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Abstract. In this note, we show that the signature scheme based on
error-correcting codes which has been proposed during the ASTACRYPT’94
conference and appears in this volume (see [1]) is not secure. The attack
involves gathering a few hundred signatures. From then on, only elemen-
tary linear algebra is used.

1 The Use of Error-Correcting Codes in Cryptography.

Since the appearance of public key cryptography, there has been a continuous
line of research aiming at the discovery of alternatives to the standard techniques
based on arithmetical properties of large numbers. In order to achieve such a
program, error-correcting codes seemed quite attractive. As soon as 1978, a
public key cryptosystem based on the use of Goppa codes was proposed by
Mc Eliece in [3]. This cryptosystem is still standing. Concerning the problem of
identification, a scheme was proposed by the author in [4]. This time, random
codes with no specific structure were used. It is of course possible to turn our
authentication scheme into a signature scheme by the standard technique that
replaces queries from the verifier by values suitably obtained from the message to
sign together with the initial commitments of the prover (see [2]). Unfortunately,
this yields rather long and therefore a bit unpractical signatures. All attempts to
design a signature scheme based on error-correcting codes and having reasonable
signature length have failed (see the references of [1]). We will show that the same
is true with the scheme proposed in the present volume ([1]).

2 The Attack.

The scheme appearing in [1] is a bit intricate. Actually, it is not really necessary
to understand the technical details of key generation, signature generation and
signature check in order to follow our attack. We will focus on the weak part of
the scheme which lies in the following equation, litterally taken from [1].
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In the above, W4 and G 4 are secret (kxn) matrices, and Py is a secret (nxmn)

matrix. WXR is a known (n X k) matrix. Also, S;, €, Z; and f(mj,gj) are known

row vectors, the first three of dimension n and the last one of dimension . s;,



z; are part of the signature and e; is computed during signature check, as well

as f (mj’gj)'

We write y . in place of z; W;R . Of course all matrices and vectors are over
the two element field.

Now, the above equation provides a known linear equation between the co-
efficients of the unknown matrices P4, WaPa and G4 P4. More precisely, each
signature gives n scalar equations since both sides of the equation are n-bit vec-
tors. Since there are n(2n + k) unknowns, it should take something like 2k + n
signatures to solve the system. Once this is done, P4, W4 P4 and G4 P4 are
known and new signatures can be easily manufactured.

It turns out that the above argument is not completely correct. In order
to get the requested conclusion, we need to have a sample of vectors z; =
{Qj: f (mj,gj), gj} that generate the whole 2k + n-dimensional space. There is a

subtle point here: although the row vectors Y, and f(m;,e;) are basically ran-

dom, the vectors e;, are randomly chosen among n-bit vectors with a prescribed
number ¢ of ones (error patterns). Thus, if ¢ is even, there is no way the z; can
generate the whole space since they are all included in the hyperplane consisting
of vectors with an even number of ones among the first n bits.

Let Fy be the space generated by the z; after NV signatures have been col-
lected. If Fy is not the entire space, let Hy be a hyperplane containing F and
let h = 0 be a cartesian equation of this hyperplane. Now if the linear functional
h has some non zero coefficient among the last 2k ones, then, it is easily seen
that with probability 1/2, the next signatures takes you outside Hy. This shows
that we will very quickly come up with a situation where h has its 2k trailing
coeflicients equal to zero. We call such a situation favourable. At this point, the
z; generate a subspace of the form E x F2* and the linear application corre-
sponding to the matrix obtained by appending the blocks Py, W4 P4 and G4 Pa
is known on this subspace. Especially P4 is known on E and W4 P4 and G 4 P4
are completely determined.

Note that, in the above situation, it is already possible to sign whenever a
vector of weight ¢ can be found in E: this can be easily checked by going into
the construction of [1]. Also note that, if no such vector can be found in E the
next signature will provide one. This enables us to estimate an upper bound
on the numbers of signatures required in order to issue a new unauthorized
signature. After N signatures, the probability that a favourable situation has
not been reached is bounded above by the probability of getting less than 2k +n
heads after tossing a fair coin N times. Using classical estimates on binomial
coefficients, this is equivalent to 2V(H#2(N=1) "where A = ZEEn and H, is the
entropy function defined by Hy(z) = —zlog, z — (1 — z) log,(1 — z). This upper
bound quickly decreases when N increases. In [1] the following dimensions are
suggested

— n = 128 and k = 65 in which case2k + n = 258. The above probability is
bounded by 0.0027 for N = 600.
— n = 256 and k£ = 152 in which case2k + n = 560. The above probability is



bounded by 0.069 for N = 1200.

Thus, as announced, a few hundred signatures are enough to break the scheme.
Furthermore, our analysis is overly pessimistic and a favourable situation is
presumably reached much earlier than what is suggested by the bounds.

3 Can the Scheme be Rescued?

We do not think the scheme can be rescued. Of course, suggestions can be made
in order to make the attack slightly more difficult: for example the error vector
e; could be computed from say m; by deterministic hashing. Note that this
suggestion does not appear in [1] (the same way the discussion about odd and
even weights was not present in the paper included in the preproceedings). For
this reason, we will only offer a qualitative analysis.

As the numbers of known signatures increases, the vector space denoted by

E in our above analysis grows. We distinguish two cases

1. if ¢ (the weight of error vectors) is odd, then E ultimately covers the whole
space

2. if t is even, then E ultimately covers the whole hyperplane consisting of
vectors of even weight

In both cases, any message can ultimately be signed, even for the tentatively
“repaired” version of the scheme. Note that, in some unlucky cases, the con-
vergence can be a bit slow, for example if we get “stuck” in some hyperplane
whose equation is a linear functional with a single variable. Then, it will take an
average of n/t signatures to get out. Again, a quantitative worst-case analysis
based on these unlucky cases would be overly pessimistic and the generic case
should converge fast enough.
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