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Abstract. This report presents a response to the call for candidates
issued by the National Institute for Standards and Technologies (the Ad-
vanced Encryption Standard project). The proposed candidate — called
DFC as for “Decorrelated Fast Cipher” — is based on the recent decorre-
lation technique. This provides provable security against several classes
of attacks which include Differential Cryptanalysis and Linear Crypt-
analysis.

Digital criminality is nowadays a big threat for the electronic
marketplace. For this reason, cryptography provides various algo-
rithms based on a heart cryptographic primitive: encryption. The
Digital Encryption Standard (DES) has been developed by IBM™
for the US Department of Commerce in the seventies for this pur-
pose, but its secret-key length (56 bits) provides no sufficient security
at this time, so this standard is now over.

So far, real-life encryption algorithms used to have an empirical-
based security: they were designed from an intricate substitution-
permutation network and believed to be secure until someone pub-
lished an attack on them. In parallel, research yielded several general
attacks strategies, namely Biham and Shamir’s “differential crypt-
analysis” and Matsui’s “linear cryptanalysis” (both are particular
cases of the more general “iterated attacks of order 2”), which pro-
vided a better understanding on how to manage with security argu-
ments.



The laboratory of computer sciences of the Ecole Normale Supé-
rieure, associated with the Centre National pour la Recherche Scien-
tifigue (CNRS), has recently developed a technique for making new
encryption algorithms with a provable security against any iter-
ated attacks of a fixed order (e.g. of order 2). Several properties of
this technique — known as decorrelation — have been presented
at international research conferences. In this extended abstract, we
present a candidate for the “Advanced Encryption Standard” pro-
cess of the US Department of Commerce, and which is based on
decorrelation. We call it DFC as for “Decorrelated Fast Cipher”.

DFC enables to encrypt any digital information with a key of
length up to 256 bits. It has been implemented on various computer
platforms with the following benchmarks.

microprocessor|cycles-per-bit|clock-frequency|bits-per-second
AXP™ 4.36 600MHz 137.6Mbps
Pentium™ 5.89 200MHz 34.0Mbps
SPARC™ 6.27 170MHz 27.1Mbps

In addition, it has been implemented on a cheap smart card based on
the Motorola™ 6805 microprocessor for which one block encryption
requires 9.80ms. All these experiments yield a speed rate greater than
all commercial implementations of DES, and with a much higher
security.

Provable security is an important added value for cryptographic
algorithms and is currently a hot topic in international conferences.
The decorrelation technique is a part of this program.

1 Notations

All objects are bit strings or integers. Bit strings are represented
in hexadecimal notations. For instance, d43, denotes the bit string
110101000011. Integers are represented in standard decimal nota-
tions. The notations used to manipulate them are as follows.

5 convert bit string into an integer.
|z|, convert integer x into a bit string of length £.
s|s' concatenation of two strings.
trunc,(s) truncate a bit string to its n leftmost bits.
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s @ s' bitwise XOR
s A s bitwise and
—s bitwise negation.
+, X, mod natural arithmetic operations over the integers.

For instance, d43, = 3395 and |3395|;, = d43,.

2 High Level Overview

The encryption function DFCg operates on 128-bit message blocks
by means of a secret key K of arbitrary length, up to 256 bits.
The corresponding decryption function is DFC,' and operates on
128-bit message blocks. Encryption of arbitrary-length messages is
performed through standard modes of operation.

The secret key K is first turned into a 1024-bit “Expanded Key”
EK through an “Expanding Function” EF, i.e. EK = EF(K). As
explained in Section 5, the EF function performs a 4-round Feistel
scheme (see Feistel [3]). The encryption itself performs a similar 8-
round Feistel scheme. Each round uses the “Round Function” RF.
This function maps a 64-bit string onto a 64-bit string by using one
128-bit string parameter. It is defined in Section 3.

Given a 128-bit plaintext block PT, we split it into two 64-bit
halves Ry and R; so that PT = Ry|R;. Given the 1024-bit expanded
key EK, we split it into eight 128-bit strings

EK = RK;|RKy| ... |RKs (1)

where RK; is the ith “Round Key”.
We build a sequence Ry, ..., Ry by the Equation

Riy1 = RFgk, (R) © Riq. (1=1,...,8) (2)
We then set CT = DFCg(PT) = Ry|Rs (see Fig. 1).

More generally, given a bitstring s of length multiple of 128, say
1287, we can split it into r 128-bit strings

S =p1|p2|---|pr-

From s we define a permutation Enc, on the set of 128-bit strings
which comes from an r-round Feistel scheme. For any 128-bit string
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m which is split into two 64-bit halves zy and z; so that m = xzq|z;.
We build a sequence zq, ..., z,+1 by the Equation

Ti41 = R‘Fpl (.TZ) DT (’L = ]_, ce ,’I') (3)

and we define Encs(m) = z,41|z,. The DFCk encryption function is
thus obtained as

DFCK = EDCEF(K) (4)
(hence an 8-round Feistel Cipher). The EF function uses a 4-round

version defined with Enc.
Obviously, we have DFCI_(1 = Encreyrx where

revEK = RK;|RKy| ... |RK;. (5)

3 The RF Function

The RF function (as for “Round Function”) is fed with one 128-bit
parameter, or equivalently two 64-bit parameters: an “a-parameter”
and a “b-parameter”. It processes a 64-bit input z and outputs a
64-bit string. We define

RF,(x) = CP (|((@ x Z +5) mod (2" +13)) mod 2| )~ (6)

where CP is a permutation over the set of all 64-bit strings (which
appears in Section 4). This construction is the “pairwise decorrela-
tion module”.

4 The CP Permutation

The CP permutation (as for “Confusion Permutation”) uses a look-
up table RT (as for “Round Table”) which takes a 6-bit integer as
input and provides a 32-bit string output.

Let y = y;|y, be the input of CP where y; and y, are two 32-bit
strings. We define

CP(y) = |(y» ® RT (trunce(y)))|(y; ® KC) + KD mod 2% (7)

64
where KC is a 32-bit constant string, and KD is a 64-bit constant
string. Permutation CP is depicted on Fig. 2.

The constants RT(0), ..., RT(63), KC and KD will be set in Sec-
tion 6.
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Fig.1. An 8-Round Feistel Cipher.
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Fig. 2. The CP Permutation.

5 Key Scheduling Algorithm

In order to generate a sequence RK;,RKj,... , RKg from a given
key K represented as a bit string of length at most 256, we use the
following algorithm. We first pad K with a constant pattern KS in
order to make a 256-bit “Padded Key” string by

PK = truncese (K |KS). (8)

If K is of length 128, we can observe that only the first 128 bits of
KS are used. We define KS of length 256 in order to allow any key
size from 0 to 256.

Then we cut PK into eight 32-bit strings PKj, ..., PKg such that
PK = PK,|...|PKs. We define

OBP; = PK;|PK, (10)
EAP; = PK,|PK; (11)
We also define
OAP; = OAP; ® KA, (13)
OBP; = OBP; & KB; (14)
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EBP; = EBP; ® KB; (16)
fori = 2, 3,4 (where KA; and KB; are fixed constants defined in Sec-
tion 6). The names of the variables come from “Odd a-Parameter”,
“Odd b-Parameter”, “Even a-Parameter”, and “Even b-Parameter”

respectively, which will become clearer below.
We define

It defines a four-round permutation which is Encgp, (k). Similarly,
EF,(K) = EAP,|EBP,|...|EAP,|EBP, (18)

defines a four-round encryption function Encgp, k).
The Encgr, (k) and Encgr, k) enables to define the RK sequence.
Namely, we let RKy = |0]198 and

L EncEFl(K) (RKz_l) if 7 is odd
RKZ o {EDCEFQ(K) (RKz—l) if 7 is even. (19)
Finally we have

EF(K) = RK;|RK,| . .. |RKs. (20)

6 On Defining the Constants

The previously defined algorithm depends on several constants:

— 64 constants RT(|0¢), ..., RT(|63]6) of 32 bits,
— one 64-bit constant KD,

— one 32-bit constant KC,

— three 64-bit constants KAy, KA3 KAy,

— three 64-bit constants KBy, KB3, KBy,

— one 256-bit constant KS.

In order to convince that this design hides no trap-door, we
choose the constants from the hexadecimal expansion of the mathe-
matical e constant

= 1
e=Y — =2bT7el51628aed2ababf7158, ... (21)
n=0 n!
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If EES is the “e Expansion String” of the first 2144 bits of this
expansion (after the decimal point), we define

EES = RT(0)|RT(1)]...|RT(63)/KC|KD. (22)
In addition we define
truncgo (EES) = KAy KA;| KA, KBy |KB;3 KBy |KS. (23)
Here is the EES string.

b7e15162 8aed2a6a bf715880 9cf4f3c7 62¢7160f 38b4dab6,
a784d904 5190cfef 324e7738 926cfbeb £4bf8d8d 8c31d763,
da06c80a bb1185eb 4f7¢c7b57 57f59584 90cfd47d 7¢c19bb42,
158d9554 f7b46bce d55¢4d79 £d5£24d6 613c31¢c3 839a2ddf,
8a9a276b cfbfalc8 77¢c56284 dab79cd4 ¢2b3293d 20e9ebea,
f02ac60a cc93ed87 4422a52e cb238fee ebabbadd 835fd1al,
753d0a8f 78e537d2 b95bb79d 8dcaec64 2c1e9f23 b829b5c2,
780b£387 37df8bb3 00401334 a0d0bd86 45cbfa73 a6160ffe,
393¢c48cb bbca060f 0ff8ec6d 31bebbcc eed7£2f0 bb088017,
163bc60d f45a0ecb 1bcd289b 06cbbfea 21ad08el 847£3£f73,
78d56ced 94640d6e £0d3d37b €67008el eb64749a 86d1bf27,
5b9b241d,

7 Security Results

The design construction is based on decorrelation techniques (see
[6—7]). From the decorrelation theory we know that a six-round Feis-
tel cipher which uses RF with independent subkeys has a pairwise
decorrelation distance less than 0,821.27!13 to the Perfect Cipher. We
can thus give lower bounds on the complexity of differential crypt-
analysis, linear cryptanalysis and general iterated attacks of order 1
which achieve an advantage at least 10%.

attack differential|linearfiterated
complexity lower bound| 29 202 1 218

These are attacks against a six-round encryption function when as-
suming that EK has a uniform distribution. It is applicable to DFC
with the following assumption.



“We cannot distinguish Encgp, (k) from the a truly random
permutation within an advantage greater than 1%, with only 4
chosen plaintexts and a limited budget of US$1, 000, 000, 000.”

(Limiting the budget gives an upper bound on the computation cost.)

These results suggest that the key should not be used more than
248 times i.e. that we should not encrypt 4096 TB with the same key.
We believe that this restricts no practical application.

We also (pessimisticly) investigated the complexity of exhaustive
search by extrapolating the technology improvements. We obtained
the following rationales.

key length 80 [128] 192 | 256
computation lower bound (in years)|21.7/93.7|126.4/190.4

In our full report we also outlined that the DFC algorithm is weak
when reduced to four rounds. We believe the decorrelation technique
makes enough avalanche effect so that eight rounds provide a suffi-
cient security.

8 Conclusion

We have proposed a dedicated block cipher algorithm which is faster
than DES and hopefully more secure than triple-DES. In addition
we provided proofs of security against some classes of general simple
attacks which includes differential and linear cryptanalysis. This re-
sult is based on the decorrelation theory. We believe that this cipher
is also “naturally” secure against more complicated attacks since our
design introduced no special algebraic property. We believe that the
best attack is still exhaustive search which is limited by the imple-
mentation speed (decreased by a factor of 5 due to the key scheduling
algorithm). We (very pessimisticly) forecast that one need at least
several decades to search a 80-bit key, which makes it safe until the
Advanced Encryption Standard expires.

Our algorithm accepts 128-bit message blocks and any key size
from 0 to 256. It can be adapted into a 64-bit variant (with a key
size up to 128) as shown in the full report. We believe that it can be
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adapted to any other cryptographic primitive such as stream cipher,
hash function, MAC algorithm.

Our algorithm can be implemented on traditional personal com-
puters, as well as on cheap smart cards. We believe that it can be
implemented in any other digital environment.

In conclusion we recommend this encryption algorithm as a can-
didate to the Advanced Encryption Standard process.
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