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Abstract

In recent years, researchers have invested a lot of effort in trying to
design suitable alternatives to the RSA signature scheme, with lower
computational requirements. The idea of using polynomial equations
of low degree in several unknowns, with some hidden trap-door, has
been particularly attractive. One of the most noticeable attempt to
push this idea forward is the Ong-Schnorr-Shamir signature scheme,
which has been broken by Pollard and Schnorr. At Crypto’93, Shamir
proposed a family of cryptographic signature schemes based on a new
method. His design made subtle use of birational permutations over
the set of k-tuples of integers modulo a large number N of unknown
factorization. However, the schemes presented in Shamir’s paper are
weak. In the present paper, we describe several attacks which can be
applied to schemes in this general family.

Introduction

The celebrated RSA cryptosystem can be viewed as a permutation computed
in both directions as a polynomial over the ring Zy, where N is a (large) in-
teger with secret factorization. In search for suitable alternatives to the RSA



signature scheme, with lower computational requirements, several cryptog-
raphers have suggested to use polynomials of low degree in several variables.
In the context of signature, such polynomials were natural candidates for the
design of very efficient schemes, both for signature generation and signature
verification.

The first cryptographic protocol based on this principle is the Ong-Schnorr-
Shamir signature scheme [5]. It has been broken by Pollard and Schnorr [7].
At Crypto’93, Shamir proposed a family of cryptographic signature schemes
based on a new method. His design made subtle use of birational permu-
tations of the integers modulo N. Shamir actually introduced several tech-
niques: the first technique uses as a trap-door a family of quadratic forms
built in a very specific way and which he calls sequentially linearized. Tt is
a kind of generalization of the Ong-Schnorr-Shamir scheme, with more un-
knowns and more equations to be solved for signature generation. Another
technique uses the notion of an algebraic basis for the quadratic forms: this is
a set of quadratic forms from which any other one can be computed by using
only rational operations. This technique can be further divided according to
the algebraic basis chosen and Shamir’s paper includes two proposals, one
using a symmetric basis and the other an asymmetric one. Of course, there
is nothing specific to quadratic forms in Shamir’s approach: it only turns out
that use of cubic or quartic polynomials makes key management cumbersome
and loses the computational advantages shown by the scheme.

In the present paper, we show that the schemes presented in Shamir’s
paper are weak, by exhibiting several attacks which can be applied to schemes
in the general family. These results have been announced in [2], where we deal
with the trapdoor based on sequentially linearized equations and with the
symmetric basis proposal. Since then, another attack has appeared in [10],
which takes care of the asymmetric basis.

It is worth mentioning that another public key system scheme based on
quadratic forms has been proposed by Matsumoto and Imai [4]. This scheme
is based on completely different ideas and uses (small) fields of characteristic
2. Let us add that the Matsumoto-Imai scheme has recently been broken
by Patarin [6]. Thus, there seems to be some kind of intrinsic difficulty that
prevents hiding trap-doors into families of quadratic forms.

We close this introduction by thanking Adi Shamir both for sending us
his Crypto’93 paper at an early stage and for many discussions on the subject
of this paper.



1 The methodology of the attacks.

1.1 The overall strategy.

Basically, Shamir’s idea is to start from a family of quadratic forms with
some “visible” algebraic structure (e.g. low rank) and to hide the underlying
structure by performing the following operations

1. linear change of coordinates
2. linear combinations of the resulting forms

We are thus faced to the problem of trying to recapture some of the hid-
den structure, from the public key only. This public key consists of several
quadratic forms and we note that, as a consequence of step 2 above, some
linear combinations of the public forms may retain a part of the original alge-
braic structure. Unfortunately, we can only handle these objects indirectly,

through the use of indeterminate coefficients, say 6,¢,.... At this point we
note that many of the properties used in the design proposed by Shamir can
be expressed by the vanishing of polynomials in é,¢,.... We quote several
examples:

e the fact that a quadratic form has not full rank is expressed by the
vanishing of its determinant

o the fact that a quadratic form has rank 2 is expressed by the vanishing
of all 3 x 3 determinants

o the fact that a vector u belongs to the vector space spanned by the
rows of the matrix M of a given quadratic form of rank £ is expressed
by the vanishing of all (k + 1) X (k + 1) determinants of the matrix M’
obtained by appending u as an extra row to M. These determinants
are polynomials in é,¢,... and in the coordinates of wu.

1.2 Galois theory and ideal calculations.

We are thus led to a set of polynomial equations in é,¢,.... Such a set of
equations generates an ideal in the ring of polynomial with several unknowns:
in other words, if P;,..., P, are m polynomials with unknowns é,¢,..., the



equations P; = 0 define an algebraic curve associated to the ideal of all
polynomials which can be written

P+ ...+ PnQn

where ()4,...,(,, are arbitrary polynomials.

At this point, we have to return to the underlying structure. In case
there is a lack of symmetry, as in Shamir’s first scheme, we can try to solve
for one of the unknowns: this simply means that the ideal should contain a
polynomial of degree one with a single variable. In other cases, we observe a
strong symmetry: for example, in the scheme based on the symmetric basis,
we isolate a sequence of integers modulo NV, say 61, ..., 6k, coming from the
hidden structure, which act as (say) first coordinates of points my, ..., my of
the curve which cannot be distinguished from each other. In such a case, it
is hopeless to try to solve for the first coordinate 6. On the other hand, we
expect to find in the ideal a polynomial of degree k in the single variable ¢,
F(6), which we can treat symbolically and of which the values é;,..., 65 are
the unknown roots. This is a context close to Galois theory. Still, we do not
really offer proofs of the various statements we make relying on Galois-like
arguments. Although it might be possible to write up proofs in some cases,
we feel that the technicalities would distract from the issues at hand. In
place, we remain at an informal level and implicitly assume a large degree of
“genericity”. We think that this is perfectly acceptable in a paper concerned
with cryptanalysis: furthermore, our attack has been implemented using a
computer algebra package, and this is a kind of experimental verification of
the correctness of our statements.

We now turn to ideal calculations. As explained above, we need to disclose
members of the ideal with prescribed degrees for the various unknowns. For
this, we can use Grobuner basis algorithms (see [1]), which output another
family of polynomials P/, ..., P! spanning the same ideal and which is reduced
in a suitable sense. The drawback of this algorithm is its high complexity. In
case we are trying to eliminate all unknowns except one, we can repeatedly
form resultants of two polynomials with respect to a given unknown. We can
also apply the Euclidean algorithm to compute the g.c.d. of two polynomials
with respect to to a given unknown. This decreases the degree of an equation.

Finally, it is also possible to use a simpler ad hoc version of the Grobner
basis algorithm which is a kind of generalized Gaussian elimination. For



instance, if M is a monomial in P; which does not divide any other monomial
of P, then every multiple monomial of M can be eliminated in the other
polynomials by replacing P; by P! = P, — Q); P, for a suitable polynomial @;.
Then, one can continue the reduction with P;,..., P/ . In most cases, if m
is large enough and if there is a hidden trap-door in the set of equations,
this reduction is likely to end rather quickly with very simple equations of
the expected form. In the rest of the paper, we will not comment further
on ideal calculations and will thus treat them as a kind of “programming
technology”, which we actually used in our experiments.

1.3 Working mod N versus working mod p.

Our analysis basically treats the ring of integers mod N as a field. Actually,
N is composite and we assume for simplicity that it has only two prime
factors p and ¢. Our calculations make sense mod p since we are actually
working in a field but some justification is needed to go from calculations
mod p to calculations mod N. In section 2, we will only use tools from linear
algebra such as Gaussian elimination or determinants. Thus all computations
go through regardless of the fact that N is composite. The situation is a bit
more subtle in section 3, where Galois theory comes into the picture. For
instance, assume that we have discovered a polynomial F(8) of degree k from
a sequence of integers modulo N, say 61,...,0r, coming from the hidden
structure, as explained in section 1.2. Such a polynomial has & solutions
mod p but k? solutions mod N, each obtained by mixing some solution mod
p with some solution mod ¢. But if we consider only the image, mod p, of our
calculations mod N, things are all right. As will be shown, our cryptanalysis
provides a way to forge signatures by performing calculations which treat 6
(and possibly other variables) symbolically. Galois-like arguments show that
the result has the expected symmetry and thus, is expressible in terms of
the coefficients of F' and in terms of the coefficients of the public key. These
calculations are valid mod p. They are also valid mod ¢, and the Chinese
remainder theorem suffices to make them valid mod N. This is in spite of
the fact that a solution 6 of F'mod N might well mix different solutions
0; mod p and 6; mod ¢. Since we never explicitly solve for ¢, but only work
with it symbolically and use the fact that F'(6) = 0 mod N, we never are in
danger of factoring N.



2 The first scheme

The first family of Shamir’s signature schemes is based on sequentially lin-
earized equations. The public information consists of a large integer N of
unknown factorization (even the legitimate users need not know its factor-

ization), and the coefficients of k —1 quadratic forms f,,..., fi in k variables
x1,...,2 each. Each of these quadratic forms can be written as
fi= Zaij£$j$£ (1)
at

where ¢ ranges from 2 to k and the matrix a;;, is symmetrici.e. o0 = ;.

The secret information is a pair of linear transformations. One linear
transformation B relates the quadratic forms f,,..., fi to another sequence
of quadratic forms gz, ..., gx. The second linear transformation A is a change
of coordinates that relates the variables (z1,...,2;) to a set of “original”
variables (y1,...,y%). Denoting by Y the column vector of the original vari-
ables and by X the column vector of the new variables, we can simply write
Y = AX.

Of course, the coeflicients of A and B are known only to the legitimate
user. The trap-door requirements are twofold: when expressed in terms of
the original variables y1,. .., yx, the quadratic form g is computed as:

92 = Y1Y2 (2)

and the subsequent ¢;’s, 3 < ¢ < k are sequentially linearized, i.e. can be
written

Gilyrs - ur) = Clya, ooy yic1) X yi + qi(yr, oo yio1) (3)

where /; is a linear function of its inputs and ¢; is a quadratic form.

To sign a message M, one hashes M to a k—1-tuple (fs,..., fi) of integers
modulo N, then finds a sequence (z1, ..., zx) of integers modulo N satisfying
(1). This is easy from the trap-door.

It is straightforward that the particular case k£ = 2 is equivalent to the
Ong-Schnorr-Shamir scheme [5]. The Pollard-Schnorr algorithm [7] enables
to forge a valid signature of any message. In the following, we show how to
break the other cases reducing them to the Ong-Schnorr-Shamir scheme too.



We let M;, 2 <1 < k denote the k& x k symmetric matrix of the quadratic
form g;. The kernel K; of g; is the kernel of the linear mapping whose matrix
is M;. Tt consists of vectors which are orthogonal to all vectors with respect to
g;. The rank of the quadratic form g; is the rank of M;. It is the codimension
of K; as well as the unique integer r such that ¢; can be written as a linear
combination of squares of r independent linear functionals. (For more details,
see [3] for instance.) Actually, all this is not completely accurate as N is not
a prime number and therefore 7y is not a field. This question has been
addressed in section 1.3 and we now ignore the problem.

An easy computation shows that K; is the subspace defined in terms of
the original variables by the equations

y=...=y; =0 (4)

From this, it follows that

i) K; is decreasing;

ii) the dimension of K; is k — 1;

iii) any element of K;_; not in K; is an isotropic element wrt g;, which means
that the value of ¢; is zero at this element.

We will construct a basis b; of the k-dimensional space, such that the
family b;y1,...,br spans K; for ¢ = 2,...,k — 1. The main problem we face
is the fact that the ¢;’s and therefore the K;’s are unknown. Instead, we
know the fi’'s. We concentrate on the (unknown) coefficient ¢; of ¢gx in the
expression of f;, i.e. we write

k-1
Ji=bigr + ) Bijg (5)

i=2

As coefficients have been chosen randomly, we may assume that 6 is not
zero. Let ¢ < k. Consider the quadratic form (in all z;s) Q;(X) = fi — A fs.
When A = §;/6;, this form has a non-trivial kernel and therefore 6,/6, is a
root of the polynomial P;(X) = det(Q;(}A)). This is not enough to recover the
correct value of A. Computing the matrix of Q;(A) for A; = 6;/6x in the basis
corresponding to the original coordinates y1, ..., yx yields the following



0 0

In the same basis, the matrix of @;(A) for any A, can be written as

C\ U,

(U))' 0

We observe that U, is affine in A and vanishes at ); so that the de-
terminant of the matrix is divisible by (A — X;)?. Since determinants can
be computed up to a multiplicative constant in any basis, it follows that
(A — X;)? factors out in P;(X). Thus the correct value of A; can be found by
observing that it is a double root of the polynomial equation P;(A) = 0. We
now make use of the informal genericity principle explained in section 1.2,
which means that we ignore “exceptional” situations. As a consequence, we
claim that the double root is disclosed by simply taking the g.c.d. in Zy of
P; and P! with respect to A. We find a linear equation in A, from which we
easily compute A;.

Once all coefficients A\; have been recovered, we set fort =2,....k — 1

fi=F =\t (6)

and fk = fr. We note that all quadratic forms fz have kernel Ky_;. This
allows to pick a non-zero vector by in Ki_1. The construction can then go
on inductively in the quotient space of the k-dimensional space by the vector

spanned by {b;} with fauooo, froy in place of fo, ..., fr
At the end of the recursive construction, we obtain a sequence b;, 3 <



t < k such that b;4q,...,b0; spans K; for « = 2,...,k — 1 and a sequence of
quadratic forms f,. .., fx such that

i) f; has kernel K;;

ii) b; is an isotropic element wrt fi.

Choosing by, by at random, we get another set of coordinates 21, ..., z; defined
by X = (by...b,)Z such that

i) f2 is a quadratic form in the coordinates z1, z;

i) fs,..., [x is sequentially linearized
The rest is easy. From a sequence of prescribed values for fa,..., fi, we
can compute the corresponding values of fz,..., fx. Next, we can find values

of {z1, 23} achieving a given value of f; mod N in exactly the same way as
the Pollard solution of the Ong-Schnorr-Shamir scheme [5]. Then, values for

Zs, ..., zg achieving given values of fs, ..., fi are found by successively solving
k — 2 linear equations. Finally, the values of zq,..., z; can be translated into
values of xy,..., xy.

Example. In Shamir’s paper [9], an example is given with N = 101 (the
fact that 101 is prime is unfortunate but actually irrelevant).

vy = 781‘? + 371‘% + 6.L§ + 5daixy + 192125 + 1lagzs  (mmod 101)

v = 84:L'f + 711‘3 + 48:1;% + 44x129 + 332123 + 832225 (mod 101).

Matrices of f;, f3 are as follows

78 27 60 84 22 67
27 37 56 22 71 92
60 56 6 67 92 48
We get:
P(X) = det(fo — Afs) = 34(X° + T50% 4 55\ 4 T1) (7)
P'(A) = A + 50\ + 52 (8)
ged(P, P') = A — 63 (9)



We let
fo=f-63fs ;5 fi=fs (10)
The kernel of f; is spanned by vector by = (31,12,1)". We pick b, =
(0,1,0)" and b, = (1,31,0)". We get, in the corresponding coordinates
21,22, 23

fa=2622 4822 5 f3=23(2621 +2025) + 9027 4 22920 + 7122 (11)

Then, for any tuple (f2, f3) of integers, we compute (fg,f3) using (10), we
solve fy = 2627 4 822 by Pollard-Schnorr’s algorithm and compute z3 such
that equations (11) hold. This forges a signature.

3 The second scheme

We now treat Shamir’s [9] second scheme. Throughout, we will pretend we
are working in 72, rather than 7ZZy. This has been explained in section 1.3.

We briefly review the scheme. Shamir begins with k variables y1, y2, . . ., y,
with £ odd. These are subjected to a secret linear change of variables which
gives u; = ) a;y;,t = 1,2,...,k, with the matrix A = (a;;) secret. The
products wu;u;41, including uguq, are subjected to a second secret linear trans-
formation B = (b;;), so that v; = 37, bjjujujpq,e =1,2,..., k —s. The public
key is the set of coefficients (¢;;) expressing v; in terms of pairwise products
yiye, for 1 <o <k —s,

v; = Zciﬂyjylyl S Z S k — S, Ci]'g = Cig]' (12)
I
In the above, s > 1 1s a parameter and, for the sake of simplicity, we treat first
the case s = 1. Thus, ¢ 1s ranging to k£ — 1, meaning that we have discarded
s = 1 of the v;. A valid signature of a (k—1)-tuple of integers (vy,...,v5_1) is
a set of values of 132, ..., yry1 such that (12) holds. Signature generation for
the legitimate user 1s based on the fact that y1y2, ..., yry: form an algebraic
basis for the ideal generated by quadratic forms: for example, if k = 3, yi is
recovered by the formula

yz (y1y2)(y3y1)

1:
Y23

See [9] for more details.

10



The first step in our solution is as follows: linear combinations of the v; are
linear combinations of the w;u;11, but they form only a subspace of dimension
k — 1. Some linear combinations of the v;,

vy + 6vg + Z €0 (13)

3<j<k—1

will be quadratic forms in the y; of rank 2. A computation shows that the
only linear combinations of the products u;u;11 of rank 2 are of the form

ity + Bt = wi(aguiog + Bittipr) (14)

for any values of «;, 3;,¢. Because the v; span a subspace of codimension 1,
and because we are further restricting to one lower dimension by the choice
of the multiplier 1 for v; in the linear combination, we find that for each 2
there will be one pair («;, 5;) and one set of coefficients (é;, ¢;;) such that

ity + By = ui(aguimy + Bivipr) = v + dva + Z eijv;  (15)

3<j<k—1

We now omit the ¢ indices for the sake of clarity. The condition of being
rank 2 is an algebraic condition: setting

vy + 6vg + Z €V; = Zwyjyz (16)
]

3<j<k—1

with 7, = 7, we find that each 3 x 3 submatrix of the matrix (7j,) has
vanishing determinant. Each of these determinants is a polynomial equation
in 0,¢;. Use resultants and Gaussian elimination to eliminate ¢; from this
family of polynomial equations (in the ring Zy) and find a single polynomial
F of degree k satisfied by 6. We also find ¢; as polynomials in 6, by returning
to the original equations and eliminating the variables ¢;,7 # j.

Thus each solution § to F'(6) = 0 gives rise to a linear combination of v,
which 1s of rank 2. The root 6 corresponds to that index ¢ for which

vy + 6vy + Z €;v; = ui(Qittio1 + Bittig) (17)

3<j<k—1

We will indicate this correspondence by writing 6 = 6;.
For each solution § = §;, the rows of the resulting matrix (7;;) span a
subspace Y(6;) = Y; of 7Zpk of rank 2; namely, Y; is spanned by wu; and

11



ajti—1 + Biugpr. This observation is rather straightforward if the quadratic
form is expressed in the basis corresponding to the u; variables. Going to the
y; coordinates involves a right multiplication by A and a left multiplication by
its transpose A’. The first operation replaces row vectors by their expressions
in terms of the “new” variables y; and the latter does not affect the vector
space spanned by the rows. This is enough to conclude.

Observe that wu;, w42, and (@y1u; + Biy1ui42) are linearly related, as are
iy Ui—z, and (@;_1u—2 + Biiu;). So

ui € Vi N (Yiga + Yigo) N (Yier + Yioa) (18)

This is an algebraic relation among 6;_2, 6;—1, 6;, 6;11, and d;32. More accu-
rately, for k> 5, (141,24 2) and (¢ — 1,7 — 2) are the only instances of pairs
(a,b) (¢,d) consisting of four different indices, all distinct from 1, such that

Yin(Ya+Y)n (Yo +Ya) # {0} (19)

We thus introduce five different variables 6, ¢', §” etc., representing é;, 6;11,
0it2, 0i—1 and 6;_y, and we formulate the relation as the vanishing of several
determinants, as explained in section 1.1. We then reduce the resulting ideal
by factoring out any occurrences of (6 — §'), (6 — 6”), etc. to assure that ¢, 6’
etc. are really different solutions. That is, we consider the ideal formed by
F(6), F(&') ete. (F(8)— F(8")/(6 —¢'), ete. and the various determinants
derived from 19, and we apply the Grobner basis reduction or the Euclidean
algorithm to this ideal to find a basis.

Only multiples of some u; satisfy such a relation (18) over 7,. We fix a
multiple of each u; by normalizing u; to have first coordinate 1. The relations
finally serve to define u; in terms of é;.

By a similar argument, there is a quadratic equation G(é;, 6;41) express-
ing 6;41 in terms of §;, whose two solutions are 6,41 and 6;_y. For k > 5,
the algebraic condition is that the corresponding spaces Y;, Y;1q are in two
different triples of subspaces enjoying linear relations:

rank(Yy; + Y+ Y77+2> = rank(K; + Y+ Y;Z—1> =3 (20)

Special considerations for small k. For k£ = 5, the above arguments do
not apply since there are more instances of the relation

Y0 (Ya + Y3) N (Y. + V) # {0}

12



with distinct (a, b, ¢, d, 7). For example
Vin(Yz+Ys5) N (Y;+Ya)

is a one-dimensional space spanned by a vector of the form us 4+ puy for some
constant g. It turns out that a pair of adjacent spaces such as (Y5 + Y})
appear in three such relations whereas a pair of non-adjacent spaces such as
(Y2 + Y5) appears only in one.This gives an algebraic condition to identify
pairs of adjacent é;s. Once this is done, we can use a two pairs of adjacent
indices (a, b), (¢, d), with a, b, ¢, d distinct and different from ¢ and the relation

u; € Y; N (Yo +Y) N (Yo +Y0)

in order to express u; as a function of §; of degree 4.

The particular case £k = 3 deserves independent discussions and is post-
poned until section 4.

Returning to the general case k > 5, we represent the solution of the
quadratic equation by 7, and say that (6,7) generates a pair of ‘adjacent’
elements (u;,u;+1) (elements which are multiplied together in the original
signature). We think of § as generating an extension of degree k over Zy,
and 7 as generating an extension of degree 2 over Zy[6]/F(6). The ability to
distinguish the unordered pairs of ‘adjacent’ roots {é;, 6,41 } makes the system
similar, in spirit, to a Galois extension of @ whose Galois group is the dihedral
group on k elements. We will call on this analogy later. (Remark: it is only
an analogy, because 6 and 7 really are elements of the ground fields.)

We can get the missing kth equation

vy, = ZWWH (21)

The coefficients of v; in terms of y;y, ostensibly depend on é; and on the
pairings (6;,6;41), or equivalently on (6, 7). But the coefficients would come
out the same no matter which solution (6, 7) were chosen, that is, no matter
whether we assigned the ordering (1,2,3,...,k) or (3,2,1,k,k—1,...,4) to
the solutions u;. This means that the coefficients will be in fact independent
of (6,7). They will be expressible in terms of only the coefficients of the
original v;,1 < ¢ < k. This is because they are symmetric (up to dihedral
symmetry) in the solutions ;.

13



The arguments here are analogous to those of Galois theory. Fach coef-
ficient ¢ of v}, is expressed as

c= Z wz-j5i'rj (22)

0<i<k,0<;5<1

For each of 2k different choices of (6, 7) the value of ¢ comes out the same.
Treating (22) as 2k linear equations in the 2k unknowns w;;, with coefficients
given by §'7/ for various choices of (8, 7), we must find (if the matrix has full
rank) that woo = ¢, and w;; = 0 for (¢,5) # (0,0).

Now we wish to solve a particular signature. We are given the integer

values vy,...,v5_1, and we assign an arbitrary value to v,. We have the
equations relating v; to w;uj41:
/
Vi = Z bijujttjta (23)
J

where b}, depends on ;. Select (symbolically) one pair (é,7) to fix the first
two solutions (uy,uz), and compute the others in terms of (4, 7). Then we
have b} ;u;u;i1 depending only on (6, 7).

At this point we have v}, (which is a vi-like quadratic form), and A-like
and B-like matrices respectively denoted by A’ and B’ (expressing linear
transformations); the entries of all of these live in the pseudo Galois exten-
sion Zy|[6,7]/F(8)/G(6,7) expressing linear transformations. All rational
operations can be done in this domain so this enables us to sign in it. Since
the resulting signature does not depend on the ordering of the ¢;, its co-
efficients will always be in Zy. Thus it is possible to forge any signature
working in a more complicated domain and getting results which always end
up in Zin.

The attack has been implemented on a Sparc Workstation using the
computer algebra system MAPLE. It computes a secret key-like (v, A’, B')
within few hours and then forges any signature in a negligible time.

Example. As for the first scheme, we give a toy example with N = 97,
k=5 and s = 1. The public key is as follows:

v = 1lyf +3Lys + 155 + 8yi + 5y2 + 23y1y2 + 89y1ys + 60194 +
4Ty1ys + 43yays + 24y2y4 + 93y2ys + Yyzya + T8ysys + 32y4ys

14



vy = 83yi +32y5 + 16ys 4+ 13y; + 92y2 + 28y1y + 83y1ys + 58y1ya +
84y1ys + S8yayz + 64yaya + 84yays + 38yzys + 69ysys + 36yays

vy = 45y7 + 33y, + 965 + T5ys + 90y: + 3dyiys + Slyiys + 89y1ya +
26y1ys + 16y2ys + 90y2y4 + 42y2y5 + Yysya + 8ysys + 4Tyays

va = 65y; + 54y + 96y3 + 33ys + 26y 4 465192 + 25513 + Toyrya +
76y1ys + 59y2y3 + 66y2y4 + 95y2ys + 69ysys + 48yzys + 56y4ys

For the sake of brevity, we did not include the secret key, since we will
show how to sign, given the public key only. As far as signature verification

is concerned, we propose, as an example, a valid signature of the message
which hashes onto (1,2, 3,4), namely.

Yiya =T, yoys = 92, yaya = 69 , yays = 54 , ysy1 = 70

From these values, one can compute all corresponding values of y;y; and
check that (v, ve,vs,v4) = (1,2,3,4).

As explained above, we consider the quadratic form
01 + 0vg + €303 + €404

and we express the vanishing of all its (3 X 3) minors. As an example, one
of the determinants provides the following equation:

76 4 15es + 83 + 186% + 316es + 698¢€s + 17¢5 + Tlei + 32¢3ea+
498%e3 + 4086%€4 + 47865 + Hdbes + T8e5€e4 + €365 + 24€; + 50e; + 3867+
676€e3e4 + Des = 0.

Using reduction, we get:

F(8) = 924588+ 516 +436° + 126" + 6°
€3 = 444 296 + 836 + 956” + 566*
€ = 874 146 + 946* + 336° 4 386*

Next, we make use of the ideal generated by all F(6), F(¢'), (F(6) —
F(&)/(6 = ¢') etc. and by the polynomials expressing that two roots are
adjacent. Using 7 to denote a root adjacent to 6 and reducing the ideal,
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we get, as expected, an equation of degree two w.r.t. 7, say G(6,7) and we
compute the other roots in terms of 6 and 7. This yields:

G(8,7) = 678 + 208" + 896%T + 268° + 68867 + 858 + 66T +
36 4+ 72 + 437 4+ 57
83 = 6886*r 4+ 236* 4+ 906%7 + 866° + 856%1 + 1862 + 9367 +
356 + 427 + 93
b = 2967 + 446" + 761 + 36 + 1267 + 5067 + 467 + 676 +
551 4 72
65 = 306" + 86 42967 4+ 916 + 967 + 54

We also compute the values of all normalized u;s in terms of 6 and 7 from
equations (18). As an example, here is the output for uy:

uz = Y1+
Y2 (858 + 896% + 15837 + 876 + 388%T + 8867 + 6976 + 66 + 357 + 12) +
y3(866%T + 316% 4+ 41637 + 136% 4 24627 + 1867 4 5267 + 626 + 157+ 17) +
y4 (43617 4 456% + 526%T 4 3863 + 68677 4 5862 + 267 + 886 4 277 +87) +
ys(286*T + 46* + 8631 + 756% + 74671 + 736% 4 456 + 2967 4 587 + 75).

All computations now take place in the pseudo Galois extension Zy[6, 7]/ F(8)/G(6, ).
We choose vs as the sum of all w;u;41. As expected, this value turns out to
be “independent” of § and 7:

vs = Byi +30y; + 89y3 + 6Ty + 5y2 + 3512 + 4y1ys + 62194 + 61y1y5 +
32yays + 6yayas + 14yoys + 13ysys + 63ysys + STyays

Using elementary linear algebra, we finally compute a B~'-like matrix,
which takes the v; to u;u;y1, and an A~!-like matrix which computes the y;s
from the u;s . Both matrices appear in terms of 6 and 7.

Once this precomputation has been done, we can forge any signature. For
instance, in order to sign the hashed value (1,2,3,4), we randomly choose
vs = 44, and we get, using our equations the valid signature:

y1y2 = 59, yay3z = 60, yays = 38, yays = 26, ysy1 = 96

We note that it is perfectly possible to implement the last step “formally”
and to sign a formal message (Vi, V3, V5, V4, V5), thus recovering a substitute
to the original signing function.
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4 Extensions

4.1 Extension to the case s > 1

The case s > 1 1s more complicated and we only sketch a possible attack.
This part has not been implemented. Suppose again that we have k variables
Y1, Y2, - - -, Yk, with k odd, whose pairwise products generate the signature,
and that the hashed message has k — s quantities vy, vq,...,vp_s, together
with coefficients ¢;;; expressing v; in terms of y;y,. Suppose for simplicity
that s > 1 is odd, so that & — s is even.

Some linear combinations of the k — s quadratic forms v; will have rank
s+ 1. Namely, for each index set I C {1,2,...,k} of size (s+1)/2 such that
Vi,g € I: |t —j|>2and {1,k} € I, there is such a linear combination of
the form

> ui(airuicr + Birwizr) (24)
€1

The number of such index sets [ is
k k— 3
sy ( o1 ) (25)
2

There are more than k linear combinations, leading to increased complica-
tion. The space Y7, spanned by rows of the corresponding quadratic form,
contains u; for each index ¢ € I. So each w; 1s in the intersection of a large
number of subspaces Y7, and hopefully only multiples of u; will be in such
an intersection. This algebraic condition should distinguish the u;, hopefully
indexing them by the roots ¢ of some polynomial F'(6) of degree k. Pairs
{u;,uiry} of solutions with index differing by 2 should be distinguished by
appearing together in many different subspaces Y;. From this we would be
able to distinguish pairs {u;, u;41}. We would fabricate the missing equations
as follows: for j =k —s+1,...,k, let ! i) be a multiple of u;, normalized

to have a 1 in position j, and set v} = 37, u;'(j)u;'+1(j)'

4.2 The case k=3, s=1

In the special case & = 3, s = 1, where we must satisfy two quadratic
equations in three variables, we can employ an ad hoc method, since the
methods outlined in section 3 don’t work. We take a linear transformation
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of the two quadratic equations so that the right-hand side of one equation
vanishes; that is, if the given values are vy and v, we take vy times the first
equation minus v; times the second. This gives a homogeneous quadratic
equation in three variables vy, y2, y3:

Zcijyiyj = 0 (26)
]

The second equation is inhomogeneous:

> dijyiy; = do (27)

tj

By setting z1 = y1/ys, 22 = y2/ys in (26), we obtain an inhomogeneous
quadratic equation in two variables zq, z;. We can easily find an affine change
of basis from z1, 23 to 21, 25, which transforms the equation to the form

12 ro_r 12 ’
1121+ €712 + €502y = ¢y mod N (28)

and a further linear change of variables to 27, zY yielding

c'l'lzf2 + c'2'22';'2 = ¢y mod N (29)
which can be solved by the Pollard [7] attack on the Ong-Schnorr-Shamir
[5] scheme. We find from this a set of ratios y;/ys, and, by extension, a set
of ratios y;y;/y3, satisfying (26). Setting y2 = A, the second equation (27)
becomes a linear equation in A. Thus we find a consistent set of pairwise
products y;y; satisfying the desired equations (26), (27).

4.3 Open questions

The birational permutation signature scheme has many instances, of which
we have attacked only the first few examples. For a more complex instance of
the scheme, the ideas of the present paper will still apply: the trap door con-
ditions lead to algebraic equations on the coefficients of the transformations,
and we hope to gather enough such equations to make it possible to solve
them by g.c.d. or Grobner basis methods. But, for any specific instance, it
remains to see whether the ideas of the present paper would be sufficient to
mount an attack.
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One general theme is that when solutions of the algebraic equations enjoy
a symmetry, it makes the equations harder to solve, but we don’t need to solve
them, since the final solution will enjoy the same symmetry, and quantities
symmetric in the roots of the equation can be expressed in terms of the
coefficients of the equation alone, not in terms of the roots. When the roots
fail to enjoy a symmetry, they can be distinguished by algebraic conditions,
which yield further algebraic equations, and the Grobner basis methods have
more to work with. This gives us hope that the methods outlined in this
paper will apply with some generality to many instances of the birational
permutation signature scheme.

Conclusion

We have shown how to use algorithmic tools to break many of the crypto-
graphic schemes based on birational permutations with hidden trap-doors.
Though not all the cases proposed by Shamir have been studied, we demon-
strated that use of Galois-like theory may break them. This enlightens crypt-
analysis with a new approach. We would like to comment briefly on the
mathematics of our attacks. We used pseudo-extensions of pseudo-fields to
break the most significant proposals. In a way, this is very similar to the se-
curity analysis of RSA-like cryptosystems: stated in a provocative way, this
security corresponds to the freedom of treating (at least algorithmically) Zy
as a field since we do not know a non-trivial factor of N. In a similar vein,
we took the freedom to consider Zy[6]/F(6) as a Galois extension since we
did not know how to get a root of F. This is a way to use formally incorrect
statements of mathematics in order to achieve actual results.
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