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1 Introduction

It is known that the problem of finding a codeword of given weight in a linear
binary code is N'P-complete [BMT78|. Furthermore, the problem remains diffi-
cult when the code is chosen at random and the weight is close to the Gilbert-
Varshamov bound (see the discussion in [Ste, FS96]). Recently, several crypto-
graphic schemes aimed at entity identification and based on this property [Gir90,
Har89, Ste90, Ste94, Vér95h| have been proposed®. They have low computational
requirements and high speed. The counterpart is that the communication com-
plexity is significant.

In an attempt to improve the performances of the above systems, Kefei Chen
has suggested the idea of using rank metric codes [Gab85] instead of Hamming
metric codes in cryptographic schemes. He has designed two authentication schemes
[Che94, Che96] with claimed better performances than the above systems. The se-
curity of these protocols relies on the following informal assumption:

The syndrome decoding problem for rank distance codes appears even more
difficult than for Hamming distance codes.

In this paper, we first recall the definition of rank distance codes and how
they are used in K. Chen’s protocols. Then we present our attack on these proto-
cols. Accordingly, we modify their parameters to achieve security. It is debatable
whether or not the original schemes proposed by K. Chen achieve better perfor-
mances than their analogues based on standard error-correcting codes. But taking
into account the loss in the efficiency of the protocols resulting from underesti-
mating the necessary sizes, it appears that rank distance codes are not better than
usual codes.

3 The authentication scheme [Har89] was broken by P. Véron [Vér95a].



2 Background

2.1 Rank distance codes

The rank distance codes were introduced by E.M. Gabidulin [Gab85] and rely on
the following observation.

Let & = (21,...,2,) be a n-dimensional vector over GF(¢™), where ¢ is the
power of a prime. Let by,...,b,, be a basis of GF(¢™). Write each element z; €

GF(q™) as ;= B1,;b1+ -+ + By jbm, where 3, ; € GF(q) for all i. Then the rank

of
Bii 0 Bin
A@) =1 :
Bri - Boum
is uniquely determined by Z, and defines a metric on the n-dimensional vector
space V over GF(¢™). Following [Gab85], we will denote this metric by r(z, q).

Generally speaking, given a linear code over GF(¢™), that is to say a k-dimensional
subspace of V', the rank distance decoding problem can be stated as follows:

Rank distance decoding problem Let H be a parity check matrix over
GF(q™) of the code C (i.e. T € C & Hz' = 0), given a (n — k)-vector & over
GF(q™), find a n-vector 5 € V of smallest rank r(3, ¢) such that

Hs' =o' (1)

In coding theory, vector & is called the syndrome of the error vector s.
Mutatis mutandis, as for Hamming distance codes, if the error vector has rank

r smaller than half the minimum rank distance d of the code, then equation (1)
d

has a unique solution of rank less than £.

2.2 Minimum Rank Distance codes

The above metric can be used to formulate a theory analogous to the theory of
Minimum Distance Separable codes [MS83]. In particular, if H is a (n — k) x n
parity check matrix of a linear code over a finite field, the minimum rank distance
d of the code, i.e. the minimum of the non-zero ranks of the codewords, verifies

d<n-—k+ 1. (2)

This bound is called the Singleton bound [MS83] in the theory of linear Hamming
distance codes and a code that achieves equality is called Minimum Distance
Separable (MDS). Following [Gab85], we similarly call Minimum Rank Distance
(MRD)-code a linear rank distance code that achieves equality

d=n—k+ 1.

Such codes exist. Some of them are constructed in [Gab85] together with coding
and decoding algorithms.
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Fig. 1. Kefei Chen’s authentication protocol [Che96].

2.3 K. Chen’s authentication schemes

We now briefly describe the identification scheme [Che96] which is an improve-
ment of [Che94]. Both schemes use as public data a (n — k) x n parity check matrix
H of a rank-distance code over G'F'(¢™) with error-capacity ¢* and an integer r < ¢.

Fach user chooses a random n-vector 5 over GF(¢™) of rank r and computes
the syndrome & = H5'. The (n — k)-vector @ over GGF(¢™) is the public key
for authentication. The interactive protocol of figure 1 can now be repeated a
certain number of times to achieve “security”. This protocol is zero-knowledge.

The proposed parameters are

g=2,n=32,k=m =16 and r = 4.

We now show that the underlying problem is too weak for this set of parameters.

3 Algorithm A

3.1 Principle

We now present an algorithm which solves the following problem:

4 Every error vector of rank less than ¢ can be successfully corrected.




Fixed rank codeword search problem Given an integer r and a parity check
matrix H of a linear rank-distance code over GF(¢™), find a n-vector s over
GF(q™) of rank less than r such that

Hs' = 0. (3)

First we see how such an algorithm can solve the rank distance decoding problem
described by equation (1). Given H and &, we can add a column to matrix H and
form the matrix

H=(H | ).

Every solution of the equation

H'5" =0 (4)

can be split into two parts 3" = (55 | s1), with $g a n-vector over GF(¢™) and
s1 an element of GF(¢™). For every solution 5 of equation (4), either Hsy" = 5,5°
or $g is a solution of equation (3) and s; = 0.

But, if we know a priori that the error vector 5, such that H5' = &', has rank r
smaller than half the minimum rank distance d of the code H, which is the case for
the rank distance decoding problem, then we know that a solution of equation (4)
of rank less than r + 1 cannot be a codeword of matrix H. Hence, we can obtain a
solution for equation (1) which is s7' x &. Therefore, if we have an algorithm that
solves problem described by equation (4), it will solve the rank distance decoding
problem of equation (1).

We note that this adaptation is made at the cost of increasing the rank pa-
rameter of the problem by one. If we want to solve an instance of the problem (1)
with a searched rank r, we will have to solve a derived instance of problem (4)
with a searched rank r + 1°.

3.2 Brute force algorithm

Assume there exists a solution § = (sy,...,s,) of equation (3) of rank r. Then,
there exists r elements 6y, ..., 0,1 of GF(¢™), linearly independent over GF(q),
and nr coefficients a;r € GF(q), such that for all j, 1 < j <n,

r—1
S5 = Z O%kak.
k=0

We denote by (h; ;)1 <i<n-» the coefficients of matrix H. We can then rewrite

1 <j<n

equation (3), and obtain a system of (n — k) relations over GF(g™).

n r—1

\V/i, 1 § L S n — k‘, Z Z hi,jaj,kﬂk = 0 (5)

7=1k=0

5 In the very special case of s; = 1, the rank remains unchanged, but this is of no importance
as we will see later.



As soon as (g, ...,0,_1) are known, the above system gives a redundant lin-

ear system over GGF'(q), with nr unknowns (a;x)1<;<» and at most (n — k)m
0<k< r

independent equations.
Therefore, our brute force algorithm enumerates all bases (6y,...,0,_1) over
G'F(q™) and tries to solve the linear system over GF'(q) resulting from system (5).
There are at most ¢™" different bases (6, ...,0,_1) over GF(¢™). The resulting
complexity is too high for the proposed parameters of K. Chen’s authentication
scheme, but note that this exhaustive search is not even mentioned in [Che96].
The rest of the paper is devoted to the study of a better search algorithm.

3.3 Bound for minimal rank-distance codes

We now fix for this subsection the r elements (6, 0y,...,0,_1) of GF(¢™). Sys-
tem (5) can give us solutions to equation (3) as soon as it has more unknowns than
equations, that is to say if nr > (n — k)m. In all (n, k) linear code, this inequality
implies that we can find a codeword of rank r if r > ﬁn—_knmﬁ Hence, we obtain
a bound on the minimal rank-distance of a (n, k,d) linear rank distance code

dgpzﬁﬂiq (6)

n

Theorem 1. No MRD code can exist for m < n.

Proof. An MRD code achieves d = n — k + 1. But we can obtain a codeword for
r=mn—k as soon as n(n —k) > (n — k)m.

Note 2. Speaking in terms of coding theory, that means that our bound (6) is
better than the Singleton bound for the case m < n. One should note that all
the MRD codes of Gabidulin’s paper are given for n > m. Therefore, there is no
contradiction between the above result and [Gab85].

3.4 Selective enumeration

We now show how to decrease the cost of our enumerative search. The principle
of the following algorithm remain the same. We just want to reduce the number
of bases (6o,01,...,0,_1) over GF(¢™) for which we have to solve a linear system
over GF(q).

First, we can notice that for all § € GF(¢™),if (sy,...,s,) is a solution of equa-
tion (3), then (#sy,...,0s,) is also a solution. We can therefore only enumerate
the bases of the form (1,6y,...,0,_1).

Let (b1,...,b,) be a basis of GF(¢™) over GF(q). For every element B in
GF(q™), there exists m elements (1, ..., 3, of GF(q) such that

B=Y b
=1



Such a basis can for instance be the canonical polynomial representation of GF(¢™),
in which case we have b, = X*~!. For simplicity we symbolize this particular rep-
resentation by the notation

B=[Bn-pi] =B X" 4 4+ 52X + By,

and we call digits the particular coefficients of this representation.
As 0y = 1, we have 6y = [0-- - 01]. Therefore, the last digit of every 6; can be
arbitrarily set to zero without loss of generality as

[0i1- b m—10im] = [0i1 - 0;m-10] + 6;,,[0---01].
We now formalize these ideas and estimate the number of bases to enumerate.

Lemma3 [LN83, page 455]. The number of m X r matrices of rank r over
GF(q) is

r(r—1) r—1

Ny(m,r)=q 7 [[(¢" " —1).

1=0

Corollary 4. The number C,(r) of invertible matrices or size r over GF(q) is
r(r—1 " i
Co(r)=q = [[(¢' = 1)
i=1

Definition 5. A strict basis of rank r, is a basis ©® = (1,6,,...,0,_1) for which
the last digits of the 8; are all zeros.

Definition 6. Two strict bases @ and @’ are equivalent if there exists an invertible
matrix 7" over GF(q) of size r such that

1 1
0 0

o=| " |=1| " |=r06
05 0,1

It is clear that we only have to enumerate one element in each equivalence
class. We now count the number of elements to enumerate.

Lemma7. The number of bases in a class is

r—1
Cor=1)=q¢ = [[(¢'=1).

i=1

The proof of this lemma uses a block-wise representation of transition matrix 7'
and is given in A. We set

m,r) = Ny(m, ) - H;};m—(’“—l)(qi —1)
Dq( ’ ) - ] T‘) - H;-":l(qi — 1) . (7)




Lemma 7 means that using for instance lexicographic order, we only need to
enumerate D,(m — 1,7 — 1) strict bases in order to find a solution of equation (5).
Appendix B gives a way to enumerate such bases.

The following theorem means that this solution is unique. Therefore, we have
essentially no better strategy than enumerating one basis in every class and check
if the corresponding linear system over GGF(q) resulting from system (5) has a
solution.

Theorem 8. Let n be an integer greater than r. Let @ and O be two bases such
that there exists two n x r matrices over GF(q) A and A" of maximal rank r for

which AO = A'@'. Then @ and O are equivalent.

Proof. As A and A’ are of maximal rank, by Gaussian elimination there exists two
invertible matrices S and S’ of size n over GF(q) and two permutation matrices
P and P’ of size r such that, using a block-wise representation for S and S’ we
have

-(5 ) () r= () rasn=(G 3)(5)7=(3)7
A_<SB ) o )p=(a)paman=(3 &)(g)r=(a)"
As A and A’ are of rank r, these relations imply in particular that the two r x r

matrices over GF(q) Sy and S are invertible.
These relations are also true over GF(¢™). Hence, we have

14 po _ o (14 prey
S<O>P@_S<O)PO,

from which we can extract S; PO = S]P'@'. This completes the proof.

3.5 Implementation

We have implemented our algorithm using the ZEN C-library [C1.96]. We enumer-
ate the strict bases as described in appendix B and for each of these bases, we
solve the linear system over GF'(q) of (n — k)m equations and n(r + 1) unknowns
resulting from system (5). This second step is in fact a little optimized using a trick
described in appendix C. This trick performs a kind of parallelization of successive
Gaussian eliminations resulting in an improvement by a factor 2.

The above algorithm was successfully tested and the results are summarized in
figure 2. The parameters are chosen to match with those proposed in Kefei Chen’s
schemes. We now discuss the security of these schemes.

4 Application to K. Chen’s schemes for authen-
tication

At this point, let’s recall the parameters of K. Chen’s protocols. The first one
[Che94] used the parameters

g=2,n=32,k=16,m =8 and r > 4.



r Number of (nr)?|  CPU time Estimated
basis by iteration (ms)| CPU max.

2 215 = 32767 218 6.5 200 s

3 2274 =178940587 |2198 8.5 18 days

4] 2376 = 209386049731 [22'0 10.5 70 years

51247 = 57162391576563] 2220 12.5 22,400 years

Fig. 2. Finding a codeword of given rank for ¢ = 2, n = 32, k = 16, m = 16 on PC-486
100MHz

These parameters are inconsistent. System (5) is not redundant with these
parameters. We obtain (n — k)m = 128 equations with n(r 4+ 1) > 160 unknowns
over GF(q). Therefore, given a public key syndrome, one can easily find a secret
key for these parameters. This means that the minimal rank distance of this code
is smaller than r. Indeed, bound (6) gives in this case d < 5. Hence, as we should
have r < %, possible parameters are

g=2,n=32,k=16,m =8 and r = 2.

With these parameters, there will be no two secret keys with the same public
key. But, given a public key, our algorithm need at most D,(m — 1,r) = 2114
Gaussian eliminations each with (n(r + 1))* = 2% further elementary operations.
This clearly defeats the scheme.

The second scheme [Che96] uses the following parameters:

g=2,n=32k=m =16 and r = 4.

In this case, our bound (6) gives d < 9. Codes necessary for this scheme can
therefore exist.

Our algorithm leads to at most 27 Gaussian eliminations each with about
215 operations using the trick described in appendix C.

We can estimate the overall complexity of our algorithm A for solving fixed
rank codeword search problem (3). On one hand, the number of strict bases grows
asymptotically as O(¢(™~"=1). On the other hand, it is well known that the num-
ber of elementary operations in a Gaussian elimination over GF(q) is O((nr)?).
We therefore obtain for the complexity of our algorithm

0] ((nr)Bq(m_r)(r_l)) )

This first approach has the disadvantage to increase by one the rank of the
word to find for solving problem (1). This is necessary to convert the problem
in the form of equation (3). Hence, the overall complexity of our algorithm A for
solving problem 1 is

O ((n(r + 1)) =1r).

In table 2, for instance, one can see that the Kefei Chen’s authentication scheme
with proposed parameters [Che96] is solved by algorithm A in about 22,000 years.



It would be better to avoid this increase in the rank, because we would then obtain
a more realistic search in about 70 years.

We now present a modification of the above algorithm that solves directly the
initial problem (1) without increasing the search ranked. This results in a better
algorithm for solving the initial rank distance decoding problem.

5 General syndrome decoding problem for rank-
distance linear codes

5.1 Algorithm B

We now suppose given a non null syndrome ¢ = (01,...,0,-x) over GF(¢™). In
this case, system (5) is replaced by:

n r—1

Vi,l S ) S n — k‘, Z Z hm-ozmﬂk = 0y,
7=1k=0
n r—1

hz‘,jaj,o + Z E hi,jaj,k% = 02'90_1, (8)

1=1k=1

with 0}, = 0;/6,. Let (by,...,b,) be a basis of GF(¢™) over GF(q). There exists
m elements (1, ..., B, of GF(q) such that

_1 m
— = by.
o ;ﬁu

Hence, we obtain

n r—1 m
hi,jozj,o -|— Z E hi,jozj,k% —I— Z,@gb[di = 0 (9)
1=1k=1 =1

This system of n — k relations over GF(¢™) gives over GF(q) a system of at most
(n — k)m independent equations with nr + m unknowns. The remaining of our
discussion is the same, and our algorithm B will therefore consist in enumerating
the same strict bases and solving for each one a linear system over GF(q). The
resulting system has only a little more unknowns than before, but the important
point is that there is no more need to increase by one the searched rank, that is
to say the number of elements in each basis.

Hence the number of bases to enumerate remains the same. In particular,
asymptotically algorithm B performs O(g")("=1)) Gaussian eliminations. As a
Gaussian elimination takes O((nr + m)?) operations, we eventually obtained the
claimed complexity

O ((nr + m)3q(m_r)(r_1)> .

Using this algorithm, we obtain for the second scheme proposed by K.Chen
an exhaustive search of D,(m —1,r — 1) = 2°76 Gaussian eliminations. With the
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same trick as before (see Appendix C) that parallelizes Gaussian eliminations, we
need on average 2'5 operations to perform a Gaussian elimination. Thus, we can
obtain an exhaustive attack of K. Chen’s protocol that discloses a secret key from
a public one, in less than 2°% elementary operations.

This is less than the time needed for an exhaustive search of a DES-key, and the
scheme should therefore be considered unsecure according to current standards.

5.2 Implementation

Algorithm B was also implemented using the ZEN C-library [CL96] and success-
fully tested. We present in figure 3 our experimentations on same dimensions as
in figure 2. One should note that the estimated maximal CPU times are increased
by relatively small values which confirms our estimation.

The estimated time of computation to break an instance of Kefei Chen’s au-
thentication scheme appears to be 78 years. This figure may still seem high but
we note the following:

1. Using a faster machine like a sparc 20, the estimated time falls to 20 years.

2. Our estimation is made in the worst case. On average, we only need half this
time to solve a random instance of the problem.

3. The algorithm can be easily distributed on a network. Suppose we have about
a thousand machines (like the RSA-130 breaking project), then a secret key
would be found in less than a week.

r Number of (nr)?|  CPU time Estimated
basis by iteration (ms)| CPU max.

2 215 = 32767 218 7.5 250 s.

3 2274 =178940587 |2198 10 20 days

4] 2376 = 209386049731 [2219 12 78 years

51247 = 57162391576563] 2220 13 24,000 years

Fig. 3. Solving syndrome decoding problem for ¢ = 2, n = 32, k = 16, m = 16 on
PC-486 100MHz

6 Conclusion

We have presented an attack against the general syndrome decoding of linear rank
distance codes problem, and shown that the authentication schemes described in
[Che94, Che96] are unsecure with the proposed parameters. Besides, the attack
can be easily distributed on a network of stations. Thus, one should be very careful
in choices for K. Chen’s protocols parameters.
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A Proof of lemma7

We use a block-wise representation of the transition matrix T' between two strict

bases @ and @'.
T_(L\ D)
- \C B
with

/31,1 /31,7«—1 Y1
B = 702 7D:(51 57"—1)7
%37«—1,1 %37«—1,7«—1 Yr—1

and A € GF(q). Matrices B, C and D have coefficients over GF(q).

As @' is a strict basis, we must have 8, = 1. Therefore
r—1
0 =1[0---01] =[0--0A] + > &[bim - - - 0:20].
i=1

That gives a redundant linear system of m equations over GF(q) with r < m
unknowns A, dy,...,0d,_1. This system implies A =1 and D = 0.
We also have 6 = ~; + 52021 360k As the last digit of every 6! is zero, we have

r—1
[Q;M T ‘9;‘,20] = [0 T O’Yj] + Z ﬂj,k[ek,m e 9k,20],

k=1

from which we deduce that vector ' is all-zeros. Hence, 9;- = Z};;} k0 and B
must be an invertible matrix over GF(q).
Clearly, matrix 7' is invertible and we have

/1 0 1 (1 0
T_<() B) and 7T —<0 B_1>.

We can deduce from corollary 4 the number of invertible matrices B which is
the number of transition matrices 7' between strict bases:
r—1
y r—1)(r—2 i
Cor=1=q = [I(¢~1D.

=1

This complete the proof.

B Selective bases enumeration

B.1 Principle

We can uniquely represent a strict basis @ = (1,64,...,0,_1) by a (r—1)x(m—1)
matrix over GF(q) using the digits of the 0,

(917m e 91,2
0= : co .
Hr—l,m e 07"—1,2
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In the following, we denote > the lexicographic order that one can define on
G'F(q™) using a polynomial representation of this set over GF(q).

Our problem is to enumerate all represent-ants (6y,...,60,_1) of classes of sec-
tion 3.4. Without loss of generality we can impose

Or ... 0,1, (10)

and every most significant digit of the §; can be set to one.
First, let’s consider the matrix

@070: (Idr_l 0)

This matrix respects condition 10. Besides, for all (m — r) x (r — 1) matrix Ag
over GF(q), the bases
Qon = (1d,- Ay)

are all of distinct classes.

Our enumeration will therefore take as radix R all the matrices that are per-
mutations of @y with respect to condition 10, and enumerate for every radix
the possible completion matrices Ag. It is simpler to understand this enumeration
with an example.

B.2 Example

We take as a small example the parameters

g=3m—1=3andr—1=2.

1 0 =z
R0_<0 1 y).

For this radix, we enumerate the completion matrices <$> This gives 32 = 9

We first have

matrices: Lo o
@0’0:<0 1 0)'
1 0 1 1 0 2 1 0 0 1 0 1
@0,1:<0 1 0)7@0,2:<0 1 0)?@0,3:<0 1 1)7@0,4:<0 1 1)’
1 0 2 1 0 0 1 0 1 1 0 2
@0*5_<0 1 1)’60’6_<0 1 2)’9077_<0 1 2)’@078_<0 1 2>

The second radix obtained according to the lexicographic order is

1 = 0
Rl‘(ﬂ y 1)'

This second radix only gives 3 more matrices, because lexicographic order
implies y = 0:

1 0 0 1 1 0 1 20
@1’°_<0 0 1)'@“_<0 0 1)’9172_<0 0 1)'
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We then obtain a last radix

x 1 0
@2,0_<y 0 1)7

that gives no more matrix because lexicographic order implies + = y = 0.
One can check that the number of classes in this case is indeed
N3(37 2)

— 2 =13.
C3(2)

C The Gaussian elimination trick

During the enumeration of the bases, the last element 6,._; is the only one that
changes at each step. It is therefore natural to perform the beginning of the Gaus-
sian elimination (corresponding to the first n(r —1) columns) one for all. However,
memory limitations only allow to manage a certain number N of different possible
0,_1.

In binary case, the beginning of the Gaussian elimination takes about n(r —
1)1(n — k)m(N + r — 1)n operations. Then, N' completing eliminations take each
about n%(n — k)mrn more operations. We finally obtain

Ni(N) =n(r — 1)%(n —k)ym(N+r—1)n+ Nn%(n — k)mrn.

Without the trick, the number of operations for NV iterations is about
1
No(N) = NNy(1) = Nnri(n — k)ymrn.

Hence, the resulting gain is

No(N)  Mi(N) _ o 1
N - N = A(l - _>a

with K a constant on the other parameters:

. 1.
K= ﬂ(n — k)ymrn(1 — =)
2 r
The asymptotic behavior is reached quite rapidly so that the value N = 128 seems
reasonable to avoid loss of performance due to too large memory requirements.

As an example, with the parameters
N=128,g=2.n=32,k =m =16 and r = 5,

one has

No(N)/N = 2216 and N, (N)/N = 2202,



15

This is an improvement by a factor 2'* ~ 2. Besides, in binary case, we can
take advantage of the binary representation of integers on 32 or 64 bits to divide
the overall complexity of the Gaussian elimination by 2° or 2¢. That gives us an
average complexity of about 2'° operations for one Gaussian elimination.

This figure remains unchanged for algorithm B because the m supplementary
unknowns can be included in the parallelization trick.

This article was processed using the IATEX macro package with LLNCS style



