The Hardness of Approximate Optima in Lattices,
Codes,

and Systems of Linear Equations

Sanjeev Arora* Laszlé Babaif Jacques Stern
Computer Science University of Chicago and Laboratoire d’Informatique
Princeton University Eotvos University, Hungary Ecole Normale Supérieure
7. Sweedyk?

CS Division
U. C. Berkeley

Abstract

We prove the following about the Nearest Lattice Vector Problem (in any £,
norm), the Nearest Codeword Problem for binary codes, the problem of learning a
halfspace in the presence of errors, and some other problems.

1. Approximating the optimum within any constant factor is NP-hard.

2. If for some € > 0 there exists a polynomial-time algorithm that approximates the
optimum within a factor of glog” "~ " then every NP language can be decided
in quasi-polynomial deterministic time, i.e., NP C DTIME(npOly(lOg n)).
Moreover, we show that result 2 also holds for the Shortest Lattice Vector Problem
in the £, norm. Also, for some of these problems we can prove the same result as
above, but for a larger factor such as 8" n o e
Improving the factor 2108”7 n 5 \/dimension for either of the lattice problems
would imply the hardness of the Shortest Vector Problem in £3 norm; an old open
problem.
Our proofs use reductions from few-prover, one-round interactive proof systems
[FL], [BG+], either directly, or through a set-cover problem.

1 Introduction

Many important optimization problems are NP-hard [GJ]. Recent work has shown that
computing even approximate solutions to many of these problems is NP-hard (cf. [Con],
[FG+], [AS], [AL+], [LY], [Z], [BG+]). This paper continues that line of work by demon-
strating the hardness of computing approximate solutions to well-known minimum distance
problems for integral lattices and linear codes, as well as the problem of finding a largest
feasible subsystem of a system of linear equations (or inequalities) over Q.

*Research done while the author was at UC Berkeley, and was supported by an IBM Graduate
Fellowship.

tPartially supported by NSF grant CCR-9014562.

{Partially supported by NSF grant CCOR-9201092 and Sandia National Laboratories

Approzimating an NP-hard optimization problem within a factor ¢, where ¢ > 1, means
to find solutions whose cost (or value) is within a factor ¢ of the optimum. The number
c is called the approzimation ratio of the approximation algorithm. Note that the closer
¢ is to 1, the better the approximation.

Some results in this paper show that achieving certain approximation ratios for certain
problems is NP-hard. Other results show only that the task is almost NP-hard. A function
f is almost-NP-hard if, using f as an oracle, we could recognize any NP language in
deterministic quasi-polynomial time, i.e. in time O(n""ozy(l"g”)). Here and elsewhere in
this section, n denotes the length of the input. Further, m denotes the dimension of the
lattice, code etc. under consideration.

Now we define the optimization problems considered. An integral lattice L(b1, ..., by)
in R* is the set of all points in the set {3 1", a;b; - a; € Z}, where {b1,...,bp} is a set of
independent vectors in Z*, called the basis of the lattice. If p is a positive integer, the £,
norm of a vector (a1,...,ax) € R’ is the number (af +ab+ -+ ai)l/p. The ¢ norm
of this same vector is the number max {|a1], ..., |ar|}.

Definition 1 (Shortest Vector Problem in £, norm, SV,): Given a basis {b1,...,bn},
find the shortest non-zero vector (in €, norm) in L(b1,..., bm) .

Definition 2 (Nearest Vector Problem in ¢, norm, NV,): Given a basis {b1,...,bn},
and a point by € QF, find the nearest vector (in £, norm) in L(by, ... by) to bg.

The SV problem is particularly important because even relatively poor polynomial-time
approximation algorithms for it ([I.%]) have been used in a host of applications, including
integer programming, solving low-density subset-sum problems and breaking knapsack-
based codes [LO], simultaneous diophantine approximation and factoring polynomials over
the rationals [I.3], and strongly polynomial-time algorithms in combinatorial optimization
[FT]. For details and more applications, especially to classical problems in the “geometry
of numbers”, see the surveys by Lovasz [Lov] or Kannan [K2].

Lovész’s celebrated lattice transformation algorithm [L3] runs in polynomial time and
approximates SV, (p > 1) within a factor 2. A modification of this algorithm [Bab] allows
the same approximation for NV,. Finally, Schnorr has shown how to modify Lovasz’s
algorithm to approximate both these problems within a factor O(2”") in polynomial time,
for every € > 0 [Sch].

On the other hand, Van Emde Boas showed that NV,, is NP-hard for all p > 1 ([vEB];
see [K] for a simpler proof). Lagarias showed that the shortest vector problem is NP-hard
under the £, (i.e. max) norm. But it is still an open problem whether SV, is NP-hard
for any other p, and specifically for p = 2.

While we do not solve this open problem, we obtain hardness results for the approxi-
mate solutions of the known NP-hard cases.

We follow the example of recently established links between the theory of interac-
tive proofs and the hardness of approximation (cf. [Con], [FG+], [AS], [AL+], [LY], [Z],
[BG+]), and add some new links . Specifically, we introduce a new combinatorial problem,
which we call label cover. This problem is proved hard to approximate (up to LARGE
factors) using ideas from interactive proofs. We propose that label cover can be used as
a new canonical problem for showing the hardness of approximations, just as 3SAT is the
canonical problem for showing hardness of finding exact solutions.

In the following theorems, LARGE factors mean factors 21°6”°"? where ¢ > 0 is fixed
and n = input size.

Theorem 1 1. Approzimating NV, (i) within any constant factor ¢ > 1 is NP-hard;
(ii) within any LARGE factor is almost-NP-hard.

2. Approrimating SV, within any LARGE factor is almost-NP-hard.

Our reductions use only (0, £1)-vectors. Hence the problems remain hard in that
subcase.

We mention that improving the LARGE factors in either of the above results to /m
(m = dimension) would prove hardness of SV, a long standing open question. The reason
is that approximating either SV, or NV5 to within a factor y/m is reducible to SV5. To see
this for SV, notice that the solutions in SV, and SV are always within a factor \/m of
each other. For NV3 the implication follows from Kannan’s result [K] that approximating
NV, within a factor Q(\/E) is reducible to SVs.

We also note that approximating NVs within any factor greater than m"> is unlikely
to be NP-complete, since Lagarias et al. [LLS] have shown that this problem lies in NP N
co-NP.

Our results, like several other recent “inapproximability” results, use ideas involving
few-prover single-round interactive membership proofs for NP. Specifically, we use a the-
orem of Feige and Lovasz [FL].

We also derive hardness results for a number of other problems which in one way or

1.5

another involve distances of vectors. Next, we define these problems.

Nearest-Codeword: INPUT : An m x k matrix A over GF(2) and a vector y €
GF(2)k.
OUTPUT : A vector z € GF(2)™ minimizing the Hamming distance between z A
and y.

Max-Satisfy: INPUT : A system of k equations in m variables over Q.
OUTPUT : (Size of the) largest subset of equations that is a feasible system.

Min-Unsatisfy: INPUT : A system of k equations in m variables over Q.
OUTPUT : (Size of) The smallest set of equations whose removal makes the system
feasible.

Observe that a solution to MAX-SATISFY is exactly the complement of a solution to
MIN-UNSATISFY, and therefore the two problems have the same complexity. (Indeed, it
is known that both are NP-hard; this is implicit for example in [JP]). However, the same
need not be true for approximate solutions. For instance, vertex cover and independent
set are another “complementary” pair of problems, and seem to differ greatly in how well
they can be approximated in polynomial time. (Vertex cover can be approximated within a
factor 2, and independent set is NP-hard up to a factor n® for some ¢ > 0 [FG+, AS, AL+].)

Theorem 2 Approzimating MIN-UNSATISFY and NEAREST-CODEWORD within any
constant factor is NP-hard and within any LARGF factor is almost-NP-hard.

Theorem 3 Approzimating MAX-SATISFY within a factor of n® is NP-hard for some
6> 0.

We know of no good approximation algorithms for any of these problems. Kannan has
shown us a simple polynomial time algorithm that uses Helly’s theorem to approximate
MIN-UNSATISFY within a factor of m + 1.

Finally, we consider a well-known problem in learning theory: learning a halfspace
in the presence of malicious errors. (The context in which the problem arises is that
of training a perceptron, a learning model first studied by Minsky and Papert [MP].)

Rather than describing the learning problem in the usual PAC setting, we merely present
the underlying combinatorial problem.

The input to the learner consists of a set of k points in R™, each labelled with + or
—. (These should be considered as positive and negative examples of a concept.) The
learner’s output is a hyperplane, Y0~ a; - ; = b (a;,b € R). The hypothesis is said to
correctly classify a point marked + (resp. —) if that point, say y satisfies a-y > b (a-y < b,
resp.). Otherwise it is said to misclassify the point.

Finding a hypothesis that minimizes the number of misclassfications is the open hemi-
spheres problem, which is NP-hard [GJ]. Define the error of the algorithm as the number
of misclassifications by its hypothesis, and the noise of the sample as the error of the best
possible algorithm. Let the failure ratio of the algorithm be the ratio of the error to noise.

Theorem 4 Achieving any constant failure ratio is NP-hard and achieving any LARGE
fatlure ratio is almost-NP-hard.

This confirms what has been conjectured in learning theory [HS]. A failure ratio < m
can be achieved by Kannan’s idea, mentioned above.

Better factors. For NEAREST-CODEWORD and NV, for all p > 1, we we can prove

1—¢ . 0.5=—¢ . .
hardness up to a factor 2!°6 """ instead of 2!°8 ™. Also, in our reductions the number

of variables, dimensions, input size etc. are polynomially related, so n could be any of
these.

Previous or independent work. Bruck and Naor ([BN]) have shown the hardness of
approximating the NEAREST-CODEWORD problem to within some 1+ ¢ factor. Amaldi
and Kann [AK93] have independently obtained results similar to ours for MAX-SATISFY
and MIN-UNSATISFY.

2 Organization of the Paper

Although the various problems mentioned in the introduction may appear to be very
different, the reductions used to show their nonapproximability are very similar (MAX-
SATISFY requires a different reduction, however). Section 3 shows the NP-hardness of
approximating these problems within any constant factor. Although the reductions in that
section are fairly simple, they will help illustrate some of the ideas used subsequently in
Section 5, in which we will show the hardness of approximating the same problems up to
LARGE factors. Specifically, Section 3 shows how the reductions to the different problems
are connected to one another; these connections continue to hold in Section 5.

The hardness result for SV, uses a lemma about an intermediate problem called Label
Cover. The lemma is proved (using existing constructions of interactive proofs and some
new geometric arguments) in Section 6.

We have also discovered simpler versions of some of the above reductions. These are
described in Section 4. We chose to describe both the original reductions and the simpler
reductions because they involve two different paradigms, and both might be useful to other
researchers in the field.

Finally, Section 7 contains the hardness result for MAX-SATISFY.

3 Constant Factors

In this section we prove the following theorem.

Theorem 5 For any constant ¢ > 1, approzimating the following problems within a factor
¢ is NP-hard: (i) NV, for p > 1 (ii) NEAREST-CODEWORD (iii) MIN-UNSATISFY

(iv) Minimum Failure Ratio while learning a halfspace in presence of errors.

We use the reduction to set-cover given by Bellare et al. [BG+], which improves the
reduction due to Lund and Yannakakis [LY]. Recall that an instance of set-cover consists
of a ground-set U and a collection of subsets S1, Sa, ..., Sm of . A coveris a subcollection
of the S;’s whose union is /. The cover is sald to be ezact if the sets in the cover are
pairwise disjoint. The following result appears in [BG+].

Proposition 6 [BG+] For every ¢ > 1 there is a polynomial time reduction that, given
an instance ¢ of SAT, produces an instance of set-cover and integer K with the following
property: If ¢ is satisfiable, there is an exact cover of size K, and otherwise no set cover
has size less than ¢- K. O

Now we prove Theorem 5.
Proof:(of Theorem 5) We prove the result for NV, first, then modify it to prove the other
results.

Let (U,S1,...,5m), K be the instance of set-cover obtained in Proposition 6. We
transform it to an instance of NV, by and £(b1,...,bn), such that the distance of by to
the nearest lattice point is either K or > ¢ K.

The vectors have || + m coordinates. Let L = ¢- K. The point by is the vector
having I in the first |U/| coordinates, followed by m 0’s. The #’th basis vector b; is
(L-xs;,0,...,0,1,0,...,0) (the 1 appears in position |[i/|+1). Here xg, is the characteristic
vector of the set S;, i.e.; a vector with |/{| coordinates that has a 1 in each coordinate
corresponding to an element in S; and 0 otherwise.

Let OPT = min {||—bo+ >, a; - b;|[1 : oy € Z}. Just the contribution from the last
m coordinates shows || —bo + >, a; - b;||1 > 3, o], with equality holding iff the first |I/|
coordinates are (. Furthermore, if any of the first |I/| coordinates is not 0, then it is at
least L, in which case || —bg+ > ;o - bill1 > L+ >, || > L.

If there is an exact cover of size K, say (Sj,, Si,, ..., Six), then the vector Ele
has ¢; distance K from bg. (Note that the exactness of the cover is crucial.)

Conversely, suppose no cover has size less than L. Let us show that OPT > L. Con-
sider, for any integer assignment to the «;’s, the collection of subsets {S; : a; #0}. If
these sets form a set-cover, then)", |a;| > ¢L. If they do not, then one of the coordinates
in —bg+ >, a; - b; is at least L. In any case, || —bo + >, a; - b;|[y > L. This proves our
result for NV.

b
7

NV; with 0/1 vectors. Replace each of the first |i/| coordinates by a set of L new
coordinates. If a vector had an L in the original coordinate, it has a 1 in each of the
new L coordinates, and 0 otherwise. Now, in the argument above, whenever a coordinate
contributes L to the £; norm of a vector, so do the coordinates corresponding to it in the
new vectors. The rest of the argument then goes through.

Other finite norms. In the above construction, changing the norm from ¢; to £, changes
the minimum distances in the two cases to ¥/K and ¥/cK respectively. Hence if we wish
to prove the hardness of approximating NV, within a factor ¢, we just use the reduction
described in Proposition 6 with ¢ = . (Note that since ¢ and p are constants, so is #7.)
Thus the result for the £, norm follows.

loo morm. The result for this norm can be proved using some additional properties of the
set system in Proposition 6. —unsatisfactory

Nearest-Codeword. View the vectors bll, cely b;n obtained from the reduction to “NV;
with 0/1 vectors” as vectors over GF(2), in other words, as the generators of a binary

code. Let the received message be the vector bé] described there. In the case there is

an exact cover S;,,...,S;, of size K, we showed that a closest point to b;) is Z]I.il b;j,
and the vector b;] — Zle b;j is a 0/1 vector. Since interpreting the + and — above as

operations over GF(2) cannot change a result of 0 into a result of 1, we conclude that
there is a codeword whose hamming distance to bg is at most K. Conversely, suppose
every set cover has size > ¢K. Note that a codeword Zie] b;- can be only of one of the
following two types: either I is a set cover, or it is not. In both cases, the same analysis
as before shows that no codeword has distance < c¢K to ba.

Min-Unsatisfy. Consider the instance b;, bll, b again. Each vector has m + L - |U|

rrm
coordinates. This instance implicitly defines the following system of m + L - |U/| equations

in m variables : , /
—bo+ Y b =0,

where the a;’s are the variables and 0 is the vector whose all coordinates are 0. For clarity,
we restate this system by using a variable zg for each set S in the Set Cover instance. For
each element u € U, the system of equations contains L copies of

das=1, (1)

S3u
and for every set S it contains one copy of
g = 0 (2)

Now, if there is an exact cover of size K, we can assign every variable corresponding to
those sets to 1 and all other variables to 0, thus satisfying all equations of the type in (1),
but failing to satisfy K equations of the type in (2).

Conversely, suppose every set cover has size > ¢K. There are two types of assignments
to the variables, and both fail to satisfy at least ¢K equations: (i) Those in which the
non-zero variables give rise to a set cover. Such an assignment fails to satisfy at least ¢K
equations of the type in (2). (i) Those in which the non-zero variables do not form a set
cover. Such an assignment fails to satisfy, for some u € U, all L equations of type in (1)
corresponding to it.

Learning Halfspaces. First we convert the instances of MIN-UNSATISFY described
above into a system of strict inequalites. Introduce a new variable § and replace each
equation of the type in (1) by

das+b > 0 (3)

Sou
Sr—b < 0 (@
S3u
and the equation in (2) by
zs+6 > 0 (5)
rs — (S < 0 (6)
Add to the system L copies each of the inequalities
1 1
-——<$ 7
2m o< 2m’ (™

where m is the number of sets in the set system.

Clearly, if there is an exact cover of size K, then there is an assignment to the variables
that fails to satisfy K inequalities — just make § = 0.

But when every set cover has size > ¢K, we show that every assignment fails to satisfy
at least ¢ K inequalities. First, note that if the assignment does not satisfy Inequality (7), it
already doesn’t satisfy L inequalities. So assume it satisfies Inequality (7). Then consider
the set of variables to which it assigns values > 1/m. If they do not form a set cover, then
L inequalities corresponding to some u € U described in (3) and (4) are not satisfied. If
the variables do form a set cover, then > ¢K inequalities of the type in (5) and (6) are not
satisfied.

Finally, to go from the system of strict inequalites to an instance of the learning
problem, notice that the learning problem also involves a system of strict inequalities,
except that the system is homogeneous and the coeeficients of one of the variables is
always 1. Recall that if ", a;y; = b is the unknown hyperplane, then the variables are the
a;’s and b, and the coeeficient of b is 1 in all the constraints.

Let us transform our system of inequalities into this special form. Since the coefficient
of § in all our equations is £1, we can use it as b. To achieve homogeneity, use the familiar
device of adding a new variable y and replacing every appearance of a constant ¢ (which
makes the constraint inhomogenous) by ¢ -y. By adding I copies of the constraint y > 0,
we ensure that the optimum assignment makes y > 0, and then we can divide out every
assignment by the value of y to get an assignment for the old (inhomogenous) system.

A comment. We note that the reduction depends crucially upon the exactness of the
cover when ¢ is satisfiable. Such peculiarities seem inherent in recent non-approximability
results. For instance, the hardness result for Chromatic Number in [LY] depends upon
very specific properties of the graph obtained in the clique reductions of [FG+, AS, AL+].

4 Larger factors: The First Reduction

This section contains a proof of the following result.

Theorem 7 If there are polynmzn’al time algorithms that approzimate any of the following
problems within a factor of 2'°6 "™ for any ¢ > 0: (i) NV,, for p > 1 (ii) NEAREST
CODEWORD (iii) MIN UNSATISFY , then NP C Dtime(nPov(ogn)),

Our proof will be based on an iterative construction that starts from instances with a
(fixed) constant gap and gradually increases the gap. We will use the setting of lattices
in order to describe the method and we will further restrict ourselves to the case p = 1.
Hardness results for the other problems will follow by suitable modifications as indicated
in the previous section.

We showed in section 3 that one could transform an instance ¢ of SAT into an instance
of NV consisting of a lattice £L(b1,- -, by) together with a vector by and an integer K
such that, for some constant ¢ > 1 the following statements hold:

i) if ¢ is satisfiable then the minimum distance of £ to bg under the ¢1-norm is K
ii) if ¢ is not satisfiable then the minimum distance of £ to by under the ¢;-norm is > cK.

We have also shown how to modify our basic reduction in order to deal with the NV;
problem with 0/1 vectors. The instances we built for this specific problem actually enjoy
some further properties that we will need:
i1i) if ¢ is satisfiable, then there is a vector v achieving minimum distance to bo, with all
coordinates 0 or 1

iv) if ¢ is not satisfiable then, for any non zero integer o and any vector w of the lattice,
abg + w has at least ¢K non zero coordinates.

In order to prove theorem 7, we will build a polynomial-time reduction which transforms
instances of NV; enjoying the above properties into instances enjoying similar properties
with ¢ replaced by ¢?. Iterating a large number of times will then yield the result.

We start from the matrix M whose rows are the vectors by, --- b, generating the
lattice £(b1,---,bm), considered above. M has m rows and say p columns. We let M
be the (m,p?) matrix obtained from M by replacing each coefficient u by a block of p
coordinates exactly equal to the row vector pbo. The new lattice is generated by the rows
of a matrix of the following form

MI

where M is built as follows:

S
I

In the above diagram, each matrix P, has m rows and p columns and is simply a copy
of M. Thus, we have built a matrix M’ with m(p + 1) rows and p? columns through a
construction that can clearly be achieved in polynomial time. Finally, we consider the

lattice £’ generated by the rows of M’ and the vector by obtained from by by replacing
each coefficient p by a block of p coordinates exactly equal to the row vector pby. We also
set K’ = K2. We then make the following remarks:

1. If ¢ (the given instance of SAT) is satisfiable, then there is a lattice vector w built
as a linear combination of the first m rows of M’ such that by + w has exactly K
non-zero blocks, each consisting of a copy of the row vector bg. In each of these
blocks, coordinates can be further cancelled by using the corresponding matrix Pj
so as to leave exactly K ones. Thus, the distance of b) to £ is exactly K2. This
proves properties i and iii for £, b)), K’ with ¢ replaced by c%.

2. If @ is not satisfiable, then any vector w built as a linear combination of the first m
rows of M’ will leave at least ¢K non-zero blocks in bf + w. In each of these blocks,
use of the corresponding matrix will cancel more coordinates but, using property iv
of the pair L', b, we can see that at least ¢K non zero coordinates are left. Therefore
the distance of by to £’ is at least (cK)?. The same argument holds with b} replaced
by abf, thus showing properties ii and and iv for £’, by, K’.

Thus, as announced, we have built a reduction with ¢ replaced by ¢?. We now turn
to the proof of theorem 7. This proof is based on repeating the above construction k(n)
times, where k(n) is a function of the size n of the original SAT instance we started
with. During this iterative construction, the size of the matrix used to define the lattice
") and the number of rows mnfg))(pzl + 1),

which is bounded by m(1 + p)Qk(n)‘H. In any case, the construction cannot be achieved

grows: the number of columns reaches p?

in time polynomial in n but rather in time RO ™) If we let 26 be equal to logﬁ n,
then the construction is in Dtime(np"ly(bg”)) and the size of the resulting lattice is
N = nOUeg”n) — 9000g”*" n) Note that log N = O(logﬁ+1 n). Also, the gap for the
resulting instances of N'V; has become 2" = fog”n _ 9O0((log N)PHT)

Assume that some polynomial time algorithm approximates the problem NV; within

1—¢ . . .

a factor 298 """ for any € > 1 — ﬁﬁT then, applying this algorithm to the output of the
above iterated construction, one can decide the satisfiability problem for a given instance
¢ of SAT. Since our construction is in Dtime(n??"#(°67)) the resulting decision algorithm
is in Dtime(np“Iy(]Og”)) as well. This finishes the proof of theorem 7.

5 Large Factors: The Second Reduction

In this section we prove the following theorem. Note that the result about NV,, NEAREST
CODEWORD, and MIN-UNSATISFY has already been proved in the previous section;
we reprove 1t here to demonstrate the power of the approach in this section.

Theorem 8 Approzimating each of the following problems up to LARGE factors (as de-
fined in the introduction) is almost-NP-hard: (i) NV, for any p > 1. (i1) SV (iii) NEAR-
EST CODEWORD (iv) Minimum failure ratio while learning a halfspace in the presence
of errors (v) MIN-UNSATISFY.

We will show the result only for NV; and SV, ; the hardness results for the other problems
will follow from the NV, result exactly as in Theorem 5.

The reductions in this section are from certain problems involving label covers for
bipartite graphs. The hardness of approximating these covering problems is proved in
Lemmas 9 (used in the reduction to NV;) and 10 (used in the reduction to SVo;). These
hardness results use a theorem of Feige and Lovasz [FL] about the existence of efficient

2-prover, l-round interactive proofs for NP. In this respect, our reductions are similar
to previous reductions in [Bel, BR, LY, BG+], and are closest in spirit to the reduction
to set-cover given by Lund and Yannakakis [LY]. However, proving the correctness of
our reduction to SV, involves delving into the geometric structure of the Feige-Lovasz
proof-system, and it is an open problem whether there are reductions based on simpler
principles.

5.1 The Label Cover Problem

The input to the label cover problem is a bipartite graph G = (Vi, Vs, E) (where E C
Vi x V), and a set of possible labels By and Bj for vertices in V; and V5 respectively.
Also included in the input is a relation I C E x By x Bs that consists of admissible
pairs of labels for each edge. A labelling of the graph is a pair of functions (P, P2) where
P; Vi — 2B for i = 1,2; in other words, (P1,Ps) assigns a set of labels — possibly
empty — to each vertex of the graph. The I1-cost of the labelling is >~ .y, [P1(v)| and its
loo-cost is maxyev,|P1(v)|. A labelling is said to cover an edge (v1i,vs) if both Pq(v1) and
Pa(v2) are nonempty and for every label by € Pa(vs) there exists a by € P1(v1) such that
(e,b1,b2) € II. A total-cover of G is a labelling that covers every edge.

It is a simple exercise to see that finding the minimum cost (under any £, norm) of
these covers is NP-hard. Furthermore, it is implicit in the calculations of [LY] that it is
almost-NP-hard to obtain even weak approximations to these costs. Here we restate this
result in a more exact form.

Lemma 9 For each fized ¢ > 0 there is a quasi-polynomial time reduction that reduces
an instance ¢ of SAT of size n 1o an instance of label cover (G, By, By, 1) of size N
(N < 2rotvo8n)) sych that

o If ¢ is satisfiable, there is a total-cover with l1-cost = |Vi| and oo-cost = 1.

o If ¢ is not satisfiable then any labelling that covers more than % the edges (in par-
ticular, every total-cover) has ly-cost > 2108 "N Vi | and foo-cost > 208 TN

The reduction has the property that every vertex in Vi has the same degree. Furthermore,
for each e € F and by € By there is at most one by € By such that (e,by,bs) € TI.

The proof of Lemma 9 appears in Section 6. For the reduction to SV, we’ll need to prove
the hardness of a related (and not very natural) covering problem.

Definition 3 Let (G, By, B2,) be an instance of label cover and (P1,P2) be a labelling.
An edge e = (v1,v2) is untouched by the labelling if P1(v1) and Pz(v2) are empty sets. It

is cancelled if Pa(va) is empty, Pi(v1) is not empty, and for every by € P1(v1) there is an
by € P1(vy) such that both (e, by, bs) and (e, b, bs) are in T for some by € By.

Definition 4 A labelling (P1,P2) is a pseudo-cover if it assigns a label to some verter,
and every edge s either untouched, cancelled or covered.

Note that in a pseudo-cover the only case not allowed is that for some edge (v1, v2), P1(v1)
is empty but Ps(vsa) is not.

One of our main theorems is that approximating the minimum £, cost of a pseudo-
cover is hard.

Lemma 10 Tn the label cover instances constructed in Lemma 9, if ¢ is satisfiable, there

15 a pseudo-cover with L cost 1. If ¢ is not satisfiable every pseudo-cover has fo, cost
210gn'5_E N

The first part of the lemma follows from Lemma 9, since a total-cover is also a pseudo-
cover. The more difficult second half is left to Section 6.

10

5.2 Vectors for NV, and SV

Given an instance of label cover obtained from the previous section, we construct a cor-
responding set of vectors. Certain linear combinations of these vectors will correspond to
total-covers or pseudo-covers.

First we simplify the structure of the relation IT in the instance of label cover of Lemma
9 by restricting the labels admissible at vertex v1 € V4 to only walid labels. A label by is
valid for vy if, for every edge e incident to vy, there is a label by such that (e, b1, b5) € 1I;
in other words, b1 can be used to cover all edges incident to v1. The reason for restricting
attention to valid labels is that when ¢ is satisfiable, the label cover uses only 1 label for
a vertex, so the label used must be valid. And if ¢ is not satisfiable, restricting the set
of possible (vertex, label) pairs to be valid can only increase the minimum cost of a label
cover.

The basis set contains a vector V], 3, for each valid pair (v, b;), i.e. where v; € V; and
b; € B; (i = 1,2), and further if i = 1, by is valid for v;. Any linear combination of these
vectors implicitly defines a labelling of the graph G, as follows.

Definition 5 Let =) c[y; 5,] - Vivi,0,] be a linear combination of the vectors in the set,
where the coefficients cpy, 3,1 are integers. The labelling defined by the vector z, denoted

(PT,P3), is Pi(vi) = {bi | cu, p,) # 0}, fori=1,2.

Recall from Lemma 9 that for a fixed pair e, by, there is a unique label by such that
(e,b1,by) € TI. We denote such a by by bale, bq].

Each vector in our set has |F|(1+4|Bz|) coordinates; 14 |Bs| coordinates for each e € F.
The coordinates corresponding to e in a vector is referred to as its e-projection.

For j = 1,2,...,|Bs|, let u; be a vector with 1+ |Bs| coordinates, in which the j’th
entry is 1 and all the other entries are 0. With some abuse of notation we’ll associate the
vector up, with the label by € Bs.

For vy € V5, by € By, the e-projection of the vector Vs, ba] is up, if e is incident to va;
and 0 otherwise.

For each valid pair vy, b1, the e-projection of the vector Vi, 5, is . Upy[e,,] if € 18
incident to vy; and 0 otherwise.

Here 0 and T are the all-zero vector and the all-one vector, resp. Notice that the e-
projections of the vectors form a multi-set comprised of exactly one copy of the vector up,
for each by € Bs, and zero or more copies of the vector I— up,, plus multiple copies of 0.

In the reductions that follows we shall be interested in linear combinations of the
vectors {V}y, »,} that sum to a multiple of T or to 0. In particular we will look at the
e-projections of such sums, whose behavior is described by the following simple lemma.

Lemma 11 Let X be the set of vectors {up,|bs € Bo} andY a multiset over {T— up, |ba € Bg}‘

Let z be a linear combination of these vectors such that z = al. Then for each by € Bs

i. If the coefficient of up, is nonzero, there is some vector in 'Y of the form 1 — up, with
nonzero coefficient.

ii. If the coefficient of up, ts 0 then the number of vectors in'Y of the form - Up, with
nonzero coefficients is either 0 or > 2.

Further, if « # 0, then some vector in X has a nonzero coefficient in the combination.

Proof: The vectors {ul, cee U|Bg|} are linearly independent and do not span 1. Therefore
if
262(052 “up, +dp, (T— us,)) = ozf, then ¢y, = dp, for all by. The claims follow. O

11

Corollary 12 If x is a nontrivial linear combination of the vectors {V},, 3,1} and x = Ozf,
then (P§,P3) is a pseudo-cover of G. If « # 0, this pseudo-cover is a total-cover.

Proof: For any edge ¢, the e-projections of the vectors {V},, »,1} form a system described
in the hypothesis of Lemma 11. Then case (i) of the lemma corresponds to e being covered,
and case (ii) to e being either cancelled or untouched. Thus (P, P3) is a pseudo-label
cover. When a # 0, then case (i.) holds for each edge (for some b3), so each edge is

covered. O

5.3 Hardness of Approximating NV,
The set of vectors {‘/[’Uzybz]} defined in Section 5.2 has the property that any linear com-

bination of them that sums to T defines a total-cover. This fact is used in the following
reduction.

Theorem 13 There is a polynomial time transformation from the instance of label cover
i Lemma 9 to an instance of NVi such that the optimum in the NVy instance has cost
> minimum {1-cost of a total-cover. Further, if there is a total-cover of {1-cost |V |, then
the optimum is also |V1].

Proof: Let L be the integer |E| - (1 + |Bz|). The vectors in the instance of NV have
|E|- (14 |Bs|)+ |Vi| - |B1| coordinates. The fixed point, Wy, has an L in each of the first
|E|(1+ |B2]) coordinates and 0 elsewhere.

The basis of the lattice consists of a vector, W[,, 3,1 for every valid (vertex,label) pair
(vi, b;). In the first |E|-(14-|B2|) coordinates, the vector Wy, »,) equals L-V],, 5,1. We think
of the last |Vi| - | B1| coordinates as being identified one-to-one with a pair (v1,b1). Then
the coordinate identified with (v1,61) contains 1 in Wy, 3,7 and 0 in all other vectors.
This makes the last |Vi] - |Bi| coordinates suitable for counting, as shown in the next
observation.

Claim: Let x =) ¢y, p,] - Wiwi 5] be a vector in the lattice. Then || — Wo + z||1 >
ly-cost of (PT,PF).

The claim follows from the observation that any of last [V7]-|Bi| coordinates of z that
is not 0 corresponds to a label assigned by P{ to some node in Vj.

Now let OPT be the minimum ¢; cost of a total-cover. We show that every vector z in
the lattice satisfies || — Wy + z||1 > min{L, OPT}. Notice that each entry of Wy — z in the
first |E|(1+ |B2|) dimensions is a sum of integer multiples of L. If it isn’t 0, its magnitude
is > L, and so || — Wy + z||1 > L. On the other hand, if all those entries are 0 then, by
Corollary 12, (P§,P3) is a total-cover, and so by the above claim || — Wy + z||; > OPT.

Finally, if there is a total-cover of £1-cost V1], then the following vector has length |V;].

r=-Wy+ ZvleVl W[UI;PI(UI)] + Z'UQGVQ W[”z,Pz(Uz)]' U

5.4 Hardness of Approximating SV,
The set of vectors {V[,)“bi]} defined in Section 5.2 has the property that any non-trivial

linear combination of them that sums to 0 defines a pseudo-cover. This fact is used in the
following reduction.

Theorem 14 There is a polynomial time transformation from the instance of label cover
i Lemma 10 to an instance of SV such that the solution to the SV instance is > min-
imum Log-cost of a pseudo-cover. Further, if there is a total-cover of Ly, -cost 1, then the
solution 1s 1.

12

The reduction uses an ¢ x £ Hadamard matrix i.e. a (+1) matrix such that HEH[= /{1,.
(Hy exists e.g. when £ is a power of 2, c¢f. [Bol, p.74]).

Claim: Let z € Z°. If z has at least k nonzero entries then ||Hyz||oo > Vk.
Proof: The columns of ﬁHg form an orthonormal basis. Hence ||ﬁH¢2||2 = ||z||s > Vk.
O

Proof:(of Theorem 14) Let L be the integer |F||Bs|. The vectors in the lattice have
|E]- (14 |Ba|) + [Vi] - | B1| coordinates. The basis of the lattice consists of a vector Wiy, ;]
for each each valid (vertex, label) pair v;, b;, and an additional vector, Wy, that has L in
each of the first |E]- (1 4 |Bs|) coordinates and 0 elsewhere.

As in the last reduction, Wiy, 5,) will equal L-V},,, 3,1 in the first | E|-(1+4|B3|) coordinates.
The remaining |V;] - |B1| coordinates will be viewed as blocks of |By| coordinates, each
assoclated with a vy € V;. We refer to entries in the block associated with vy as v4-
projection of the vector.

We may assume there exists a Hadamard matrix H, for £ = |By|. With each label
b1 € By we identify a unique column vector of H;, denoted hp,. Then the v1-projection of
Wi py is hy if v = vy and 0if v # 1.

Let OPT be the minimum f-cost of a pseudo-cover. For any vector z in the lattice,
the entry in any of the first |E|(1 4 |B2|) coordinates is a sum of integer multiples of L,
so 1f it is not 0, its magnitude is > L, and hence > OPT. So all these entries must be 0.
But then by Lemma 12, we conclude that the labelling defined by z is a pseudo-cover, and
must therefore assign > OPT labels to some v; € V5. But then ||z||cc > VOPT by the
Claim.

Now suppose OPT = 1 and (Py,P2) achieves it. Then the following vector has £,

norm 1.
—Ws + Z Wioy Pr(u)] T Z Wloa, Pa(va)]-

v, EV, V€V

6 Hardness of Label Covers

In this section we prove Lemmas 9 and 10. We use the fact ([FL]) that every language in
NP has an efficient 2-Prover 1-Round Interactive proof system (such systems are defined
next). We use such a proof system to construct an instance of label cover. Every low cost
solution to that instance yields a strategy (i.e., a way to answer questions) for provers with
a high chance of satisfying the verifier. The large “gap” in acceptance probability present
in the definition of interactive proofs then translates into a large gap in the minimum cost
solution to label cover. For exhibiting the hardness of I, cost, we have to modify the
protocol of [FL] a little, and use some new geometric arguments.

6.1 2-Prover (and Multi-Prover) 1-Round Interactive Proofs

A 2-Prover 1-Round interactive proof system for a language L consists of a probabilistic
polynomial-time verifier V. The verifier interacts with two nontrustworthy provers, which
are deterministic turing machines with unlimited computational power whose task is to
convince the verifier that the input, z, belongs to L.

For a fixed input, there are five sets associated with the verifier: @1,Qs, R, A1, As.
The verifier itself consists of three polynomial-time functions ¢, ¢2, and ¥. For i = 1, 2,
the function ¢; maps R to @); and describes the verifier’s query generation. The predicate
¥: Rx Ay x Ay — {0, 1} describes the verifier’s acceptance conditions. The provers are
arbitrary functions P; : Q; — A4;.

13

The verifier begins the protocol by picking an r € R uniformly at random (this is its
“random seed”). Then it computes the query ¢;[r] € Q; and sends it to prover P; (i = 1, 2).
Prover P; responds with a; = P;(¢q;[r]). Finally, the verifier decides whether to accept or
reject according to the value ¥(r, a1, as).

Tt is implicit in [FL] that for every polynomial-time computable function k(n) <
poly(n), there is a 2-prover l-round proof-system for 3SAT with the following proper-
ties:

e If ¢ € 3SAT then there exist provers such that the verifier always accepts (i.e., for
every choice of r).

o If o ¢ 3SAT then for any pair of provers the verifier accepts with probability at most
27%(") (where n = size of).

o |R|,|Q],|Ai] < 2f(k(n)log(n) where f is a suitable bivariate polynomial.

We give a specific protocol in section 6.4 with f(k(n),log(n)) = k*(n) log2(n). Further, it
is a feature of this protocol that for a fixed » € R and a fixed a; € Ay, there is at most
one as € As such that the verifier accepts, i.e. ¥(r, a1, a2) = 1.

Multi-Prover 1-Round proof systems. Tt is easy to generalize the above definitions,
by allowing the verifier to interact with more than two provers, while still restricting it to
one round of queries. The systems thus obtained are called Multi-Prover 1-Round proof
systems; this concept was first defined in [BGKW88].

6.2 From Interactive Proofs to Label Cover

We give a generic way to construct instances of label cover using 2-Prover 1-Round inter-
active proof system. The running time of the construction is polynomial in the running
time of the verifier and |R| 4+ |A1| + |Az2]. Since 3SAT has efficient 2-Prover 1-Round in-
teractive proof systems, this construction provides a way to reduce 3SAT to label cover.
Both Lemmas 9 and 10 use this reduction, and we use properties of the our very specific
proof system to argue about the reduction’s correctness in each case.

For a 3SAT instance, ¢, let R, Q;, A;, ¢ = 1,2 be the sets associated with the interative
proof protocol. Then the graph of the label cover instance is (Vi, Va, F) where V; = @,
fori =1,2 and E = {(q1[r], ¢2[r]) : 7 € R}. For i = 1,2, the set of labels B; is A;. The
relation IT is exactly the predicate ¥ computed by the verifier, i.e.

I = {(e, b1,b2) : (Ar)(e = (qu[r], g2[r]) & T (7, b1, b2) = 1}).

6.3 Hardness of Total Covers
Now we prove Lemma 9.

Proof:(Of Lemma 9) We know that 3SAT has a 2-Prover 1-Round proof system of the
type described in Section 6.1. (We will specify the parameter k(n) for the proof system
later.) Now let ¢ be any 3CNF formula. Using the reduction in Section 6.2, transform it
into an instance of Label Cover.

If ¢ € 3SAT, there exist provers P; and P, that make the verifier accept with probabil-
ity 1 (i.e. for every choice of r). Since a prover P; is an assignment of one answer to each
query, and this assignment makes the verifier accept for every random integer r (equiv-
alently, for every edge in the above graph), we conclude that (P;, P») form a total-cover
with li-cost of |Q1] (= |Vi|) and £y-cost 1.

14

To prove the other half of the lemma, assume ¢ € 3SAT. So no provers can satisfy
the verifier with probability more than 27%(%). In terms of the label cover instance, this
means that no labelling using at most 1 label per vertex can cover more than a fraction
27%(") of the edges. Now we show that no labelling that uses less than 2¢(?)=1. |V labels
(i.e., less than 25()=1 Jabels per vertex on average) can cover more than % the edges. For,
suppose (P1,Ps) is such a labelling. Let G’ be the subgraph of G consisting of all the
edges covered by (P, P2).

Pick a new labelling (771,77;) randomly by choosing, for each vertex v; € V;, a label
uniformly at random from P;(v;). Note that (Pi,?’é) uses only one label per vertex.
Furthermore, if (v1,v2) € G', then the probability that (771 (v1), P;(UQ)) is a matching pair

of labels is > m. Therefore the expected number of edges covered by (771,77;) is

degree i (v1)
S P

v1€VL

Tt is easily seen that this expression is minimized when degreeq: (v1) = A - |[P(v1)|, where

> v, v, degreegi(v1)
2revy [P(o1)]
|E]/2

2k(n)—1 |V1|.

A

Thus the expected number of covered edges is at least A - |Vi|, which is at least
(|E]/2)/2%)=1_ In particular, this implies the ezistence of a labelling (P;, P,) that uses 1
label per vertex and covers at least |E| /2%(") edges. This is a contradiction. Hence our as-
sumption that there is a labelling that covers 1/2 the edges and has £;-cost < 28(")=1. |y
must be wrong.

Finally, note that every labelling of £1-cost 28(")=1. |V;| must assign at least 2%(?)=1
labels to some vertex in V;, which means that the I, -cost is > 28(")=1,

To finish the proof of Lemma 9, we decide upon the value of the parameter k(n). Note
that the size of the label cover instance N, is 9(k(n))*log”n Phe gap between the costs
of the label cover in the two cases is 28(")=1. Hence choosing k(n) = log% n yields the

desired gap of 9log” " N

O

6.4 A Specific 2-Prover, 1-Round Proof Protocol for SAT

The proof of Lemma 10 will rely upon the properties of a specific 2-Prover, 1-Round proof
system for 3SAT. For ease of exposition, we develop the verifier in three stages. FEach
stage consists in constructing a Multi-Prover 1-Round proof system for SAT. These proof
systems are called PP1, PP2 and PP3 respectively; out of these PP3 will be used to
construct label cover instances.

PP1:
This is a 2-Prover 1-Round proof system, and its error probability is some fixed constant
less than 1.

In [AL4] it is shown that there is some constant 0 < b < 1, such that for any 3CNF
formula, ¢, there is a “robust” 3CNF formula, ¢’, constructible in polynomial time, such
that:

e ¢ is satisfiable if and only if ¢’ is satisfiable.

15

e If ¢’ is not satisfiable, then any truth assignment satisfies at most a fraction b of its
clauses.

The PP1 protocol proceeds as follows on a 3CNF formula . The verifier transforms ¢
to its robust analogue ¢’. Then it selects a clause, say ¢, at random from among all clauses
in ¢’ and a variable, say z, at random from all variables in ¢. Tt passes ¢ to prover P; and
x to prover Py. Prover Pi returns at most 3 bits that represent a truth assignment for the
variables occurring in ¢. Prover P returns a truth value for 2. The verifier accepts iff the
truth assignments are consistent (agree on) and satisfy the clause ¢. Notice that prover
P is a deterministic function from variables to boolean values; hence it can be viewed as
a truth assignment.

If ¢ is satisfiable then the provers can convince the verifier to accept with probability
1, by answering according to the same satisfying assignment of ¢’, e.g. the first in lex-
icographic order. If ¢ is not satisfiable, the truth assignment according to which prover
P, answers can satisfy at most a b fraction of clauses in ’. Each clause corresponds to 3
queries to Py, and if the clause is no satisfied, at least one of those queries will result in a
reject. So the verifier will reject with probability at least %

PP2:

This protocol uses many provers and 1 round, but has an error probability of 27%(")_ Also,
the verifier’s set of queries has been suitably extended with dummy questions so that some
geometric properties (defined later) are satisfied.

First we modify the verifier in PP1. Assume, by padding queries with unnecessary
bits if need be, that each query in PP1l is d = O(log(n)) bits long. For i = 1,2, let
@; be the queries for prover P;, and let) C @7 X @2 contain all pairs of queries that
the verifier could actually make. Let D denote the following set of “dummy” queries:
{w € {0, 1}? : w has exactly one 1}} The property of D relevant later is it is a basis for
{0,1}* over GF(2).

Now modify PP1 so that the verifier selects a query at random from the set:
Q U QixD U DxQy U DxD

If the pair of queries is not in @), the verifier accepts regardless of the provers’ responses.
If the pair is in @, the verifier follows the PP1 protocol. Note that the verifier chooses a
query from @) with probability > d%. Therefore, the probability it rejects an unsatisfiable
formula is at least %.

Finally, the Multi-Prover proof system PP2 is obtained by repeating the verifier’s
interaction with m independent pairs of provers in parallel, where m = O(k(n)d?). The

probability of accepting an unsatisfiable formula goes down to 2725(%),

PP3:
This is a 2-Prover 1-Round protocol which is a parallelization of PP2 using the techniques
of [FL].

Let F be a finite field, |F| > 2°%(?)). (Here we assume k(n) = poly(log(n))). For any
input ¢, and fixed strategy of the m provers, let p; : F? — F be the unique multilinear
function in d variables such that for any ¢ € {0, 1}¢, p;(q) is the answer provided by prover
1 on query q.

The verifier, V', will simulate the verifier of PP2 and construct queries for each of the
m provers, q1,...,qm. Note that each ¢; can be viewed as a point in F'?. Next, for each i,
the verifier, V, chooses a random line, /;, in F'? that passes through the point ¢;. These m
lines are provided to prover P;. The verifier also selects a random point, ¢;, on each line,
l;, and sends them to prover Ps.

16

Prover P; returns m degree-d polynomials which are supposed to represent, for each
t, the function p; parameterized along the line [;. Prover P, responds with m values from
F which are supposed to represent, for each 2, the function p; evaluated at the point ¢;.

The verifier, V, evaluates each of the 7 polynomials at the corresponding query point,
q¢:, and checks that these answers would have been accepted by the verifier in PP2. V also
checks that the value of the ith polynomial at the random point ¢; agrees with the value
provided by prover Ps. If all of these checks pass, the verifier accepts.

If ¢ is satisfiable, then there is a way for the m provers of the PP2 protocol to answer
queries such that the verifier accepts with probability 1. Clearly, the same remains true
for PP3. In [FL] the converse is also shown: If for every strategy of the m provers of
PP2, the verifier accepts with probability less than 2=25(") then for every strategy of the
2 provers of PP3, the verifier accepts with probability less than 2-%(%),

6.5 Hardness of Pseudo-Covers

Now we prove Lemma 10. Using the protocol PP3 in Section 6.4, we reduce instances of
3SAT to label cover as described before. As argued before, if the underlying 3SAT formula
is satisfiable, there exists a labelling using only 1 label per vertex and which covers all
edges. The proof of Lemma 10 is completed by the next claim.

Claim: In the instances of label cover defined using PP3, let OPT be the minimum (-
cost of a labelling that covers half of the edges and F be the field used by the verifier. Then

the minimum Lo -cost of a pseudo-cover is min{\/|F|, OPT}.

The proof of the Claim divides into two parts. The first part considers pseudo-covers that,
for some node in Vi, cancel a “large” fraction of edges incident to that node. Lemma 15
shows that such pseudo-covers have £, cost at least \/m The second part, Lemma 16,
considers all other pseudo-covers, and shows that they must cover at least 1/2 of all edges.
Hence their £, cost is at least OPT.

Lemma 15 In the instances of label cover defined using PP3, a pseudo-cover of lo-cost

at most \/|F'| cancels no more than \/(IiFI fraction of the edges incident to any vertex in

Vi. Here d 1s the upperbound on the degree of the univariate polynomaials returned by the
provers.

Proof: Let p = (p1(21),...,pm(2m)) be a label in A; that is assigned by a pseudo-cover
to a node ¢1. If the edge, e = (qi1[r], ¢2[r]), incident to ¢; is cancelled by the labelling
then there must be a distinct label, p' = (pi(2z1),...,pn(2m)), assigned to ¢ such that
P’ (q2[r]) = p(qz[r]); i.e. these m-tuples of polynomials agree on the m-tuple of points g[r].
But p'(z) and p(z) are distinct m-tuples of polynomials of degree at most d and thus agree
at no more than d/|F| fraction of the points in F™. Consequently, two labels can cancel at
most a d/|F| fraction of edges incident to q; and \/[F| are necessary to cancel a d/+/|F|

fraction. O

Lemma 16 In the label cover instance obtained from protocol PP3, a pseudo-cover that

cancels at most a \/(li?l fraction of the edges at any vertexr in Vi must cover at least 15 of

the edges.

To prove Lemma 16, we prove an expansion-like property of the bipartite graph in the
label cover instance. Consider a pseudo-cover that cancels at most a fraction a < ﬁ
fraction of edges of any node in V;. For a node v, let T'(v) denote the neighbors of v that
are connected to it by a covered edge. Notice, if the pseudo-cover cancels no edge, then

it is a total cover and so has ¢, cost at least OPT. So assume w.l.o.g. that it cancels at

17

least one edge, incident to, say, node v; € Vi. But then TI'(v1) contains at least 1 — a of
the neighbors of v; (since by definition of pseudo-cover, once it has assigned a label to vy,
it has to either cancel or cover every edge incident to vy, and it can cancel only a fraction
a). So the pseudo-cover needs to assign labels to all vertices in T'(v1), as well as to vertices
in Uy, er(v,)['(v2). The next lemma shows that for every “small” set S C Vi, the set T'(V1)
is “big,” so the pseudo-cover must actually assign labels to many vertices.

Lemma 17 (An Ezpansion Lemma) In the label cover instances obtained from PP3, let
B be a proper subset of Vo s.1. every vertex vi € Vi either has all its neighbors in B or
at most an « fraction of its neighbors in B. Then > (1 —) fraction of the vertices in V4
have a neighbor in Vo \ B, where § = m/|F|+ 2(d — 1)c.

Lemma 17 relies on geometric properties of PP3 protocol for 3SAT. Tt is restated in
geometric terms and proven in Section 6.6. Now we prove Lemma 16

Proof: (of Lemma 16). Let B be the set of nodes in V5 that are not assigned labels by
the pseudo-cover. Note that if v; € V; is adjacent to a node in Va2 \ B, it must be assigned
a label. Further, at most an «a fraction of its edges can be incident to B.

Lemma 17 implies that at most (1 — 3)(1 —) edges must be covered by any pseudo-
cover that cancels at most an « fraction of edges of any Vi node. Hence Lemma 16
follows by letting o = %, and noticing that both a and g are o(1), since d = O(log(n)),
m = O(k(n)logn), |F| = 2°*) and k(n) = poly(logn). O

6.6 A Proof of the Expansion Lemma

We prove Lemma 17 in this section by stating and proving an equivalent geometric fact,
Lemma 19. But first we formalize the geometric structure of the protocol PP3.

6.6.1 A Geometric View of PP3

This section deals with two kinds of spaces. The first, denoted Wy, is F¢ where field F
and integer d are the same as in the description of PP3. The second space, denoted W,
is Wi X -+« x Wy, where W; = Wy. We will define points, lines, and hyperplanes for both
spaces; to avoid confusion, names of objects belonging to W are written with a capitalized
letter. For example, a point is an element of Wy, and a Point is an element of W.

An n-dimensional affine subspace of Wy is a set of |F|n_1 points that can be described

i=1 i=1

for some {u1,...,un} C Wy. This set {u1,...,u,} is called a basis of the subspace. Note
that Wy is a (d 4+ 1)-dimensional subspace of itself.

A line in Wy is a 2-dimensional affine subspace, i.e., a set of points of the type
{Ai+ (1 =X : A€ F}, forsomeu,v € Wy. A Lineis an ordered m-tuple of lines. Thus a
Line has |F|™ Points. Likewise, we define an n-dimensional hyperplane as a n-dimensional
affine subspace of W, and am n-Hyperplane as an ordered m-tuple of n-dimensional hy-
perplanes.

The geometric structure of the PP3 protocol is as follows. There is a set .S of Points
that are special for the verifier (these correspond to the questions picked uniformly at
random in the PP2 protocol). A Line that contains a special Point will be called a special
Line.

The set of queries)1 to prover P; are exactly the special Lines. The set of queries Q)5
to prover P, are exactly the Points.

as

18

The set of random seeds is R = {(q1, ¢2) : ¢1 is a special Line containing the Point ¢5}.

Thus, in the label cover instance obtained from PP3, nodes in V; and V5 correspond,
respectively, to special Lines and Points. Further, adjacency in this bipartite graph corre-
sponds to incidence in the affine space.

We say that a set N C W; is full-dimensional if it contains an affine basis of W;. A
boz is a set N = [, N; where each N; C W;. The box N is said to be Full-Dimensional in
W if each Nj is full-dimensional in the corresponding W;. Finally, a set S C W is Totally
FPull-Dimensional if for every s € S there is some Full-Dimensional box T C S such that
seT.

Since the set of questions in protocol PP2 was extended (with “dummy” questions) to
contain a basis of F'?, and protocol PP3 is merely its parallelization, the following lemma
is immediate.

Lemma 18 The special Points of the PP3 protocol are Totally Full-Dimensional. O

6.6.2 A Geometric Lemma

Using the observation in Lemma 18, we restate Lemma 17, thus making its geometric
nature explicit.

Let the Points of W be colored white and blue. We’ll say a Line is all-blue if every
Point on it is blue.

Lemma 19 Let S C W be a set of spectal Points that is Totally Full-Dimensional. Sup-
pose every special Line is either all-blue or has at most an « fraction of blue points. If

there is at least one white Point, then at least a (1 — §) fraction of the special Lines must
have a white Point, where 3 =m/|F|+ 2(d — 1)a.

The proof of the lemma is easier to understand when m = 1. In this case, W = Wj so
Points are points, Lines are lines and Hyperplanes are hyperplanes. Further, the condition
that S is Totally Full-Dimensional is equivalent to requiring that .S contain an affine basis
of W. We will first prove the lemma when m = 1 and then generalize the result.

6.6.3 Proof of the Geometric Lemma: m =1

Proof of Lemma 19: m =1

Let B be the set of blue points. Assume that less than a (1 — g8)-fraction of special
Lines have a white Point. We’ll show that B = W.

There must be a Point u € S such that the proportion of all-blue Lines through u is at
least 3. Let # u be a Point in W. Now S contains an affine basis of W, so it contains
an affine basis of a d-dimensional Hyperplane U that includes u but not z. From now on,
we abbreviate d-dimensional Hyperplane as just Hyperplane.

Call a Line very special if it passes through u but not through any other Point of U.
Then the proportion of all-blue lines among the very special Lines is at least §—m/ |F| =

2(d — Da.
By the following Claim, W\ U C B. But the point 2 was arbitrary. Thus W\{u} C B.
But every Line through u must be all-blue, thus u € B. O

Claim. Assume S contains an affine basis of a Hyperplane U of W and u € U. Assume
further that the proportion of all-blue Lines among the very special Lines is greater than

2(d—1)a. Then BD W\U.

Proof of the Claim: Use induction on d. When d = 2, W is a single Line and the claim
holds.

19

e

u

V = {u}

Figure 1: The case d= 3.

Now assume d > 3. Let V be a Hyperplane of U and let s € SN U such that s ¢ V.
An example for the case when d = 3 is shown in Figure 1; i.e. U is a Line and V is a
Point. The reader may refer to this figure to get the intuition for what follows.

Let Q be the set of Hyperplanes that contain V' (one of these is U). Then the sets
Q\ 'V, where @ € Q, partition W \ V. On the other hand, a refinement of this partition
is provided by the sets AN (W \ V) for Lines A joining u to points in W\ V.

Call a @ € Q almost-blue if @ \ V C B. Note that by the inductive hypothesis, if
@ € Q is not almost-blue then the proportion of all-blue Lines among the very special
Lines in Q@ is < 2(d — 2)a.

Let n denote the proportion of almost-blue Hyperplanes in Q. If < 2«, then the
proportion of all-blue Lines among the very special lines is < 2(d — 2)a + 2o = 2(d — 1)a,
contradicting the assumption in the Sublemma. Thus n > 2a.

Now let y € W\ U and consider the (unique) Line A joining y to s. Each Q € Q
intersects A in exactly one point; therefore more than a 2« fraction of AN W \ U is blue.
But more than 1 —m/ |F| fraction of A lies in W \ U; so at least a (1 — m/|F|)2a > «
fraction of A is blue. Consequently A is all-blue; in particular, z € B. O

6.6.4 Proof of the Geometric Lemma: m > 1

To prove the result for general m we want, simply, to carry out the previous proof in
parallel in each of the m dimensions.

As before, there is a Point u = (u1,...,un) € S, (where u; € W;) such that the
proportion of all-blue Lines through u is at least 5. Let = (21,...,2Zm) # u be a Point
in W. Now S is Totally Full Dimensional, so it contains a Full-Dimensional Box, T' = [[T;
containing u; in other words, for each i, 7T; is an affine basis for W; and u; € T;. Then
clearly, for each 7 there is a T} C T; such that u; € T}, T/ is the affine basis of a hyperplane
U;, and [[T! C T C S. Therefore, S contains a Full Dimensional box of the Hyperplane
U:HUZ- and u € U.

The proof follows exactly as before from the generalized Claim.

General Claim. Assume S contains a Full-Dimensional bor of a Hyperplane U of W
and u € U. Assume further that the proportion of all-blue Lines among the very special
Lines is greater than 2(d — 1)ae. Then BD W\ U.

The proof, again, follows by induction on d. When d = 2 the Space is a single Line
and the claim hold.

20

Now assume d > 3. Since S contains a Full Dimensional Box of U, we can find a
Hyperplane V' of U that contains u and a Point s € SN U such that s ¢ V. (Using the
same kind of argument as used above.)

The remainder of the proof is identical to the case for m = 1.

7 Hardness of MAX-SATISFY

This section proves Theorem 3 about the hardness of approximating MAX-SATISFY.
Proof: (of Theorem 3) We first show that approximating the problem within a factor
(14 €) is NP-hard, and then prove the stronger result.

We use the following result, a joint consequence of a theorem of Arora et. al. [AL+]
and a reduction due to [PY]. A wertez coverin a graph G = (V, E) is a set V' C V such
that for every edge {u,v}, either u € V' or v € V'. Let VCpin be the size of the smallest
vertex cover.

Theorem 20 There exists fivred constants c¢,e¢ and a polynomial time reduction from a
SAT instance ¢ to a graph with n vertices, m = O(n) edges and degree 5, such that if
is satisfiable then VCmin = cn, and if ¢ is not satisfiable then VCpmin > (14 €)en.

We will reduce the vertex cover instance to a system of N = n + 3m linear equations,
of which at most 2m + n — VC,,;, can be simultaneously satisfied. This implies a gap of
©(N) in the optimum in the two cases, since m = O(n).

For each vertex i we’ll construct a variable z; and an equation z; = 0. For each edge,
{i, 7}, we’ll construct 3 equations:

x; + r; = 1
.CE]' = 1

Notice, at most 2 of the 3 equations for each edge can be satisfied simultaneously.
Further, to satisfy 2 of these equations, z; and z; must take on values from {0, 1} and at
least one must take the value 1.

We claim that the maximum number of equations are satisfied when all the z;’s are
0/1. Suppose, under some assignment, 2; is not 0/1. We can strictly increase the number
of equations satified by resetting the value of z; as follows: If z; < % then set z; = 0. If
x> % then set z; = 1.

Now notice that under any optimal assignment, the set of vertices {i : z; = 1} consti-
tutes a vertex cover. If not, then there must be be an edge {4, j}, such that both z; and z;
are 0. Thus all three equations associated with this edge are unsatisfied. Resetting z; to 1
will satisfy 2 equations associated with this edge, and violate one equation, z; = 0, which
was previously satisfied. Thus there is a a net gain of 1 equation satisfied, which contra-
dicts the optimality of the original assignment. It follows that the optimum assignment
satisfies 2m + n — VC\,;,, equations.

Boosting the gap. We have a system of N equations, in which the answer to MAX-
SATISFY is either OPT or OPT-(1 — §) for some § > 0. Let the equations be written as
p1 = 0,pa = 0,...,pny = 0. First we introduce a technique to increase this gap to any
arbitrary constant, and then to n® for some a > 0.

Let k, T be integers (to be specified later). Construct a new set of equations containing,

for every k-tuple of old equations, p;,, ..., pi,, a set of T equations 25:1 pi; y =0, where
y=1,2,...,T. Thus the number of equations becomes (J,X) -T.

21

Whenever an assignment to the variables does not satisfy the equations p;,, ..., p;,, the
polynomial Z].<k Di; y is non-zero. Since a polynomial of degree k has at most k roots, it
follows that any such p;,,...,p;, gives rise to at least T'— k unsatisfied equations in the
new system. It follows that the number of equations that can be satisfied in the two cases
is either > (OfT) “Tor< (JZ) k+ (OPTIgl_J)) -T. If we choose T > N**! we see that the
gap between the optima in the two cases is approximately (1 — §)*. Fixing k to be a large
enough constant, we get the result that any constant factor approximation is NP-hard.
When we fix k£ to be nonconstant, the size of the new system becomes superpolynomial,
and the reduction no longer runs in polynomial time.

So use an idea due to [AF+]. Instead of constructing the new system by using the set of
k-tuples of {1,..., N} for k = 6(1), use the set of all random walks of length k£ = O(log N)
on a constant-degree Ramanujan graph with N vertices. (That is, if 41,...,4; is the
sequence of vertices encountered on the walk, then construct 7' equations for this tuple
just as above.) Let M be the number of such walks. Since M = poly(N), the reduction
still runs is polynomial time. Further, as shown in [AF4], for every set A C {1,..., N},
there is a constant & > 0 (which can be made arbitrarily small by taking a good enough
expander) such that the fraction of walks lying entirely in A is between (|A| /n — a)* and
(Al /n + a)*.

Thus in the new system of equations, the maximum number of satisfiable equations is
> M(OPT/N — a)* - T or < M(OPT(1 - §)/N + a)* - T. Since OPT/N = 1/3 and o
can be made arbitrarily small, say §/100, we can choose T'= M? and get a system with
M3 equations and a gap of approximately (15—6)’“. Since k = O(logn) = O(log M), we see
that the the gap is M? for some small b > 0.

O

8 Open Problems

As mentioned earlier, hardness for NV, or SV, within a factor of v/dimension would prove
the hardness of SVPy, which is a major open problem. Tt seems that the best conceivable
factor achievable using interactive proofs/PCP may be n¢ for some small ¢ > 0. But we
feel that the geometric facts used in our reduction to SV, might be indicative of the nature
of relevant techniques.

A related open problem is to improve our results by proving the problems NP-hard
rather than almost-NP-hard. More efficient 2-prover, 1-round interactive proofs for NP
(as conjectured in [BG+]), or a direct reduction from [AL+] might help.

Acknowledgements

Thanks to Madhu Sudan for suggesting that techniques from interactive proofs might
be helpful in proving the hardness of lattice vector problems, and to Ravi Kannan for his
prompt responses to questions on lattices. We also thank Manuel Blum, Tomas Feder, Dick
Karp, Mike Kearns, Mike Luby, Ron Rivest and Umesh Vazirani for helpful discussions.

References

[AF4] N. Alon, U. Feige, A. Wigderson, D. Zuckerman. Derandomized Graph Products
Manuscript, 1993.

[AK93] E. Amaldi and V. Kanna. The complexity and approximability of finding maximum
feasible subsystems of linear relations. Technical report, TR # ORWP-11-93, Dept. of
Mathematics, Swiss Federal Institute of Technology, Lausanne, 1993.

22

[AL+]

[AS]
[Bab]

[BF+]
[BFL]
[Bel]

[BG+]

[BR]

S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy. Proof verification and intractabil-
ity of approximaion problems. In Proc. 33rd IEEE Symp. on Foundations of Computer
Science, pages 13-22, 1992.

S. Arora, S. Safra. Probabilistic Checking of Proofs: A New Characterization of NP. In
Proc. 33rd IEEE Symp. on Foundations of Computer Science, pages 2-13, 1992.

L. Babai. On Loviasz’s lattice reduction and the nearest lattice point problem. In Com-
binatorica 6:1-14, 1986.

L. Babai, L. Fortnow, L. Levin, M. Szegedy. Checking Computations in Polylogarithmic
Time. Proc. 23rd ACM Symp. on Theory of Computing, pages 21-31, 1991.

L. Babai, L. Fortnow, C. Lund. Non-deterministic exponential time has two-prover inter-
active protocols. Comput. Complezity 1 (1991), 16-25.

M. Bellare. Interactive Proofs and Approximation. IBM Res. Rep. RC 17969 (1992).

M. Bellare, S. Goldwasser, C. LLund, A. Russell. Efficient Multi-Prover Interactive Proofs
with Applications to Approximation Problems. In Proc. 25th ACM Symp. on Theory of
Computing, pages 113-131, 1993.

M. Bellare, P. Rogaway. The Complexity of Approximating Non-Linear Programs. In
P.M. Pardalos, editor, Complexity of Numerical Optimization. World Scientific, 1993.
Preliminary version: IBM Research Report RC 17831 (March 1992).

[BGKW88] M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi prover interactive

[BMV]

[GT]
[HS]

[TP]

proofs: How to remove intractability assumptions. In Proc. 20th ACM Symp. on Theory
of Computing, pages 113-121, 1988.

E. R. Berlekamp, R. J. Mc Eliece, H. C. A. Van Tilborg. On the inherent intractability
of certain coding problems, Trans. Inform. Theory (1978) 384-386.

M. Blum, S. Kannan. Designing programs that check their work. In Proc. 21st ACM
Symp. on Theory of Computing, pages 86-97, 1989. 1989.

M. Blum, M. Luby, R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. In Proc. 22nd ACM Symp. on Theory of Computing, pages 73-83, 1990.

B. Bollobas. Combinatorics. Cambridge Univ Press 1986.

J. Bruck and M. Naor. The hardness of decoding linear codes with preprocessing. IEEFE
Transactions on Inform. Theory 1990 381-385.

A. Condon. The complexity of the max-word problem and the power of one-way interactive
proof systems. Comput. Complezrity 3 (1993), 292-305. Preliminary version appeared in
Proc. 8th Symp. on Theor. Aspects of Comp. Sci., Springer L.N.C.S. 1991, pp. 456—465.

U. Feige, S. Goldwasser, L. Lovdsz, S. Safra, M. Szegedy. Approximating clique is almost
NP-complete. In Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages
2-12, 1991.

U. Feige, L. Lovasz. T'wo-Prover One-Round Proof Systems: Their Power and Their
Problems. In Proc. 24th ACM Symp. on Theory of Computing, pages 733-741, 1992.

A. Frank, E. Tardos. An application of simultaneous approximation in combinatorial
optimization. In Proc. 26th IEEE Symp. on Foundations of Computer Science, pages
459-463, 1985.

M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the theory of
NP-Completeness. W. H. Freeman, 1979.

K-U. Hoeffgen, H-U. Simon. Robust Trainability of Single Neurons. In Proceedings of the
Conference of Learning Theory, pages 428-439, 1992.

D. S. Johnson, F. P. Preparata. The Densest Hemisphere Problem. Theor. Comput. Sci.
6(1978), 93-107.

R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of Operations Research, 12/3, 1987.

23

[K2]

[Kar]

[LLS]

R. Kannan. Algorithmic Geometry of Numbers. In Annual Reviews of Computer Science,
eds. Traub, Grosz, Lampson, and Nilsson, Vol. 2(1987), pages 231-267. Publ. Annual
Reviews Inc.

R. M. Karp. Reducibility among combinatorial problems. Miller and Thatcher, eds.,
Complexity of Computer Computations, 85-103. Plenum Press, 1972.

J. Lagarias, H.W. Lenstra, C.P. Schnorr. Korkine-Zolotarev bases and successive minima
of a lattice and its reciprocal lattice. Combinatorica 10 (1990), 333-348.

J.C. Lagarias and A.M. Odlyzko. Solving low-density subset-sum problems. J. ACM 32
(1985), 229-246.

A.K. Lenstra, H.W. Lenstra, L. Lovasz. Factoring Polynomials with rational coefficients.
Math. Ann. 261 (1982), 513-534.

L. Lovasz. An Algorithmic Theory of Numbers, Graphs and Convexity. NSF-CBMS Reg.
Conference Series. SIAM, 1986.

C. Lund, M. Yannakakis. On the Hardness of Approximating Minimization Problems.
Journal of the ACM, 41(5):960-981, 1994. Prelim. version in 25th STOC, 1993, 286-293.

M. Minsky, S. Papert. Perceptrons, 1968.

C. Papadimitrion and M. Yannakakis. Optimization, approximation and complexity
classes Journal of Computer and System Sciences, 43:425-440, 1991. Prelim. version
in 20th ACM STOC, 229-234, 1988.

C.P. Schnorr. A hierarchy of polynomial-time basis reduction algorithms. Proc. Conf. on
Algorithms , Pécs (Hungary), Lovdsz, Szemerédi, eds., North-Holland 1985, 375-386.

J. Stern. Approximating the number of error locations is NP-complete. Proc AAECC-10,
LNCS (1993), to appear.

P. van Emde Boas. Another NP-complete problem and the complexity of computing short
vectors in a lattice. Tech. Report 81-04, Math. Inst. Univ. Amsterdam, 1981.

D. Zuckerman. NP-complete problems have a version that’s hard to approximate. &th
Structure in Complexity Theory Conf., 1993, 305-312.

24

