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Abstract. We prove that for every r and d > 2 there is a C such that for
most choices of d permutations 71, w2, . . . , 74 of Sp, a product of less than
C'logn of these permutations is needed to map any r-tuple of distinct
integers to another r-tuple. We came across this problem while studying
a seemingly unrelated cryptographic problem, and use this result in order
to show that certain cryptographic devices using permutation automata
are highly insecure. The proof techniques we develop here give more
general results, and constitute a first step towards the study of expansion
properties of random Cayley graphs over the symmetric group, whose
relevance to theoretical computer science is well-known (see [B&al90]).

1 Introduction

Consider the following random graph model: we independently choose d per-
mutations of the numbers from 1 to n, m, 79, -+, T4, each permutation equally
likely. We construct a directed graph, G = (V, E) with vertex set the set of r-
tuples of distinct elements of {1,...,n} with a directed edge from (uy,us,- -, u,)
to (v1,va,- -+, v,) iff (v1,v9, -+, v.) = (m(ur), m(uz), - - -, m(ur)) for one of those
m;’s. We denote this probability space of random directed graphs G 4,». Such
graphs are d-regular (and may have multiple edges or self-loops). We will con-
sider the associated space of undirected graphs g;;’d,r too. This space is simply
obtained from the first one by replacing each directed edge of the former graph
with an undirected edge. The latter space is therefore formed by undirected
2d-regular graphs.

It should be noted that » = 1 corresponds to the common probabilistic model
of 2d-regular graphs (as studied in [BS87, Fri91] for example), and that r = n is



just the common probabilistic model of random 2d-regular Cayley graphs over
Sh.

We will show that for every fixed r and for all d > 2 almost all graphs
in Gy, ;. have a small second eigenvalue when the number of vertices becomes
large, and that this implies that almost all graphs of G and of Gy, 4, are good
expanders, and also have a small diameter.

This issue has been raised by the study of the security of some low cost
cryptographic devices constructed from permutation automata (see section 2).
We will exhibit in what follows a probabilistic algorithm which reconstructs the
secrete device, and which can be shown to run in polynomial time by using the
aforementioned result. This shows that such schemes are highly insecure.

Actually, the results obtained here are more general than that, and should
be put in the broader context of whether or not Cayley graphs over S, are
good expanders for a fixed number of random generators, and/or have a small
diameter and mixing time. This is quite an important open problem, for a survey
see [B&al90, Lubl, Lub2]. A solution of this problem is of great theoretical
importance, while a positive solution would be useful for instance for generating
random permutations quickly. Our results can be a first step towards a solution
of the above open problem.

Besides being a step towards the study of random Cayley graphs over S, :

*
n,d,r

- Those results cover the case of graphs of very small degree, which was not
really addressed by previous works of A. Broder, J. Friedman, and E. Shamir
(especially the case d = 2 which is worth studying!). For instance our results
show that as soon as d > 2, random 2d-regular graphs have almost always a
small second largest eigenvalue, and are therefore good certifiable expanders.

- We address here the issue of the expansion properties of directed graphs too.
We provide here tools to achieve such results, provided that the directed
graphs we are interested in have the same indegree and outdegree for each
vertex. Although most of the theory on expanders has been developed for
undirected graphs— we wish to lay emphasis on the fact that for some
applications, expansion properties of directed graphs have to be estimated,
this is the case for example in [TZ93, Zem94]— and in this article (see section
2).

2 A cryptographic device using permutation automata

With the development of memory card technology, and in particular the devel-
opment of pre-paid cards, that give access to some service, the protection of the
service issuer against fraud is becoming a crucial issue. However, for low-cost
applications, the service provider might not afford to replace his memory cards
by smart cards containing classical cryptographic protocols for identification of
genuine cards. Still, it might be possible to devise (classical) identification pro-
tocols to improve the security offered by memory cards, while keeping their cost
within reasonable bounds. In particular, permutation automata have been con-
sidered as offering a general design methodology for such purposes. We recall



here some definitions and describe an identification protocol which, albeit never
published, has been circulating in the smart-card community.
Definition An automaton is a tuple (@, B, d,qo) where:

— (@ is a finite nonempty set of states,

— B is a finite nonempty set of input symbols or basic actions,
— ¢ is the next-state function which maps Q x B into @,

— qo is a member of @, the initial state.

Definition A permutation automaton is such that, for every action b, the func-
tion 8(.,b) is a permutation of Q.

We let A = B* be the set of finite sequences of basic actions, and we extend
the domain of the function § to A in the usual way.

We now consider the special case B = {0,1}, @ = [1..n] and go = 1. Moreover,
we fix a parameter L and we let BL be the subset of all words of length L in A.

The basic idea of the identification protocol is to install a secret permutation
automaton in each memory card. All these automata are generated from a master
key, and the card reader can reconstruct it before starting the identification.
During the identification itself, the card reader sends a random query w from
B” to the memory card, which computes the image of gg by w, and outputs this
result. The card reader checks this result, accepts the card and issues the service
if it is correct, and rejects otherwise.

What is important in the above, is the fact that the length of the queries
is fixed. In the designer’s mind, this was presumably enough to prevent a sta-
tistical analysis of the outputs. This was even expected to remain true if the
user was allowed to make repeated experiments with the automaton. Thus our
cryptographic problem can be interpreted as a problem of learning theory for au-
tomata, for details see for example [Ang78, AS83, F&al93, Gol78, RS87, RS89.
However, for all the attacks based on learning theory that we are aware of, the
number of experiments needed to construct an automata which simulates the
identification, grows with the length of the query. Thus, these attacks can be
defeated by limiting the number of identifications that a single card can per-
form. Yet, we show that even in this context, the above identification algorithm
is insecure by describing an algorithm that allows to reconstruct the given au-
tomaton after a few queries (the number of queries does not depend on their
size). The algorithm is quite direct but the main achievement of the paper is
an actual proof that, with high probability, the algorithm succeeds with only a
polynomial number of queries, when the permutation automaton is chosen at
random. This is by no means obvious, and relies on the expansion properties of
Schreier graphs.

Our algorithm is based on a new representation of finite automata, which
plays in our setting the same role as the diversity-based representation of Rivest
and Schapire ([RS87]). Using this representation, we describe an algorithm by
which we can recover the description of the automaton. We give an account
of our numerical experiments and, finally, we prove some results on random



permutations from which we can estimate the complexity of the algorithm for
randomly chosen permutation automata.

3 Representation of a finite automaton by characteristic
relations.

Let U = {uy,- -, u,} be a set of elements of A of the same length k < L (we use
the notations of section 2). Given a state g, we let E, be the equivalence relation
on U defined by

5((], U‘i) = 5((]5 uj)

We call E; the characteristic relation attached to g. Clearly, if £, and Ey are
distinct, then ¢ # ¢'. If the converse holds, we will say that U discriminates
the given automaton. Simple examples show that it is not always the case that
discriminating families exist. Still, as will be discussed further, for randomly
chosen automata, these are practically easy to obtain.

The following result shows that characteristic relations can be computed.

Theorem 1 Let a be an element of A of length <1 (wherel < L — k). Then
the characteristic relation attached to 6(qgo,a) can be computed by performing r
experiments with inputs of fized size L.

Set ¢ = 6(qo, a). The results follows from the fact that equality
6(q7 u’i) = 5(q7 u])

can be tested by comparing the answers given by the automaton to ¢ u; w and
a”uj w, where w is any fixed word of length L — [ — k.

Remark: extending to the yes/no case If the output of the automaton only con-
sists of a yes/no answer depending on the state that is reached after the input
has been processed, then another equivalence relation can be defined as

answer(d(q,u;)) = answer(d(q, u;))

This equivalence relation can be used in place of E; in the algorithm that will
be given in the next section.

4 The algorithm.

We fix a set U = {uq, - -, u,} of elements of A of the same length ¥ < L. Our al-
gorithm has three steps: a sampling step, a computing step and an identification
step, each as follows.

Sampling step : Pick at random elements a; of A of (small) length < I; set
gi == 9(qo,a;). Repeat until the set of equivalence relations E,, has n distinct



members. Renumber the chosen elements so that E, ,--- E,, are distinct and
discard the other values.

Computing step : For i := 1 to n and for each b in B compute Es; p)-
Comment: this can be done by comparing the answers given by the automaton
to a; b"u;w where w is any fized word of appropriate length and j ranges over

(1,1},

Identification step : Choose random words w; of length n. Compute Es(4,,u;)
using the table built in the computing step and identify this equivalence relation
with the output of the automaton under w;. Repeat until all output states have
been identified.

5 Correctness and complexity of the algorithm

It is not difficult to show that the correctness of the algorithm described in
section 4 follows from the truth of the following two statements

1. Any state can be reached from ¢¢ by applying a sequence of actions of length
<l
2. U discriminates the given automaton.

Those properties both ensure that the sampling step terminates successfully and
that the computation step is accurate. As for the identification step, it is fairly
easy to check that it ends up very quickly with overwhelming probability. Still,
it need not be the case that all states are output states: to ensure this property,
it is enough to replace statement 1 by the analogous statement with actions of
length exactly [. Mathematical results on this variant of statement 1 can actually
be proven as well but will not be included in the present paper.

The sampling step of this algorithm is the most crucial one, if it can construct
n elements a; such that all E,; are distinct then the whole algorithm will succeed,
otherwise it won'’t.

We now claim that the two above properties are the consequence of expansion
properties of directed random graphs G and G's of G, 2.1 and G, o 3 respectively,
both defined by the two (random) permutations m; = §(.,0) and 7 = 4(., 1).

Definition 1. A directed graph G(V, E) with n vertices is a c-expander if, for
any subset X of vertices with size < n/2 the following inequalities hold

INT(X)| > ¢|X| and [N~ (X)| > c|X]|
where N1 (X) (respectively N~ (X)) denotes the set of vertices not in X which
are endpoints (respectively initial points) of an edge with initial point (respec-
tively endpoint) in X.
From Theorem 4 in section 6 we know that 7 is almost always a a;-expander

and G3 an ag-expander. We need the following theorem, whose proof can be
found, for example, in [Zem94].



Theorem 2. If G is an a-expander with v vertices then the diameter of G is
smaller than

2(1 +log;  , v).

In particular, Gi has diameter smaller than 2(1 + log;,,(n)), thus the
first property needed for the algorithm to succeed hold as soon as I > 2(1 +
log; 4 4, (n)). Moreover, the number of elements of length smaller than [ is poly-
nomial in n if we choose I = 2(2 +1og;,,, (n)). Thus the sampling step will take
polynomial time, once U is correctly chosen.

We now want to prove that the small diameter of G5 implies the second
property. Let us remark that in order to prove this property it suffices for any
pair of states (z,y) to produce a pair of words of the same length (smaller than
k) w; and wy such that §(z,w;) = §(z,w2) and d(y,w;) # d(y,ws). wy and we
can be completed to length k by appending any fixed word of appropriate length
at their ends. We construct U as the union of all words wq(z,y) and wa(z,y).

Let d3 denotes the diameter of G'3, and given a pair (z, y), choose (z,r, s) such
that z,y, z,r, s are all distinct (we suppose that n > 5). Since G3 has diameter
ds, there exists a word m; of length < ds that goes from edge (z,y, z) to edge
(y,2,7) and likewise a word my of length < d3 that goes from edge (z,y,2) to
edge (v, z,s). Let w; = m{T" my and wa = m3 my, then clearly, w; and wy have
the same length and:

0(z,w1) =z =6(z,w2) and d(y,w1) = s #r = d(y, wa).

Thus the second property holds, if k& > 2d3 = 4(1 + log;,,,(n)). Moreover,
it suffices to choose U = B¥, the set of all words of length k, whose size is
polynomial in n if we choose k = 4(1 + log, , . (n)).

Thus, we have constructed a polynomial time algorithm that reconstructs the
secret automaton of a given card as soon as n is large enough for the expansion
properties of G; and G5 to hold. Moreover, we have implemented this algorithm
for a small value n = 8 and even in this case it succeeds with a good probability,
and with less than 30 queries.

6 The main theorem

We state in this section our main theoretical results, full proofs are given in
[FJRST95].

Before describing our main theorem, let us introduce some notations. Let us
recall that the adjacency matrix A = (a;;) of a graph with N vertices is the
N x N matrix indexed by the vertices of the graph, such that entry a;; is the
number of edges between ¢ and j. In our case the adjacency matrix A = (a; ;)
of the graph G* of G obtained by choosing the permutations 7,72, -, 74,
is defined by :

*
n,d,r

aij = #{l | m(i) = 5} + #{ | m(j) = i}



Let us note that each self-loop counts twice for the corresponding (diagonal)
entry of the adjacency matrix. G* is a 2d-regular graph, therefore its adjacency
matrix has real eigenvalues 2d =\ > X2 > ... > Ay with N=n(n—-1)---(n—
r +1); let p = max;>s |A;| = max(Az, —An). Our main result asserts that p is
almost always well separated from 2d

Theorem 3. If k < 2[(r +1)log

a2 n|, then
2d—1

k

E{p*} < [Qd (7"2(2_1) e (1 + O(loglogn/ logn))] ,

and for every € > 0 we have

57—\ /(D)
Prob {p <(1+¢€)2d (%) } =1-o0(1)

As corollaries we obtain that almost all graphs of g;';, d,r are good expanders,

and the same property holds for almost all graphs of G, 4. The result for di-
rected graphs follows from an argument relating the (edge-)expansion properties
of a directed graphs to the (edge-)expansion properties of its associated undi-
rected graph, obtained by replacing each directed edge by an undirected edge,
and then relating the (edge-)expansion properties of an undirected to the second
largest eigenvalue in absolute value of the undirected graph.

More precisely :

Theorem 4. For every fized d > 2,r > 1 and real €, the probability that the
graph G, 4.r s a c-expander tends to 1, as n tends to infinity, for

= (- (27

Note that this result is far from being optimal, especially for » = 1, where the
standard counting argument as used for example in [Bol88, Fri91] for undirected
graphs gives us sharper estimates on the expansion constant. It must be noted
here that this argument applies to the case d = 2 to the directed graph model
with r = 1, and shows that ¢ > 0.16, whereas the bound of the theorem 4 gives
only ¢ > 0.034 (see [JST93]). Unfortunately, this counting trick seems to fail
for r > 1. Nevertheless, for most practical applications, this theorem is actually
sufficient (see for example section 3).

6.1 Sketch of the proof of the main theorem

We will sketch here the proof of Theorem 3.
Remark Throughout this section we view r as fixed. And we use the nota-
tions Let N = n(n—1)--- (n—r+1) be the number of vertices of the graphs G*

n,d,r



or Gy, 4, we consider here. We note I7 the alphabet {7y, 7r1_1, T2, 7r2_1, cee T, 7r;1 1
where the 7;’s are permutations in S,,.

We begin by describing the general approach, which follows essentially the
approach initiated by Broder and Shamir in [BS87].

The idea of the proof is to get a rather tight upper bound on E {p?*} for
rather large values of k. This is obtained by upper bounding this quantity by
the expectation of the number of closed walks of length 2k minus (2d)?*, when
we choose a random graph from g;, dr

This is justified by what follows : if we call A = (a;;) the adjacency matrix
of a random graph of G ; , then an entry b;; of A%* represents the number of
walks on the graph of length 2k from ¢ to j. Therefore

N
Number of closed walks of length 2k = Tr(A**) = " A2 > (2d)* + p**

=1

Let us note that the expectation E {z L z} of the number of walks starting

from a vertex i and ending at the same vertex, can be seen as the probability
of the following event. We first choose a random word w = wyws - - - woy, in I12F
(all the (2d)2* possible words are chosen with the same probability W), and
then we assign the letters m; a permutation of S,, chosen uniformly at random.
We have E{i 25 i} = Prob {wiws - - - wer (i) = }.

So for each word w of length 2k over the alphabet I, and for each vertex v
of the graph Gy, , ., let P(w,v) denote the probability that when m1,..., 7, are
assigned permutations at random, the walk determined by w starting in v ends
in v. Clearly P(w,v) = P(w) is independent of ». Straightforwrd calculations
show that

E{p**} < <§N:E {z 2 z}) — (2d)%*
<N Y (P)-1/N) M
weIT2k

Our task is reduced now to estimate the quantity P(w) — % By using tech-
niques developped in [BS87, Fri91] it is enough to estimate this quantity when
w is a strongly irreducible word, that is w contains no consecutive occurrence of
m and 7! for any 7 € II, and the same property holds for the concatenation
w™w. Indeed, it can be checked that, by repeatedly cancelling in a given word
w first and last letters if they are inverses, and occurences of consecutive inverse
letters, we obtain a strongly irreducible word w' such that P(w) = P(w').

The key lemma which shows that the quantity P(w) —1/N is rather small is

Lemmab. Let w be a strongly irreducible word of length 2s with s > 1 such
that w is not of the form w = u™ for some u € II* and some m > 2.Then

1 S27‘+2



The proof of this lemma can be found in [FJRST95]. Let k be fixed. For s > 1
let R, be the set of words in IT?* which strongly reduce to a word of length 2s
which is not periodic; let Ry be the rest of the words, i.e. those that strongly
reduce to the empty word or to a periodic word. Let pa 25 be the probability
that a random word in I72* reduces to a word in Rs, and let P, denote the
average of P(w) over all words, w, in R,. Clearly we have

k
Z (P(w) - 1/N)/(2d)2k = Zka,Zs(Ps —1/N).
=0

welﬂk
Our main lemma gives us a bound on P, for s > 1; we trivially have Py < 1.
To estimate the right-hand-side of the above equation we only need to estimate
D2k,0

Lemma6. We have

2d — 1\*
P2k,0 < (3k+1) (7)

(for a proof see [FJRST95]).

Fromhere the main theorem easily follows. Straightforward calculations show
that

- 2d —1\*
D _pakas(B = 1/N) < Bk +1) (d—2> + Ok ™).
s=0

Combining this with equation 1, and using N < n", yields

E{p**} < (0(k2"+2/n) +4n"(3k + 1) <2dd—;1) k) (2d)2k.

Taking k to be the greatest integer K less than (r + 1)log ,2 n, we have

2d—1

(E {sz})l/(2K) < 2d (\/2d— 1

1/(r+1)
7 ) (1 + O(loglogn/ log n))

Finally, Holder’s inequality implies that for any k < 2K

———\ 1/(r+1)
%) (1+O(log logn/log n))

(2)
which completes the proof of the first statement of the main theorem. The second
claim is just a consequence of Markov’s inequality :

E{p"}
a2l

Bip} < (B{A)* < (B{)" < 2a (

Prob{p > a} <

1/(r+1)
by putting I = K and a = (1 + €)2d (—V2g_1) , and using inequality 2.

O
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6.2 The link between expansion properties of G, a4, and G , .

To obtain this link, we will not compare directly the expansion constant of a
directed graph G and its associated undirected graph G* (which is the graph
obtained from the directed one by replacing each directed edge by an undirected
edge), but we will compare their isoperimetric number first. This number is
defined as follows
Definition
The isoperimetric number ¢ of a directed graph G(V, E) with n vertices is the
largest number such that for any subset X of vertices with size < n/2 the
following inequalities hold

0+ (X)) > ilX]

167 (X)[ > i| X]|

where 07(X) (respectively 8~ (X)) denotes the set of edges with initial point
(respectively endpoint) in X and endpoint (respectively initial point) in V' \ X.
The isoperimetric number i* of an undirected graph G*(V, E) with n vertices is
the largest number such that for any subset X of vertices with size < n/2 one

has
|0(X)| > | X]|

where 9(X) denotes the set of edges between X and V' \ X.
For a regular directed graph G the following lemma can be obtained

Lemma'7. Assume that G is a regular directed graph, and G* its associated
undirected graph. Let i and i* be the isoperimetric numbers of G and G* respec-
tively. Then
A
‘T2
Proof For a directed regular graph, for any subset X of vertices of the graph
|0F(X)| = |07(X)|. When we consider the associated undirected graph, we
obtain |8(X)| = |0T(X)| + |0~ (X)|. Therefore |0(X)| = 2|07 (X)| = 2|0~ (X)|
and these equalities imply the lemma. O
It is readily checked that a directed d-regular graph whose isoperimetric
number is ¢ is a i /d-expander (see [FJRST95)), and that the isoperimetric number
1* of its associated undirected graph is greater than or equal to d — % by using
theorem 4.1 given in [Moh89], where A is the second largest eigenvalue of this
undirected graph in absolute value. Therefore

Lemma 8. Let G be a regular directed graph of degree d, G* its associated undi-

rected graph. Let A be the second largest eigenvalue in absolute value of the ad-
1L_ X

Jacency matriz of G*. Then G 1s a c-expander, where ¢ = 5 — 45.

Theorem 4 appears therefore as a consequence of lemma 8 and theorem 3.
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