Probing Attacks on Tamper-Resistant Devices

Helena Handschuh!, Pascal Paillier!, and Jacques Stern?

! Gemplus/ENST, France
2 Ecole Normale Supérieure, France

Abstract. This paper describes a new type of attack on tamper-resistant
cryptographic hardware. We show that by locally observing the value of
a few RAM or adress bus bits (possibly a single one) during the exe-
cution of a cryptographic algorithm, typically by the mean of a probe
(needle), an attacker could easily recover information on the secret key
being used; our attacks apply to public-key cryptosystems such as RSA
or El Gamal, as well as to secret-key encryption schemes including DES
and RC5.

1 Introduction

In recent years, many researchers have started investigating the security
of tamper-resistant devices such as smart-cards. Along many other crypt-
analytic attacks on cryptographic algorithms, new attacks have been sug-
gested. These attacks usually assume the existance of some kind of side-
channel and retrieve secret information on the process being executed
aboard the device [1].

We distinguish between two types of side-channel attacks, namely
passive or intrusive attacks. Typical examples of the first kind are timing
attacks [10, 7] and power attacks [11], in which the execution time or the
power consumption are monitored while secrets are being handled by the
device. Other examples are side-channel attacks described by Schneier et
al. which include (for instance) carry bit analysis [17].

On the other hand, some authors described agressive scenarios which
consist in influencing or perturbating the behavior of the device in order to
infer the secret. These attacks include Boneh et al.’s induction of transient
faults during RSA computations [3] or even cutting wires and forcing
given bit values, such as in Differential Fault Analysis [2, 14] of DES.

In this paper we consider a new kind of passive attacks, which ap-
pears to be more powerful than the previous ones. No statistical analysis
is needed in most cases. We suppose that the attacker simply has access
to a probe station, which (for the non-specialist) is a kind of needle that
allows to monitor the value of a single bit during the execution of some

cryptographic algorithm. Such devices are, of course, not self-sufficient.
In practice, the attacker must first prepare the surface of the chip in
specific way and overcome a long list of technical problems such as line
width, protective layers, the lack of information allowing to match a phys-
ical chip location with a given gate, security detectors, and other purely
physical phenomena such as the needle’s electrical bading or pure signal
synchronization problems. More, depending on whether it is known to
which register the bit belongs, probing may present a wide range of hard-
ness degrees. Part of the analysis consists of guessing which bit is being
recorded and once this is done, infering the secret key or private exponent
becomes easy.

The paper is organised as follows. The next two sections investigate
probing attacks on RSA and DSA-like cryptosystems. Section 4 and 5
focus on applying specific probing-based cryptanalysis on secret key en-
cryption schemes such as DES and RC5.

2 Probing Attacks in Public-key Cryptography

Most public-key cryptosystems require modular exponentiations. Unless
specifically adressed by a dedicated hardware design, the modular expo-
nentiation is usually available aboard a cryptographic device as a software
implementation. Although many variants exist, most real-life devices im-
plement the well-known Square-and-Multiply algorithm in its nominal
version.

This section is intended to introduce a new (probing-based) cryptan-
alytic attack that completely recovers the exponent of a typical Square-
and-Multiply implementation, thus providing a tool for breaking RSA,
El Gamal, DSA, Schnorr-type signature schemes, and so forth. We first
introduce and comment our adversarial model.

2.1 Our Attack Model

We will denote by SM-1 the standard Square-and-Multiply algorithm that
outputs m? mod n, given a base m, an exponent d and a modulus 7.
During the modular exponentiation, d is scanned bit by bit from left to
right and modular multiplication or squarings are successively applied to
an accumulator A depending on the current bit exponent. Denoting by
|d| the bitlength of d, we recall the procedure on Fig. 1.

In the sections that follow, we will be considering an attack scenario
in which the adversary is given access to some bits of the accumulator

Initialization
N+n M+—m
A+ 1, i+ |d

Scanning Loop
While (1 < %)

A+ A-Amod N
If(df{j==1), A<+ A-M mod N
t—1—1

}

Output A=m?mod n

Fig. 1. Standard Square-and-Multiply Procedure (SM-1)

throughout the exponentiation and attempts to recover information about
the exponent d. Before going further, we state that any attack in the above
model could be sophisticated or generalized in various ways to support
known variants of SM-1, such as right-to-left or multiple bit scanning.

To be more precise, our model assumes that some “monitoring ora-
cle” provides the adversary with the value of certain accumulator bits
suppposedly updated at each execution of the internal loop of SM-1. This
means that bit-values are collected by the attacker just after the accumu-
lator was squared or squared-then-multiplied. Therefore, we implicitely
consider that the monitoring oracle is capable of synchronizing perfectly
its observations with the actual execution of SM-1 aboard the device.

2.2 Probing Attack of SM-1

In this section, we show how to infer d by probing a single computation
of the form m? mod n for given m and n when it is known that the expo-
nentiation is done by SM-1. We will first consider the case when a few bits
(possibly a single one) are probed at known positions J C {1,---,|A|} in
the accumulator. We denote by A(J) the set of bits appearing at positions
belonging to J in A. Section 2.3 extends the attack to the case when J is
unknown.

Let d; be the integer formed by the ¢ leading bits of d, fori = 1,---,|d|.
Clearly, after the i-th step of SM-1 was executed, the accumulator con-
tains the value A* = m% mod n. Meanwhile, the monitoring oracle has

provided the attacker with the sequence

Now if ¢ is a guess for d;, the attacker can easily simulate SM-1 given
(m,n,d) and collect the bits at positions J in the simulated accumulator
A’, i.e. the sequence

T} (8) = (A" (J), A%(),-+, A"(])) . (2)

It is now clear that d is a correct guess only if T; = T;(d). Then, the
procedure can be iterated at step 2+ 1 by relying on the surviving guesses
at step . This attack strategy is summarized in Fig. 2.

A+ {0}
For (¢ =1,---,]|d|)

(1) Ao+ {20,26+1|6€ A}
(2) A« {6|8€ Ao and T; = T/(5)}

return A

Fig. 2. The Adversary’s Strategy

Since T; = T/(d;) for all i, it is clear that when the attack ends A
contains at least d = d|g. The point here resides in detecting whether
the number of guesses to be checked is likely to explode or not while
carrying out the attack. Although it seems hard to answer this question
in the general case, one can still adress it by the mean of a heuristic
reasoning. Let us first consider stage (2) during which wrong guesses are
eliminated from Ag. At step 7, each element § of Ay entering (2) fulfills
Ti—1 = T]_,(6;—1) where d;_1 = |§/2]. Furthermore, § € Ay passes the
test if (and only if) the equality A*(J) = A"(J) holds. This happens with
probability :

p(0) = PIAI(J) = A"(J) | AH(J) = A" H(J)].

By heuristically assuming that bits A”(J) and A%(J) are decorrelated®
for any wrong guess, we get that p(d) is nearly ¢ = 2171, Obviously, the

! in theory, these bits are somehow correlated, but the modular multiplication offers
such excellent diffusion properties that our assumption remains highly realistic.

correct exponent yields p(d;) = 1. Since stage (1) just doubles the number
of elements in A, one has, denoting by u; the average number of surviving
guess after step %, that :

wi= S p0) =pd)+ 3 pO) =1+eCuii-1). (3)
€A (56A0\d¢
Consequently, we get :

1 —e—e(2) 1-
= € 6(6))< €

1—2¢ —1-2¢’

when 2 <1 and u; = 1+ % if ¢ = 1/2. This yields :
1-¢
B(|4) < 7

throughout the attack. If J has a single element, that is if a single bit is
observed by the monitoring oracle, then € = % and

d
B(ap <1+ 19

which proves that the attack has a low heuristic complexity.

2.3 Random Hit Attacks

We now address the case when the attacker does not actually know the po-
sition of the monitored bits. One could of course address the problem by
executing the above strategy with all possible positions simultaneously
(there are |A|"/l such possibilities). Instead, we provide a much faster
strategy derived from the previously discussed one. The idea exploited
here is that the adversary can guess the position of these bits while per-
forming the attack. Again, at step %, J is a correct guess for d; if (and only
if) T; coincides with some “simulated trace” that the attacker produces,
for instance the complete accumulator history

’I;I: (AII,AIQ’--',AIi) .

Let us define T} (j; 6) as the sequence (A" (j),--, A"(j)). From now on, if
T; ¢ T}(j;0) holds for some j € {1,---,|Al|} then either § is a wrong guess
for d; or 7 ¢ J. This motivates the attack strategy depicted in Fig. 3.

In this setting, one can show that :
1—¢
1—2¢

which means that the attack would succeed again.

E(|A]) < +14|(2) with e=2"11, (4)

T AL, [A]}
VieJ A« {0}
For (i =1,---,|d|)

For (j € J)

{
Aj (—{26,2(5+1|(5€AJ‘}
Aj (—{5|5EAJ and T; CT;((S)}

IfA;j=0then J « J—j
}

return A = Uy A;

Fig. 3. Random Hit Attack

2.4 Discrete-Log based Signatures

Several Discrete Log (DL)-based cryptosystems have been proposed in the
literature. In virtually all of them (El Gamal [5], Schnorr [23], DSA [4]),
a fixed known base g has to be raised to a random power & modulo some
known prime p. The security of the cryptosystem relies on the randomness
and the secrecy of the exponent k, which plays in this context a role similar
to the one of a secret key.

From the above two attacks, it turns out that probing a single bit dur-
ing a single signature generation suffices to recover the random exponent
k. The device’s secret key can thus be easily infered from the knowledge
of k and the output signature.

3 Probing Attacks on DES

Following Biham and Shamir’s work [2] on Differential Fault Analysis
of Secret Key Cryptosystems, as well as Schneier et al.’s ideas on side-
channel attacks [17], we take a closer look at probing secret key algo-
rithms, which may be considered as yet another side-channel where infor-
mation leak. As we saw before, probing is considered as a passive attack,
whereas cutting wires would be an agressive attack.

The goal of this section is therefore to show that even a passive at-
tacker may retrieve the secret key of a DES implementation given one
single bit of information at each round.

3.1 The Information Leakage Model

The attack we subsequently present works in the following context. Sup-
pose an attacker uses an electronic station to locally observe the value
of a given bit during the execution of DES. We require that the attacker
have sufficient knowledge of the device to be able to recognize two spe-
cific registers which are the R and L data registers on which the round
function of an iterated Feistel [6] cipher applies. In the case of DES, any
bit of one or the other register is enough to attack the first and the last
round subkeys.

3.2 Attacking DES

DES [13] is a 16-round Feistel scheme which can be described as follows :

Let m be a 64-bit message divided into two 32-bit halves : the left half
my, and the right half mp ; let ¢ be the corresponding ciphertext and k;
the i-th round 48-bit subkey. Finally let TP and IP~! denote the initial
and final permutations and F' the round function of DES. The algorithm
is briefly depicted on Fig. 4.

(L0|R0) = IP(lemR)

for i =1to 16 :

L; = Ri—1;

R; =F(Ri_1,K;) ® L;_u;
end for

¢ =IP ' (Ris|L1s)

Fig. 4. Brief Description of DES

In this attack we ignore the initial and final permutations as these are
public anyway. Suppose the plaintext is simply (Lg|Ro) and the ciphertext
¢ = (L16|R16)- We shall now explain how to recover 6 bits of the last round
subkey. Assuming that the probe station enables us to record the value
of bit number b of register L at each round. The F-function in DES is
such that the output bits can be related to a given S-box having a 6-bit
input. We refer the reader to [13] for more information on the structure
of the F-function. As Lig = R15, for any ciphertext we can select the 6
bits entering the F-function that produce bit b as an output. These six
bits are exored with six bits of the secret subkey ks before entering a
specific S-box. Therefore, for each possible value of the 6-bit secret key

entering the S-box, the attacker can compute the expected output bit b*
of the F-function. Notice that she also has access to the real value of this
bit as she knows bit b from the probe of L5 as well as the corresponding
bit of the ciphertext Ris. Therefore, with one ciphertext, the attacker
can eliminate those key guesses where the expected value b* and the real
value of bit b of the output of the round-function are not the same. On
average, half of the key candidates will survive. Thus 6 bits of the key are
recovered with 6 different ciphertexts.

The same attack can be carried out on six bits of the secret key
of the first round. DES happens to be designed such that these 6 bits
are different from the 6 bits recovered from the last round subkey. As
a matter of fact, the initial permutation on the secret key results in no
two consecutive bits entering the same S-box among the first round and
the last round subkey. Therefore a total of 12 bits can be recovered by
this attack. The remaining 44 bits of the key can be found by exhaustive
search.

3.3 Discussion

Note that the attack works on both registers R and L. As a matter of fact,
if the attacker probes register R, we can apply exactly the same attack as
before because the iterated Feistel structure guarantees that R4 = L1s.
Thus we can still compute the input and expected output of the round
function and compare the latter to the real value derived from R4 as well
as from the ciphertext.

This attack uses the same principle as the one described by Biham
and Shamir, but does not require the attacker to be able to cut wires or
induce faults. In our setting, the prober simply observes the value of a
given bit throughout the execution of the block cipher. The complexity is
very low : only a handfull plaintext/ciphertext pairs are needed, and the
number of offline encryptions is 2%4.

Finally, we note that the attack cannot be carried out on two-key
triple-DES or triple modes of encryption using DES as a building block.
This comes from the fact that only 12 bits (6 from the first encryption
component and 6 from the last encryption component) of one of the secret
keys can be recovered, therefore the overall exhaustive search on the re-
maining key bits still amounts to 2'%° offline encryptions. Additionnally,
no output bit of the round-function depends on the input bit at the same
bit position due to the bit permutation after the S-box layer. Thus the

intermediate values of bit b are of no use to the attacker if she cannot get
any other information.

4 Probing RC5

As another example, let us consider RC5. Other iterated algorithms such
as RC6 are equally vulnerable to probing. RC5 has been extensively stud-
ied from a regular cryptanalysis point of view. See for example [9, 8, 18].

4.1 Description of RC5

RC5 is an iterative secret-key block cipher designed by R. Rivest [15].
It has variable parameters such as the key size, the block size and the
number of rounds. A particular (instanced) RC5 algorithm is denoted by
RC5-w/r/b where w is the word size (a block is made of two words), r is
the number of rounds and b the number of secret key bytes. Our attack
works for every choice of these parameters.

RC5 works as follows : the secret key is first extended into a table of
2r 4 2 secret w-bit words S;. We will assume that RC5’s key schedule is
one-way and focus on recovering the extended secret key table and not
the secret key itself. The detailed description of the key schedule can be
found in [15]. By letting (Lg,Ro) denote the left and right halves of the
plaintext, the encryption algorithm is depicted on Fig. 5.

Ly = Lo+ So

Ri=Ro+ 51
fori=2to2r+1do

Li=R;—1

Ri = ((Li—c1®Ri—1) < Ri—1)+ S:

Fig. 5. Brief Description of RC5

The ciphertext is (Loy4+1,R2r+1)- The transformation performed for a
given 7 value is called a half-round : there are 2r 4+ 2 half rounds. Each
half-round involves exactly one sub-key S;. All additions are mod 2% and
the rotations are mod w. As usual, @ denotes a bitwise exclusive or.

4.2 Probing Attack on RC5

For our purposes, we suppose that the attacker once again has access to
all intermediate values of some bit b of either register L or register R,
which is the case when she can probe one of these two in an iterated
hardware implementation of the algorithm or a specific RAM buffer. We
start by describing an attack where the adversary probes some register
R. Our technique uses some of the ideas presented in [7] to derive the
subkeys one by one in reverse order starting with Sa, 4.

Step 1.

First, collect a few multiples of w plaintext/ciphertext pairs and sort
them by the value of the log(w) least significant bits of the left half of
the ciphertext Lo,;1. There should be at least a few texts available in
each such ’category’. Then consider the texts which belong to category
(w — b)[w] (i.e. the value of the log(w) least significant bits of Loy41 is
(w — b)[w]). We probe the value of bit b of register Ro,_1 = Lo,. Since
we know the value of bit b of Ry, = Lo,41 as well as the value of the last
rotation from the left ciphertext half, we can compute the least significant
bit of register Lo, just before the last subkey addition. Therefore the least
significant bit of the last subkey can be found.

Step 2.

Next, consider “category” (w — b+ 1)[w]. After the last rotation, bit
b of Lo, will be in first position. Applying the same method as in step 1,
we can derive the first bit of the last round subkey (taking into account
the carry bit created by the addition of the least significant bit, which
is by now already known to the attacker and so on for the remaining
(w —2) bits of the secret key. They are derived one by one using different
ciphertexts, from the low order end to the high order end of the key.

Step 3.

After recovering the last subkey, decrypt one half-round, sort the ci-
phertexts according to the new value of the log(w) least significant bits of
Lo, and derive Ss,.. Derive all subsequent subkeys up to the very first four.

Step 4. The last four subkeys can be found by cryptanalysing a two-
round block cipher, which is straightforward. This concludes successfully
the probing attack on RC5.

4.3 Discussion

The attack works in a similar way when we probe register L directly. So
the knowledge of a single intermediate bit at each round enables to derive
the complete extended secret key and thus to further recover the initial se-
cret key. On the average a few multiples of w known plaintext/ciphertext
pairs are needed, in order to be sure that at each round at least one text
corresponding to a given rotation value is available. If this should not be
the case, the attacker can still query some more pairs of texts while she is
working backwards towards the first rounds of the cipher. The complexity
of this attack is actually very low and requires less than the exhaustive
search of a single 32-bit subkey. Depending on the case, either Sy, So or
51,53 have to be determined otherwise than by the above attack. They
can either be recovered by the key schedule, or by guessing a few bits of
So or S3 at a time, and checking for consistency on the corresponding bits
of Sy or .

5 Conclusion

We have shown that probing attacks are a powerful tool to derive infor-
mation on secret keys in embedded hardware. The interesting feature of
these attacks resides in that they are not desctructive, as many previously
suggested attacks are. In essence, probing does not require the cutting of
wires or inducing faults or even stressing the device to make it behave
abnormally, for we just observe (spying) a single bit during execution.
We have shown that public key algorithms using exponentiation or the
discrete logarithm such as RSA or DSA, as well as secret key algorithms
such as DES or RC5 would be vulnerable to such powerful attacks.

Acknowledgements

We are very grateful to David Naccache for motivating this research and
would also like to thank the numerous people who contributed to our
investigations.

References

1. R. Anderson, M. Kuhn. Low Cost Attacks on Tamper-Resistant Devices.
In Security Protocol Workshop’97, LNCS 1361, pp. 125-136. Springer-
Verlag.1997.

. E. Biham, A. Shamir. Differential Fault Analysis of Secret Key Cryptosys-

tems. In Advances in Cryptology - Crypto’97, LNCS 129/, pages 513-525.
Springer-Verlag, 1997.

D. Boneh, R. DeMillo and R. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults. n Advances in Cryptology - Euro-
crypt’97, LNCS 1233, pages 37-51. Springer-Verlag, 1997.

4. FIPS PUB 186, February 1, 1993, Digital Signature Standard.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. In IEEE Transactions on Information Theory,
volume IT-31, no. 4, pages 469-472, July 1985.

H. Feistel. Cryptography and computer privacy. In Scientific american,
1973.

H. Handschuh and H. Heys. A Timing Attack on RC5. In SAC’98 -
Workshop on Selected Areas in Cryptography, LNCS 1556, pages 306-320.
Springer-Verlag, 1999.

B. S. Kaliski and Y. L. Yin. On Differential and Linear Cryptanalysis of
the RC5 Encryption Algorithm. In Advances in Cryptology - Crypto’95,
LNCS 963, pages 171-184. Springer-Verlag, 1995.

L. R. Knudsen and W. Meier. Improved Differential Attacks on RC5. In
Advances in Cryptology - Crypto’96, LNCS. Springer-Verlag, 1996.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology - Crypto’96,
LNCS. Springer-Verlag, 1996.

P. Kocher, J. Jaffe, B. Jun. Introduction to Differen-
tial Power Analysis and Related Attacks. Available from
http://www.cryptography.com/dpa/technical/.

M. Matsui. Linear cryptanalysis method for DES Cipher. In Advances in
Cryptology - EUROCRYPT’93, LNCS 765. Springer-Verlag, 1994.

U.S. National Bureau of Standards. Data Encryption Standard, Federal
Information Processing Standard Publication 46-2, 1977.

P. Paillier. Evaluating Differential Fault Analysis of Unknown Cryptosys-
tems. In Public Key Cryptography - PKC’99, LNCS 1560. Springer-Verlag,
1999.

R. L. Rivest. The RC5 Encryption Algorithm. In Fast Software Encryption
- Second International Workshop, Leuven, Belgium, LNCS 1008, pages 86-
96, Springer-Verlag, 1995.

R. L. Rivest, A. Shamir, L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystem. In Communications of the ACM,
vol. 21, 1978.

B. Schneier et al. Side-Channel Attacks. To appear In Cardis’98 - LNCS.
Springer-Verlag, 1998.

A. A. Selguk. New results in linear cryptanalysis of RC5. In Fast Software
Encryption 5 - LNCS 1372. pages 1-16, Springer-Verlag, 1998. Springer-
Verlag, 1998.

J. Kilian, P. Rogaway, “How to protect DES against exhaustive key search,
CRYPTO’96, LNCS 1109, Springer-Verlag, 1996, pp. 252-267.

20.

21.

22.

23.

E. Biham & A. Shamir, The nezt stage of differential fault analysis : How
to break completely unknown cryptosystems, Preprint, 1996.

R. Anderson, Robustness principles for public-key protocols, LNCS, Ad-
vances in Cryptology, Proceedings of Crypto’95, Springer-Verlag, pp. 236—
247, 1995.

R. Anderson & S. Vaudenay, Minding your p’s and ¢’s, LNCS, Advances
in Cryptology, Proceedings of Asiacrypt’96, Springer-Verlag, pp. 26-35,
1996.

C. Schnorr, Efficient Identification and Signatures for Smart-Cards,
Advances in Cryptology: Eurocrypt’89 (G. Brassard ed.), LNCS 435,
Springer-Verlag, pp. 239-252, 1990.

