =672) (mod 1024) s o13 & (mod 1024)
non modular
RSA 1536 % 2x
RSA 0 E—— 1024 1024 1024 | —
(IN| =1024, e = 3) (mod 1024) (mod 1024)
Rabin FACT 0 _1536x | 094 | 1024 | 1024 | — XX
(IN] = 1024) (mod 1024) (mod 1024)
ESIGN 3% 1x 3%
A . RSA 1024 1024 1024 _
(IN| = |P*Q| = 1024) pprox (mod 1024) (mod 342) (mod 1024)
Feige-Fiat-Shamir 1x 41x 42x
FACT 2944 192 1104 —_—
(IN| = 1024, k£ = 80) (mod 1024) (mod 1024) 829 81920 0 (mod 1024)
Guillou-Quisquater 192 % 121x 313x
RSA 2176 1024 1104 P E————
(IN| = 1024, k = 80) (mod 1024) (mod 1024) (mod 1024)
El Gamal DLOG mod p 1152x 2 2304 | 160 | 1536 | —2TX
(Ip| = 768) (mod 768) (mod 768) (mod 768)
DSA DLOG mod p 240 % 2% 480 %
2464 160 320 —_—
(Ip| = 768, |q| = 160) & mod ¢ (mod 768) (mod 160) (mod 768)
Schnorr 240 % 1x 361 x
DL d 2464 160 240 _—
(Ip| = 768, |q| = 160) OG mod ¢ (mod 768) (mod 160) 6 (mod 768)
80 bits x
GPS DLOG mod N 504 x 625 %
P e—— 160 bit 3072 160 419 _
(IN| = 1024) & Strong RSA (mod 1024) 1S (mod 1024)
non modular

Figure 4: Performances of signature schemes

close this review by mentioning the efficient scheme ESIGN
[13] based on an original number theoretical problem which
can be described as “approximately” solving RSA.

Another important family of schemes are variants of the
previous ones, with computations performed over different
finite groups, mainly over elliptic curves, like EC-DSA [1].
For comparisons between classical schemes and their elliptic
curves counterparts see for example [37].

The Girault-Poupard-Stern scheme

The Girault-Poupard-Stern (GPS) scheme [17, 29] can be
considered as a variant of Schnorr’s protocol but it has been
designed in order to reduce on-line computation to an abso-
lute minimum and therefore allow on the fly signature using
coupons. The basic idea is to design a proof of knowledge of
a discrete log modulo a composite integer in such a way that
the order of the used generator does not have to be known.
A similar idea has also been used for secret sharing [14, 15]
and group signature [7].

The security analysis of GPS shows that, if an attacker is
able to forge valid signatures for a non-negligible fraction of
the possible public keys, then he is able to compute discrete
logs mod N and consequently to factor N. On the other
hand, if an attacker is only able to forge signatures for a
fixed key then he must be able to compute the discrete log
of this key or to solve the so-called strong RSA problem (as
noticed by Camenisch and Michels in [7]). As a consequence,
the underlying problem depends on the model of attack that
is considered.

In GPS, the modulus can be either a part of the user’s

public key or else system-wide parameters. In the first case,
the public key is three times larger than it is in the present
scheme. In the second case, the factorization of N is an ideal
target for attacks.

Comparison of the schemes

Figure 4 provides a comparison of the signature schemes
that were mentioned. Our estimates for the computational
complexity of precomputations, on-line computations and
signature verifications, only count modular multiplications.
If an operation requires o multiplications modulo a g-bit

integer, we write . Only for our new scheme and for

mod
GPS, we include tgle nofl)-modular multiplication that has to
be performed. The cost of such an operation is negligible in
comparison with the modular computations required by the
other protocols.

It should be clear that our figures have been obtained
from naive algorithms and that they can be optimized. Any-
way, we think that they represent an accurate estimate of
what is efficient or not in all those schemes.

It appears that our proposal is based on the factoriza-
tion, probably the most studied number-theoretical prob-
lem. The public keys are very short and the secret keys
are only three times larger than what they are in discrete
log based schemes. The main advantage is that even if the
computational complexity of signature generation is similar
to RSA or Rabin, almost all the computational work can be
done off-line. As a Consequence, our scheme can be seen as
the first coupon based RSA signature.



5 Applications

5.1 Choice of the Parameters

Size of N. The public key N = P x (Q must be large enough
to make factorization beyond computational reach. The
number field sieve algorithm [21] allowed to factor an RSA
modulus with k = 232 in February 1999. Consequently, the
choice k = 384 is a lower bound and k& = 512 would probably
be a much reliable value for long-life signature applications.

Choice of P and Q. Integers P and () must be safe primes.
A simple way to find such integers consists in testing ran-
domly chosen k-bit integers using a randomized algorithm
such that the Miller-Rabin’s one. Such an integer is a safe
prime with probability 2/In(2¥71) x 1/ In(2¥) = 4.163/(k x
(k —1)). For more efficient algorithms, we refer to [22].

Public key certification. The validity of the proofs of secu-
rity we propose is based on the hypothesis that N is the
product of two safe primes. Consequently, the public key
has to be certified by an authority. In order to convince it
that N is of correct form, the user can of course reveal the
factorization. A much more secure solution is to use the al-
gorithm of Camenisch and Michels [8]. But this proof, even
if it is efficient in the sense of the complexity theory, is too
large and complex to be generated by a smart card without
crypto-processor. Consequently, in practical applications,
the public key would be generated by a computer, certified
by an authority and then stored in a smart card.

Choice of z. During key setup, each user also has to select an
element z € Z of multiplicative order divisible by pq. It can
be seen that this is true if and only if gcd(z—1, N) = ged(z+
1, N) = 1. Consequently, the probability for a randomly
chosen element order to be large is 4(p — 1)(¢ — 1) /(4pq) =
1 —4/v/N. This overwhelming probability can be used to
reduce that public key to N only since z can be generated
from N using a publicly known pseudo-random generator.
Furthermore, anyone can verify that the order of z is large,
without knowing the factorization of N.

Choice of A and B. From the security analysis it appears
that the parameters must be such that A < N and 2B/A
is negligible. We advise to choose |B| = 80 as a minimal
value and |B| = 128 for more secure applications. A good
choice for the size of A is |A| =80+ k + |B|.

5.2 Use & Throw Coupons

In order to decrease the number of communication bits, Fiat
and Shamir [12] have suggested not to send the entire com-
mitment in the first step of the identification but only a hash
value. This trick can of course be used with our scheme.
Let H' be a hash function and |H’| be the size of its output.
The modifications are very simple: the commitment z is re-
placed by z' = H'(z) and the verifying equation becomes
z' = H' (2" ° mod N).

Using the notion of r-collision-freeness, which applies to
functions for which it cannot be possible to find r pairwise
distinct values with the same image, Girault and Stern [18]
have analyzed precisely the consequences of such a modifi-
cation on the security of identification schemes.

As was already observed, all commitments can be com-
puted off-line, by the individual device or by an author-
ity. In fact, we just have to compute and keep in mem-
ory coupons of the form (r, H (2" mod N)). This can fur-
ther be improved if the random values r are generated by a

Input:

— the signer’s private key S

— a signer’s use & throw coupon (r,z’)

— the message representative, which is an integer m > 0

Assumptions: private key S is valid; the coupon (r,z’)
is valid; m > 0

Output: the signature, which is a pair of integers (e, y),
where ) <e< Band0<y< A

Operation. The signature (e,y) shall be computed by
the following or an equivalent sequence of steps:

1. Compute e = H(m,z').
2. Compute y =7 + Se.
3. If y > A return to 1.

4. Output (e, y).

Figure 5: Optimized signature generation with Coupons

Input:

— the signer’s public key (N, z)

— the message representative, which is an integer m > 0
— the signature to be verified, which is a pair of integers
(e,)

Assumptions: public key (N, z) is valid; m > 0

Output: “valid” if m and (e, y) are consistent given the
public key; “invalid” otherwise

Operation. The output shall be computed by the fol-
lowing or an equivalent sequence of steps:

1. If e is not in [0, B[ or y is not in [0, A[, output “invalid”
and stop.

2. Compute e’ = H(m, H' ("¢ mod N)).

3. If ¢’ = e, then output “valid”; else, output “invalid”.

Figure 6: Optimized signature verification

pseudo-random generator. This leads just to memorize the
seed of the generator and the commitments, i.e. about only
10 bytes per signature! Furthermore, in some applications
where public key directories are available to verifiers, N and
z no longer need to be stored in memory by the signer’s
device.

Finally, the signature (z’,e,y) of a message m can be
reduced to (e,y) by using the verifying equations y < A
and e = H(m,H' (2~ mod N)). An IEEE P1363 like
description [1] appears in figures 5 and 6.

5.3 Smart Card Application

In order to convince the reader that the present scheme re-
quires very low computation and very limited communica-
tion we have implemented it on low cost smart cards based
on a Motorola 6805 chip. Figure 7 shows that the running
time is very short. Note that we have not included the com-
putation time for the hash function; this would probably be
the bottleneck of many extremely fast applications.



Parameters k=384 k =512
| B|=80 |B|=128
|A|=544 |A|=720
Size of the public key 768 bits 1024 bits
Size of the secret key 385 bits 513 bits
Size of a coupon 72 bits 88 bits

Number of coupons
stored in 4 KB 455 372
Number of CPU cycles 32276 65726
Running time (3.57 MHz) 9 ms 18 ms
Size of a signature 627 bits 851 bits
Transmission (106 kbaud) 6 ms 8 ms
Total running time 15 ms 26 ms

Figure 7: Performances on a 8-bit microprocessor based
smart card without crypto-processor

CONCLUSION

We have proposes a new signature scheme that combines
provable security based on the factorization problem, short
public and secret keys, short transmission and minimal on-
line computation. It is the first RSA-like signature scheme
that can be used for both efficient and secure applications
based on low cost or contactless smart cards.
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A Security proofs

A.1 Security Analysis of the Identification scheme

In order to prove the security of the identification protocol
of section 2 against active adversaries, we follow the ap-
proach of Feige, Fiat and Shamir [11], successively proving
completeness, soundness and the zero-knowledge property.
We consider that the security parameter is k and that A
and /¢ are functions of k. For technical reasons related the
zero-knowledge property, B is considered a constant, as in
the analysis of the Schnorr’s scheme. Our assumptions are
classical but may look surprising at first glance as in ac-
tual applications £ is usually set to one. Note that in the
analysis of the signature scheme, we no longer need such an
assumption.

In order to simplify notations, we do not write the de-
pendences on k; in statements such as “f is negligible” we
implicitly mean that f depends on k and that, for any con-
stant ¢ and for large enough k, f(k) < 1/k°.

Theorem 1 (Completeness) Assume 2°4B/A is negligi-
ble. The ezecution of the protocol between a prover who
knows the factorization of the public key N and a verifier
18 successful with overwhelming probability.

Proof. At the end of each round, the verifier obtains
z =2z" mod N and y = r+ S X e. From Euler’s theorem, we
know that 2#Y) = 1 mod N. It follows that 2 = 2"5¢ =
2" x 220V =¢(N) — g x zN¢ mod N. Therefore z¢~V*¢ =
z mod N.

If the prover knows the secret S < 2*1! and follows the
protocol, he can only fail if y > A at some round of the
proof. For any value of the secret S < 2%¥*!, this probability
of failure taken over all possible choices of r is smaller than
2¥*1B/A. Consequently the execution of the protocol is

2h+1p)\* > 1 _ 2¢leB
A = A

successful with probability > (1 -

Finally, if 2¥/B /A is negligible, this probability of success is
overwhelming. O

The proof of soundness consists in proving that, if some-
one is correctly identified then, with overwhelming probabil-
ity, he must know the secret key associated with the public
key, i.e. the factorization of NN, as stated in the following
lemma:

Lemma 1 Let N be an RSA modulus and L be any multiple
of p(N). Then there ezists a Turing machine which, on
input (N, L), outputs the factorization of N in time O(|L]|).

Proof. This lemma is due to Miller [23] and is also proved
in [35]. |

Lemma 2 Assume that some PPTM(k) adversary P is ac-
cepted with probability > 1/Bl +¢€,e€>0. Then there exists
a PprMm(k) which factors the public key in time O(kBet /e +
k + |B|), where T is the average running time of a round of
identification.

Proof. Assume that some PpTM(k) adversary P(w),
running on random tape w, is accepted with probability
> 1/B® + ¢. We explain how to use P in order to obtain
a machine which on input (N, z) answers (Y, E) such that
2Y™NE = 1mod N, with —A<Y < Aand —B < E < B.
This computation takes time O(kB¢r/e) where T is the av-
erage running time of a round of identification.



We first choose arandom tape w. We then let ¢ vary from
1 to £. For each i, we let P(w) produce the i*" commitment
z; and note S; the state reached by P(w). We ask P(w) the
B possible challenges and, each time, we check the answer
and we reset P(w) at state S;. After those B steps, three
cases may appear:

- if P(w) has correctly answered two challenges e and €',
with y and ¢/, return (Y, E) = (y —y',e — €').

- if P(w) cannot answer any challenge, return Fail.

- if P(w) answers exactly one challenge, keep on with the
loop. If the end of the loop is reached, return Fail.

It can be formally proved that with probability > &/2
this machine returns (Y, E) such that z¥ V% = 1 mod N
after at most O(B/¢r) time units. If we repeat k/e times with
other random tapes, (Y, E) is obtained with overwhelming
probability in time O(kB¢r/e). Furthermore, Y is the dif-
ference of two correct answers y and 3’ smaller than A so
—A<Y < A. Finallyy, -B< E < B and E # 0.

Let L be NE —Y. This integer is such that z* = 1 mod
N. If N is greater than A, L is a non-zero multiple of the
multiplicative order of z in Z%. Since this order is divisible
by pg and ¢(N) = 4pq, 4 x L is a multiple of p(N). Miller’s
algorithm of lemma 1 allows to factor N in time O(|L|) =

O(k + |B)).

Note. This lemma is used to prove the soundness of the
identification protocol when B is considered as a constant
and £ is a function of the security parameter k. A more com-
plex proof proposed by Schnorr in [34] states that if £ =1
and B is a function of k, if an adversary is accepted with
probability ¢ > 2/B, the public key N can be factored in
time O(1/e + k + |B|) ~ O(1/¢). In actual applications £ is
usually set to one so this last result is much more convinc-
ing. For example, if we use a 1000 bits moduli, an attacker
accepted with probability as small as 1/2*° would be able
to factor a thousand bits RSA moduli in reasonable time
0(2).

Theorem 2 (Soundness) Assume that some PPTM(k) ad-

versary P is accepted with non-negligible probability, that
log(k) = o(€) and that £ is smaller than a polynomial in k.
Then there exists a PPTM(k) which factors the public key
with overwhelming probability.

Proof. If 7(k) is the non-negligible probability of success

of P, there exists an integer d such that w(k) > 1/k? for
infinitely many values k. Furthermore, for k large enough,
1/B® < 1/2k* because log(k) = o(f). So, taking ¢ = 7(k)/2
in lemma 2, we conclude that one can factor NV in time
O(kBft[e + k + |B|). If we assume that £ is polynomial in
k, then we have found a PpTMm(k) which factors the public
key with overwhelming probability. O

Theorem 3 (Zero-knowledge) The protocol is statistically
zero-knowledge if 2°4BT/A is negligible, where T(k) is the
mazimal number of repetitions of the protocol with the same
keys.

Proof. We first recall that the zero-knowledge property
states that the view of any verifier considered as a random
variable is perfectly similar to the output of a PpTMm(k)
which does not know the secret key. A protocol is only sta-
tistically zero-knowledge if the view and the output of the
PpTM(k) are only statistically indistinguishable. We refer
the reader to [19] for more details.

We describe the polynomial time simulation of the com-
munication between a prover P and a dishonest verifier V.
We assume that, in order to try to obtain information about
S, V does not randomly choose the challenges. If we focus
on the " round of identification, V' has already obtained
data, noted Data;, from previous interactions with P. Then
the prover sends the commitment z; and V' chooses, possibly
using Data; and t;, the challenge e;(Datas, t;).

Here is a simulation of the i*" round of identification:
choose random values e;" € [0, B[ and y;" € [0, A[, compute
zi' = 2% V% mod N. If ei(D;,zi') # e;’ then try again
with another pair (e, y;’), else return (z;',e;',4:'). It can
be formally proved that such a polynomial time simulation
is statistically indistinguishable from the transcript of a real
proof.

As a consequence, a verifier with infinite computation
power cannot learn significant information after a polyno-
mial number of authentications. O

Note. In the previous proof we observe that a good triplet
(z:',ei’,y:") is obtained with probability 1/B. Consequently,
the expected time complexity of the all simulation is O(¢B).
This explains why we need to repeat ¢ times the elementary
round of identification, in order to obtain a negligible prob-
ability of cheating 1/B¢ and a polynomial time simulation.
Note that we have chosen to make B constant but it can
also be considered a polynomial in k.

A.2 Security Analysis of the Signature scheme

It is widely believed that the heuristic transformation we
used to design our signature scheme from the interactive
identification scheme guarantees an accurate level of security
as soon as H is random enough. Furthermore, the security
of this approach can be formalized using the random oracle
model [2, 27] even if such analysis cannot be considered as
an actual proof of security as it is pointed out in [9].

In the identification scheme, B was a fixed constant but,
in the signature setting, we need to let B depend on the
security parameter k, as A, and to set £ = 1. The following
lemma proves that our scheme satisfies all the properties re-
quired to apply the the technique developed by Pointcheval
and Stern [27] and known as the forking lemma:

Lemma 3 Assume £ = 1. The protocol is a 3-pass honest-
verifier statistically zero-knowledge identification scheme.

Proof. Let us consider an honest verifier, i.e. a verifier who
ask randomly chosen challenges e. Using a proof similar to
Schnorr’s in [34] we can show that if an adversary is accepted
with probability € > 2/B, the public key N can be factored
in time O(1/e + k + |B|)-

Furthermore, the proof of theorem 3 can be simplified in
the setting of honest verifier in order to provide a constant
time simulation. O

In order to prove the security of the scheme in section 3,
we show that, if someone is able to forge valid signatures
after having obtained signatures of messages of his choice,
then we can use the attacker to efficiently factor the public
key. The random oracle model [2] is used to model the
behavior of the hash function H so that the proof validates
the overall design.

An attacker who existentially forges the signature scheme
can be modeled as a PPTM(k) A(w), running on random
tape w. For infinitly many values of the security parameter



k the machine is able to find with probability (k) a message
m and a valid signature (z,e,y).

Two distinct scenario of attacks are considered, the no-
message attack during which A(w) can ask @ queries to a
random oracle and the adaptively chosen message attack
where A(w) can also ask the signatures of R messages he
chooses to a signature oracle. We note 7' the maximal num-
ber of messages signed with a fixed key and 74 the average
running time of an attacker A.

Theorem 4 If an existential forgery of the signature scheme
under a no-message attack has a probability of success € >
7Q/B then the public key N can be factored within ezpected
time O(Qra/e + k + |B|).

Proof. (sketch) The proof consists in making the attacker
run with different random oracles in order to obtain valid
signatures (z,e;,y;) of a message m with the same com-
mitment z, which in term produces equations of the form
z¥i~Nei = 2¥=Ne¢j mod N. Then, as in the proof of sound-
ness of the identification scheme, this leads to the factoriza-
tion of N. We refer to [28] for details. O

Theorem 5 Assume that 2°BT/A is negligible. If an ex-
istential forgery of the signature scheme under an adapta-
tively chosen message attack has a probability of success
e > 10(R+ 1)(R+ Q)/B then the public key N can be fac-
tored within expected time O(Qta/e + k + |B|).

Proof. (sketch) The signature oracle can be replaced by
a Pprm(k) which simulates valid signatures if 2 BT/A is
negligible. This modifies only negligibly the probability of
succes of the attacker: overwise he would be able to distin-
guish between actual and simulated signatures. As for the
previous proof, we refer to [28] for details. O

Note. Because of the factor @) in the reduction, the ex-
pected time of the resulting factorization algorithm is a bit
disappointing. Consequently, this result must be viewed as
a complexity theory security proof and not as an ezact se-
curity analysis.



