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Abstract. Since the appearance of public-key cryptography in the sem-
inal Diffie-Hellman paper, many new schemes have been proposed and
many have been broken. Thus, the simple fact that a cryptographic algo-
rithm has withstood cryptanalytic attacks for several years is, by itself, a
kind of validation procedure. A completely different paradigm is provided
by the concept of provable security. Stated in a more accurate way, this
approach proposes computational reductions to well established prob-
lems such as factoring or the discrete logarithm problem. Recently, the
scope of this method has been considerably widened by using a model
where concrete cryptographic tools are replaced by ideal objects: in this
model, DES is viewed as a random permutation and SHA as a random
function with the appropriate range. Basically, this is another technique
for spotting error designs and validating cryptographic algorithms. When
cryptanalysis and security proofs combine with each other so that there
is virtually no gap between them, the resulting picture becomes quite
convincing. The present paper gives several examples of such a situation
taken from various areas of cryptography such as signature schemes,
public-key identification or even symmetric-key techniques.

1 Introduction

Since the appearance of public-key cryptography in the seminal Diffie-Hellman
paper [4], many new schemes have been proposed and many have been broken.
Thus, the simple fact that a cryptographic algorithm has withstood cryptan-
alytic attacks for several years is, by itself, a kind of validation procedure. In
this approach, cryptanalysis is viewed as a heuristic measure of the strength of
a new proposal. A completely different paradigm is provided by the concept of
provable security. This significant line of research has tried to provide proofs in
the asymptotic framework of complexity theory. Stated in a more accurate way,
this approach proposes computational reductions to well established problems
such as factoring or the discrete logarithm problem. Of course, these are not
absolute proofs since cryptography ultimately relies on the existence of one-way
functions and the P vs. NP question. Recently, the scope of this method has
been considerably widened by using a model where concrete cryptographic tools
are replaced by ideal objects: in this model, DES is viewed as a random permuta-
tion and SHA as a random function with the appropriate range. The method was



put in systematic form in [1] using the name “Random Oracle Model” and has
been quite successful as another technique for spotting error designs and validat-
ing cryptographic algorithms. When cryptanalysis and security proofs combine
with each other so that there is virtually no gap between them, the resulting
picture becomes quite convincing and, accordingly, conveys a reasonably high
degree of practical assurance. The aim of the present paper is to give several
examples of such a situation taken from various areas of cryptography such as
signature schemes, public-key identification or even symmetric-key techniques.
The examples include

1. A precise security analysis of the El Gamal signature scheme and its variants

2. A discussion of the size of the hash functions used in zero knowledge identi-
fication protocols

3. An account of the work of of Bellare, Kilian and Rogaway [2] on the security
of cipher block chaining and a comparison of the hypotheses they use with
cryptanalytic results concerning MACs

The first two items are related with previous work of the author. This is
merely a matter of practicality: much more work of a similar vein due to many
different authors can be found in the bibliography.

2 El Gamal Signatures

At EUROCRYPT 96, by some sort of unexpected coincidence, two papers de-
voted to the security of the El Gamal signature scheme appeared, one by Ble-
ichenbacher and the other by Pointcheval and the author (see [3, 13]). The first
was in the Cryptanalysis section and reported a potential weakness of the scheme
whereas the second, included in the signature section, was able to formally prove
the security of a variant of the same scheme. A closer look at both papers was
even more puzzling since it was explained that the Bleichenbacher attack was
applicable to the variant we discussed in the other paper. It was only through
a deeper examination that the apparent contradiction could vanish since the se-
curity proof was correct for “almost all” choices of the parameters whereas the
attack was tracking very specific values. In this section, we will briefly review the
ElGamal scheme and its variant as well as the content of the two EUROCRYPT
papers. Then we will investigate their “touching point” and derive practical
consequences.

2.1 Brief Review of the Signature Scheme

The original El Gamal signature scheme [5] was proposed in 1985 but its security
was never proved equivalent to the discrete logarithm problem nor to the Diffie-
Hellman problem.



Description of the Original Scheme Let us begin with a description of the original
scheme [5]:

— the key generation algorithm: it chooses a random large prime p of size n
and a generator g of (Z/pZ)*, both public. Then, for a random secret key
z € Z/(p—1)Z, it computes the public key y = ¢° mod p.

— the signature algorithm: in order to sign a signature of a message m, one
generates a pair (7, s) such that ¢™ = y"r® mod p. To achieve this aim, one
has to choose a random K € (Z/(p — 1)Z)*, compute the exponentiation
r = g mod p and solve the linear equation m = ar + Ks mod (p — 1). The
algorithm finally outputs (7, s).

— the verification algorithm checks the equation ¢” = y"r* mod p.

As already seen in the original paper, one cannot show that the scheme is
fully secure because it is subject to existential forgery. Following a design that
appears in the work of Schnorr [16], we proposed to modify the scheme by using
a hash function f.

Description of the modified El Gamal scheme In this variant, we replace m by
the hash value of the part of the computation bound not to change, namely

f(m,r).

— the key generation algorithm: unchanged.

— the signature algorithm: in order to sign a message m, one generates a
pair (r,s) such that gf(mr) = 47 ps mod p. In order to achieve this aim, one
generates K and r the same way as before and solves the linear equation
f(m,r) = r+ Ks mod (p — 1). The algorithm outputs (r, f(m,r), s).

— the verification algorithm checks the signature equation with the obvious
changes due to the hash function.

2.2 The Security Result

Of course, the hash functions that we had in mind were practical proposals such
as e.g. MD5 [14] or SHS [11]. Still, in order to prove a security result we used
the “random oracle model”. On other terms, we treated the hash function as an
oracle which produces a random value for each new query. Of course, if the same
query is asked twice, identical answers are obtained. Proofs in this model ensure
security of the overall design of a signature scheme provided the hash function
has no weakness. For the modified scheme, we were able to prove a security
result in the so-called adaptively chosen message scenario where the attacker
can dynamically ask the legitimate user to sign any message, using him as a
kind of oracle before he attempts to issue a fake signature. Our result applied
to a large variety of moduli p, those for which p — 1 has a single large prime
factor @). Those prime moduli are precisely used for cryptographic applications
of the discrete logarithm problem. In order to give a more precise mathematical
definition,we let |p| denote the length of an integer p.



Definition1. Let a be a fixed real. An a-hard prime number p is such that the
factorization of p — 1 yields p — 1 = QR with @ prime and R < |p|®.

Theorem 2. Consider an adaptively chosen message attack in the random or-
acle model against schemes using a-hard prime moduli. Probabilities are taken
over random tapes, random oracles and public keys. If an existential forgery of
this scheme has non-negligible probability of success, then the discrete logarithm
problem with a-hard prime moduli can be solved in polynomial time.

2.3 Spotting the Weakness

We will not give the proof of the theorem just stated in the previous section,
for which we refer to [13]. We will only mention that it deals with probabilistic
polynomial time Turing machines and that we turn any attack into a machine M
which, on input (g, y), outputs, with non-negligible probability, z € Z/(p — 1) Z
such that y = ¢ mod p (case 1) or b € Z/RZ and t € Z/(p — 1)Z such that ¢
is prime to @ and b@ = ¢g* mod p (case 2). Probabilities are taken over g, y, and
the random tapes of M. Case 1, the “good” case immediately yields the discrete
logarithm of y. As for the “bad” case 2, it only discloses the discrete logarithm
of some small multiple 5@ of Q. We could overcome the resulting difficulty by
using randomization over g so as to solve discrete logarithms in general.

What if ¢ is not randomly chosen? Then our argument collapses and we have
thus spotted a weakness. More precisely, we have the following

Theorem 8. From the knowledge of b and t such that t is prime to @) and
bQ = ¢' mod p, it is possible to generate signatures without the secret key for a
significant proportion of the possible messages.

Proof. Set r = g* mod p. The equation to solve in order to produce the re-
quired signature reads f(m,r) = zr+ts mod (p — 1). Reducing modulo @, we
get f(m,r) = ts mod @, which we can solve for s. As for the R-part, which reads
f(m,r) = zr 4+ ts mod R, it can be found by exhaustive search, regardless of the
information on x but provided that the solution exists: if ¢ is prime to R, this
is always the case. Otherwise, the (unknown) quantity f(m,r) — zr has to be a
multiple of the ged of t and R, which happens with significant probability.

2.4 The Bleichenbacher Attack

First note that theorem 3 does not actually use the full strength of the hypotheses
that were needed for the security result: @ need not be prime and it is enough
that R = 2=L is smooth in order to make the required exhaustive search possible.
Bleichenbacher’s attack stems from the following:

Theorem 4. Whenever g is smooth, divides p— 1 and is not a quadratic residue
modulo p, it is possible to generate signatures without the secret key for a signif-
icant proportion of the possible messages.



Note that the above applies to the El Gamal scheme as well as to the variant
discussed above.

Proof. Set @ = % and t = %. Since ¢ is not a quadratic residue, we have
p=1

gz = —1 = p— 1modp, hence ¢¢ = ’%1 = (@ mod p. The hypotheses of
theorem 3 are met and thus a significant proportion of the messages can be
signed. There is a minor problem due to the fact that ¢ is not necessarily prime
to @. Actually, since p — 3 is a multiple of ¢, the gcd of ¢t and p— 1 is at worse 2.
A closer examination of the proof of theorem 3, with this observation in mind,
shows that the conclusion remains.

2.5 The Final Picture

The apparent contradiction between Bleichenbacher’s attack and our security re-
sult has thus vanished. Moreover, the overall picture is now very clear: the mod-
ified El1 Gamal signature scheme is secure provided the generator g of (Z /pZ)*
is chosen at random. If it is not, then, as reported in [3], there is some danger
that a trapdoor has been added. Thus, a reasonable requirement would be that
the authority issues some sort of proof that ¢ has been fairly manufactured, as
was suggested for the modulus p of the digital signature standard (see [11]).

3 Hash Functions in Identification Protocols

At CRYPTO 93, the author introduced a zero-knowledge identification scheme
based on the syndrome decoding problem from the theory of error-correcting
codes ([18]). This work followed a line of research trying to find appropriate
alternative techniques to number theory. Previous research along the same line
had been earlier performed by Shamir who had designed another scheme based
on the Permuted Kernel problem (see [17]). Both schemes used hash function
at the so-called commitment stage. In the security analysis that we gave in our
CRYPTO paper (see also [20]), we noticed that any attack could be turned into
a machine which could either output some substitute to the secret key or else
find collisions for the hash function, with overwhelming probability. Still, we felt
that it might as well be the case that one-wayness was enough. Thus, results of
further investigations that we undertook with Marc Girault (see [10]) came as a
surprise: collision-freeness is really needed. Again, the correct picture came from
the joint effort of security proofs and cryptanalysis.

3.1 Brief Description of the Scheme

The scheme is base on a fixed randomly generated binary matrix H of large
size, m x n, say 256 x 512. Each user U receives a secret key sy, chosen at
random by the authority among all n-bit words with a prescribed number p of
1’s, say p = 56. This prescribed number p is also part of the system. The public
identification of the user is computed as



iU = H(SU)

This allows a registered participant to perform the basic interactive protocol
that enables any user U (which we call the prover) to identify himself to another
entity (which we call the verifier). The protocol includes r rounds, each of these
being performed as follows:

1. The prover picks a random n-bit word y together with a random permutation
o of the integers {1---n} and sends commitments ¢y, ¢a, c3 respectively as

c1 = (o[|H (y))
cr = (y.0)
cs=((y®sv).0)

to the verifier. In the above () simply denotes the hash function.

2. The verifier sends a random element b of {0,1,2}.

3. If b is 0, then, the prover returns y and o. If b is 1 then, the prover reveals
y @ s and o. Finally, if b equals 2, then the prover discloses both y.o and
Sy .o.

4. If b equals 0, the verifier checks that commitments ¢; and ¢y, which were
made in step 1, have been computed honestly. More accurately, let y and
o be the answers received from the prover at step 3, then the equations to
check are as follows:

c1 = (o|[H(y))
Cy = <§5’>
If b equals 1, the verifier checks that
c1 = (o||H(y) & iv)
C3 = <g&>
Finally, if b is 2, the verifier checks the weight property and commitments
co and cg, 1.e. with obvious notations,

c2 = (¥)
c3= (Y& 5)
The security result whose proof we omit, reads as follows:

Theorem 5. Assume that some probabilistic polynomial-time adversary P is ac-
cepted with probability > (2/3)" + €, € > 0, after playing a constant number r of
rounds of the identification protocol. Then there exists a polynomial-time proba-
bilistic machine which outputs an acceptable key s from the public data or else
finds collisions for the hash function, with overwhelming probability.

Here an acceptable key is any word s with the prescribed weight such that
H(S) = iU.



3.2 Attacks Based on Collisions

In order to give an abstract treatment of the work appearing in [10], we introduce
the following definition:

Definition6. A sample for a hash function is a subset of its possible inputs.
Given two samples Sy, S5 for a hash function, a collision between these samples
consists of 21 € 51 and z5 € Sy such that (z1) = (22).

We always assume implicitly that samples and hash values are produced by
polynomial-time machines and that samples have exponential size whereas hash
values have small length. Hence collisions do exist. The main result in [10] reads
as follows.

Theorem 7. Any adversary that can produce collisions between samples can be
accepted without knowledge of the secret key.

Proof. As shown in [10], the attacker can choose to attack any of the three
commitments. We focus on ¢3. The impostor selects a permutation ¢ and a
word y'. He next considers two samples

1. The sample consisting of inputs to the hash function of the form y;.0 such
that y; is a solution of the equation H(y1) = H(y') @ iy . Note that there
are exponentially many such solutions.

2. The sample consisting of inputs to the hash function of the form y;.0 such
that yo @ y' has weight p.

Let y1, y2 be a collision between the samples. At each execution of the basic
protocol, the impostor sends

cr = (o|[H(y1))
co ={y1.0) = (y2.0)
es =(y'.o)

If the verifier asks b = 0, the cheater replies with y; and o; if b = 1, he
returns ¥, o; finally, if b = 2, he answers ys.0 and (y2 @ y').c. In all three cases,
the verifier is satisfied with the answer.

3.3 Practical Consequences

If we identify hash functions with random functions, then by the birthday para-
dox, the running time of finding collisions for samples is 0(\/2_1“), where k is the
size of the hash values. As a consequence, the practical meaning of the previous
results is that 64 bit hash values should be avoided. Our identification scheme

really needs long hash values and 128 bits is a minimum.



4 Cipher Block Chaining

At CRYPTO 94, Bellare, Kilian and Rogaway gave a security proof for the
classical design known as cipher block chaining (see [2]). More accurately, they
considered authentication of a message z = z1, - - -, z, by tagging z with a prefix

of

S @) = FFC (F 1) @ 22) @ - B 2m1) B @)

where f is a block cipher (e.g. DES). Their setting was quite similar to the one
discussed above in section 2, in that the attacker was allowed to request the MAC
values of adaptively chosen messages. They were able to prove that any attack
which distinguishes f(™) from random functions with significant probability, can
be turned into a test distinguishing f itself from random functions. They had a
more precise quantitative version that appears below and involves the number
of queries ¢ made by the attacker. If one compares this version with the collision
attacks stemming from the birthday paradox, we see that there is a small gap.
The aim of the present section is to understand this gap.

4.1 Brief Review of the Security Result

Consider an attack that distinguishes the CBC function f(™) built from a func-
tion f whose inputs are £ bit long. Let ¢ be the number of queries asked, ¢ be
the time taken and € be the success probability. The result of Bellare, Kilian and
Rogaway reads as follows:

Theorem 8. Assume qm < 2UE+V/2 then there is another algorithm that dis-
tinguishes [ itself from a random function, whose success probability is ¢/ =
€—3¢>m?2=t=1. This algorithm asks ¢’ = qm queries and takes time t +O(qgml).

We refer to [2] for the proof.

4.2 The Gap with Cryptanalysis

It is know that MAC collisions can be found through the birthday paradox by
querying V/22¢12 MAC values, where £ is the number of bits of the inputs to f.
It is not surprising therefore that the authors of [2] have a condition that relates
g, m and 2¢2_ Tt turns out that this condition cannot be simply ¢ < 0(25/2).
This follows from a result by Preneel and van Oorschot [12] who observe that
if the messages have s trailing blocks in common, the number of MACs needed

for finding a collision w.r.t. f(™) goes down to approximately \/2/(s + 1)2¢/2.

Thus, collision can be found with O(%) queries by setting s = m — 1 and this

distinguishes f(™) from random functions. However, the condition from [2] reads

gm < 2U+D/2 whereas cryptanalysis hints towards a weaker condition of the
form ¢ < O(ﬂ) It is unclear whether the gap can be narrowed.

vm
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Conclusion

The content of the present paper is methodological in character. We have shown
several examples where security proofs and cryptanalysis almost match up. If

they do, the resulting picture is very convincing in terms of practical security. If
the match is not tight, it is often an indication that further research is needed.
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