
Linear Bandwidth Naccache-Stern Encryption

Benôıt Chevallier-Mames1, David Naccache2, and Jacques Stern2

1 dcssi, Laboratoire de cryptographie,
51, Boulevard de la Tour Maubourg,

f-75700 Paris, France
benoit.chevallier-mames@sgdn.gouv.fr

2 École normale supérieure,
45 rue d’Ulm,

f-75230 Paris cedex 05, France
{david.naccache,jacques.stern}@ens.fr

Abstract. The Naccache-Stern (ns) knapsack cryptosystem is an orig-
inal yet little-known public-key encryption scheme. In this scheme, the
ciphertext is obtained by multiplying public-keys indexed by the mes-
sage bits modulo a prime p. The cleartext is recovered by factoring the
ciphertext raised to a secret power modulo p.
ns encryption requires a multiplication per two plaintext bits on the
average. Decryption is roughly as costly as an rsa decryption. However,
ns features a bandwidth sublinear in log p, namely log p/ log log p. As
an example, for a 2048-bit prime p, ns encryption features a 233-bit
bandwidth for a 59-kilobyte public key size.
This paper presents new ns variants achieving bandwidths linear in log p.
As linear bandwidth claims a public-key of size log3 p/ log log p, we rec-
ommend to combine our scheme with other bandwidth optimization tech-
niques presented here.
For a 2048-bit prime p, we obtain figures such as 169-bit plaintext for a
10-kilobyte public key, 255-bit plaintext for a 20-kilobyte public key or a
781-bit plaintext for a 512-kilobyte public key. Encryption and decryp-
tion remain unaffected by our optimizations: As an example, the 781-bit
variant requires 152 multiplications per encryption.

Keywords: Public key cryptography, ns cryptosystem, multiplicative
knapsack, efficiency.

1 Introduction

The Naccache-Stern cryptosystem (ns), introduced a decade ago in [NS97], is a
public-key cryptosystem based on the following problem:

given p, c and a set {pi}, find a binary vector x such that c =
n−1∏
i=0

pxii mod p.

Trivially, if the pi-s are relatively prime and much smaller than p, the above
problem can be solved in polynomial time by factoring c in N.

A trapdoor is obtained by extracting a secret (s-th) modular root of each pi
and publishing these roots, denoted vi = s

√
pi mod p. By raising a product of

such roots to the s-th power, each vi shrinks back to a much smaller pi and x
can be found by factoring the result in N.

Unfortunately, no security proofs linking ns’s security to standard complex-
ity assumptions are known, but at the same time, no efficient chosen-plaintext
attacks against ns’s one-wayness are known either.

More formally, let p be a large public prime3 and denote by n the largest
integer such that:

p >

n−1∏
i=0

pi where pi is the i-th prime (start from p0 = 2).

The secret-key 0 < s < (p − 1) is a random integer such that gcd(p − 1, s) = 1
and the public-keys are the n roots:

vi = s
√
pi mod p.

A message m =
n−1∑
i=0

2imi, where mi ∈ {0, 1}, is encrypted as c =
n−1∏
i=0

vmii mod p

and recovered by:

m =
n−1∑
i=0

2i

pi − 1
×
 gcd(pi, cs mod p)− 1

.
Denoting by ln(x) natural logarithms and by log(x) base-2 logarithms, it is

easy to see that ns’s bandwidth is sublinear: As pi ∼ i ln i, we have

ln p ∼
n∑
i=0

ln pi ∼ n lnn ⇒ ln ln p ∼ lnn,

which in turn gives:

n ∼ ln p
ln ln p

∼ log p
log log p

.

In a typical setting, a 2048-bit p corresponds to a sixteen kilobyte public-key
and allows encrypting 233-bit messages.

[NS97] also describes a variant depending on a parameter ` ∈ N. Here, p is
such that

p >

n−1∏
i=0

pi
`.

m =
n−1∑
i=0

(`+ 1)imi, expressed in base (`+ 1) (here mi ∈ [0, `]), is encrypted as

c =
n−1∏
i=0

vmii mod p,

3 For technical reasons, p must be a safe prime, cf. to Sections 2.4 of [NS97] or 5.

2

and decryption is straightforwardly modified. In this paper, we refer this version
as the “(`+ 1)-base variant”.

The goal of this work is to improve the scheme’s bandwidth using more so-
phisticated arithmetic encoding approaches. Indeed, 233-bit plaintexts are often
insufficiently large in practice to include the message, the randomizer (typically
128 bits) and the redundancy (at least 160 bits, or better 256 bits) that one needs
to use chosen-ciphertext secure transformations such Fujisaki and Okamoto’s
[FO99,FO00].

In the next section, we propose a technique based on modular fractions that
multiplies bandwidth by log2 3 ' 1.58 for binary-message ns.4 Section 3 de-
scribes a new message encoding technique that dramatically increases bandwidth
(to become linear in log p). Section 4 extends the previous idea to (` + 1)-base
ns, thereby further increasing bandwidth. Final figures are given in Section 4.3.
In Section 5, we examine the security of the proposed improvements. Finally,
Section 6 describes combinatorial problems whose solutions might yield even
more efficient ns variants.

2 Fractional Message Encoding

In this section, we show that using signed message bits allows to increase band-
width at no cost. Consider a message represented in a signed binary notation,
i.e.,

m =
n−1∑
i=0

2imi where mi ∈ {−1, 0, 1}

and an unchanged encryption procedure. During decryption, the receiver recovers
a u such that:

u = cs =
a

b
mod p, with

a =

∏
mi=1

pi

b =
∏

mi=−1
pi.

and gcd(a, b) = 1.

The following theorem shows that, given u, one can recover a and b efficiently
using Gauss’s algorithm for finding the shortest vector in a two-dimensional
lattice [Val91].

Theorem 1 ([FSW02]). Let a, b ∈ Z such that |a| 6 A and 0 < b 6 B. Let
p be a prime such that 2AB < p. Let u = a/b mod p. Then given {A,B, u, p},
one can recover {a, b} in polynomial time.

4 This factor becomes log1+` (2`+ 1) for the (`+ 1)-base variant.

3

Taking A = B = b√pc − 1, we have that 2AB < p. If we assume in addition
that m was such that 0 6 a 6 A and 0 < b 6 B, we can recover a and b from
s in polynomial time. And by testing the divisibility of a and b by the small
primes pi, the receiver can eventually recover m as before.

But what happens if |a| > A or b > B?

To tackle this case too, let us tweak the definition of p to p > 2w ×
n−1∏
i=0

pi,

for some small integer w > 1 (we suggest to take w = 50), and define a finite
sequence {Ai, Bi} of integers such that:

Ai = 2wi and Bi =
⌊
p− 1
2Ai

⌋
.

For all i > 0, we have that ab < 2AiBi < p. Moreover, there must exist at
least one index i such that 0 6 a 6 Ai and 0 < b 6 Bi. Then using the algorithm
of Theorem 1, given Ai, Bi, p and s, one can recover a and b, and eventually
recover m. The problem is that we have just lost the guarantee that such an
{a, b} is unique. Namely, we could in theory hit another {a′, b′} whose modular
ratio gives the same u, for some other index i′ 6= i. But we expect this to happen
with negligible probability for large enough w.

Senders wishing to eliminate even the negligible probability that decryption
will produce more than one plaintext can still simulate the decryption’s Gaussian
phase and, in case, re-randomize m until decryption becomes unambiguous.

The effect of this optimization is noteworthy as for the price of a constant
increase (e.g. ' 50 bits) in p, bandwidth is multiplied by a factor of log2 3.

It is important to underline that while different signed binary representations
of a given m exist (e.g. 101 = 011 i.e. 22 − 20 = 21 + 20), the above procedure
will recover the exact encoding used to encrypt m and not an equivalent one.

Note that as ` > 1 is used in conjunction with this technique (i.e., in the
(` + 1)-base variant), bandwidth improvement tends to one bit per prime as
` grows. Namely, fractional encoding increases bandwidth from n log(1 + `) to
n log(1 + 2`).

3 Small Prime Packing

Let the integer γ > 2 be a system parameter. We now group the small primes
pi into n packs containing γ small primes each.5 That is, the first pack will
contain primes p1 to pγ , the second pack will include primes pγ+1 to p2γ etc. As
previously, the pi-s are indexed in increasing order.

We also update the condition on the large prime p to:

n∏
i=1

pγi < p.

5 For the sake of simplicity, we now define the first prime as p1 = 2.

4

In other words, we do not request p to be larger than the product of all the
small primes. Instead, we only request p to be larger than the product of the
largest representatives of each pack.

We now represent m in base γ, i.e.,

m =
n−1∑
i=0

γimi where mi ∈ [0, γ − 1]

and encode m by picking in pack i the prime representing the message’s i-th
digit mi and multiplying all so chosen pi-s modulo p:

encoding(m) =
n−1∏
i=0

pγi+mi+1 mod p.

We can now apply this encoding to the ns and re-define encryption as:

c = encryption(m) = s
√

encoding(m) =
n−1∏
i=0

vγi+mi+1 mod p.

To decrypt c, the receiver computes u = cs mod p and recovers m by factoring
u. Note that as soon as a representative of pack i is found, the receiver can stop
sieving within pack i and start decrypting digit i+ 1.

3.1 A Small Example

We illustrate the mechanism by a small toy-example.

• key generation for n = 3 and γ = 4:

The prime p = 4931 > pγ × p2γ × p3γ = 7 × 19 × 37 and the secret s = 3079
yield the v-list:

p
ac

k
1

v1 = s

√
2 modp = 1370

v2 = s
√

3 modp = 1204

v3 = s
√

5 modp = 1455

v4 = s
√

7 modp = 3234

p
ac

k
2

v5 = s

√
11 modp = 2544

v6 = s
√

13 modp = 3366

v7 = s
√

17 modp = 1994

v8 = s
√

19 modp = 3327

p
ac

k
3

v9 = s

√
23 modp = 4376

v10 = s
√

29 modp = 1921

v11 = s
√

31 modp = 3537

v12 = s
√

37 modp = 3747

• encryption of m = 35:

We start by writing m is base γ = 4, i.e., m = 35 = 2034 and encrypt it as:

c = v(0·4+3+1) × v(1·4+0+1) × v(2·4+2+1) = v4 × v5 × v11 mod 4931 = 4484.

• decryption:

By exponentiation, the receiver retrieves:

cs mod p = 44843079 mod 4931 = 7×11×31 = p(0·4+3+1)×p(1·4+0+1)×p(2·4+2+1),

whereby m = 2034.

5

3.2 Bandwidth Considerations

The bandwidth gain stems from the fact that, for large i, we have pγi+1 ' pγi+γ
which allows the new format to accommodate log2 γ message bits at the price
of one single pγi+γ . This situation is much more favorable than the original ns,
where each message bit costs a new pi.

More precisely, pγi ∼ γi ln i yields an (n log γ)-bit bandwidth where:

n ∼ ln p/ln ln p ∼ log p/log log p

The bandwidth gain is thus a constant multiplicative factor (namely log γ)
and the increase in n is logarithmic. Note that at the same time, the vi-list
becomes γ times longer.

The following table shows the performances of the new encoding algorithm for
a 2048-bit p. The first row represents the original ns for the sake of comparison.

γ n plaintext bits = n log γ public key size = γn log p information rate= n log γ
log p

ns 233 233 bits 59 kilobytes 0.11

2 208 207 bits 104 kilobytes 0.10
4 189 378 bits 189 kilobytes 0.18
8 172 516 bits 344 kilobytes 0.25

16 159 635 bits 636 kilobytes 0.31
32 147 734 bits 1176 kilobytes 0.36
64 137 821 bits 2192 kilobytes 0.40

128 128 896 bits 4096 kilobytes 0.44
256 121 967 bits 7744 kilobytes 0.47
512 114 1025 bits 14592 kilobytes 0.50

1024 108 1080 bits 27648 kilobytes 0.53

As one can see, bandwidth improvement is significant, but the public keys
are huge. Fortunately, we address this issue in the Section 4.

3.3 Linear Bandwidth

Setting γ = n (i.e., n packs containing n primes each), we can approximate:

pγi ∼ γi ln i ∼ ni ln i ⇒
n∑
i=0

ln pγi ∼
n∑
i=0

ln(n2 lnn) ∼ n ln(n2) ∼ 2n lnn ∼ ln p.

As lnn ∼ ln ln p, we get an n log n bit bandwidth with:

n ∼ ln p
2 ln ln p

∼ log p
2 log log p

.

Substituting the expressions of n and log n into the bandwidth formula (that
is n log n), we see that the resulting information rate turns out to be 1

2 . This
encoding scheme therefore features a linear bandwidth, while ns is only sublinear.
Note that this format is compatible with fractional encoding (Section 2), thereby
allowing further constant-factor bandwidth gains.

6

3.4 Optimizing the Encoding of Zeros

We now observe that the encoding of zeros does not require using new primes.
The corresponding tweak to the encryption procedure is straightforward and
allows to lower the number of pi-s from γn to (γ − 1)n. This increases n and
hence the information rate.

For the previous toy-example, the packs will become:

p
ac

k
1

v1 = 1

v2 = s
√

2 modp

v3 = s
√

3 modp

v4 = s
√

5 modp
p
ac

k
2

v5 = 1

v6 = s
√

7 modp

v7 = s
√

11 modp

v8 = s
√

13 modp

p
ac

k
3

v9 = 1

v10 = s
√

17 modp

v11 = s
√

19 modp

v12 = s
√

23 modp

p can now be chosen as p = 1499 > pγ × p2γ × p3γ = 5× 13× 23, which is indeed
somewhat shorter than the modulus used in Section 3.1.

Figures are given in the following table, where the first row (i.e., γ = 2)
represents the original ns. As before, this results assume a 2048-bit p. The op-
timization is particularly interesting for small γ values.

γ n plaintext bits = n log γ public key size = (γ − 1)n log p information rate= n log γ
log p

2 233 233 bits 59 kilobytes 0.11 (original ns)
4 196 392 bits 147 kilobytes 0.19
8 175 525 bits 307 kilobytes 0.26

16 160 640 bits 600 kilobytes 0.31
32 148 740 bits 1147 kilobytes 0.36
64 137 822 bits 2158 kilobytes 0.40

128 128 896 bits 4064 kilobytes 0.44
256 121 968 bits 7714 kilobytes 0.47
512 114 1026 bits 14564 kilobytes 0.50

1024 108 1080 bits 27621 kilobytes 0.53

4 Using Powers of Primes

In this section we apply prime-packing to the (`+1)-base variant. We start with
an example, to explain as simply as possible the obtained scheme.

4.1 A Small Example

Take n = 1 and γ = 4, i.e. a single pack, containing {p1 = 2, p2 = 3, p3 = 5, p4 =
7}. We also set ` = 2, pick a modulus p > 7` = 72 = 49, define the public key
as:

{v1 = s
√

2 mod p, v2 = s
√

3 mod p, v3 = s
√

5 mod p, v4 = s
√

7 mod p}

and consider all pi products of weight smaller or equal to `:

70 × 50 × 30 × 20 70 × 50 × 30 × 21 70 × 50 × 30 × 22

70 × 50 × 31 × 20 70 × 50 × 31 × 21 70 × 50 × 32 × 20

70 × 51 × 30 × 20 70 × 51 × 30 × 21 70 × 51 × 31 × 20

70 × 52 × 30 × 20 71 × 50 × 30 × 20 71 × 50 × 30 × 21

71 × 50 × 31 × 20 71 × 51 × 30 × 20 72 × 50 × 30 × 20

7

All in all, we have 1 + 4 + 10 =
(
γ+`
`

)
= 15 products6 that can be associated

to 15 message digit values. Therefore, to encode a message digit m0 ∈ [0, 14],
we use any unranking algorithm [SW86] returning unrank(m0) = {a, b, c, d} and
encrypt m0 as:

c = encryption(m0) = v1
a × v2b × v3c × v4d mod p.

For instance, using a lexicographic ranking of words of weight two:

unrank(0) = {0, 0, 0, 0} 70 × 50 × 30 × 20

unrank(1) = {0, 0, 0, 1} 70 × 50 × 30 × 21

unrank(2) = {0, 0, 0, 2} 70 × 50 × 30 × 22

unrank(3) = {0, 0, 1, 0} 70 × 50 × 31 × 20

unrank(4) = {0, 0, 1, 1} 70 × 50 × 31 × 21

unrank(5) = {0, 0, 2, 0} 70 × 50 × 32 × 20

unrank(6) = {0, 1, 0, 0} 70 × 51 × 30 × 20

unrank(7) = {0, 1, 0, 1} 70 × 51 × 30 × 21

unrank(8) = {0, 1, 1, 0} 70 × 51 × 31 × 20

unrank(9) = {0, 2, 0, 0} 70 × 52 × 30 × 20

unrank(10) = {1, 0, 0, 0} 71 × 50 × 30 × 20

unrank(11) = {1, 0, 0, 1} 71 × 50 × 30 × 21

unrank(12) = {1, 0, 1, 0} 71 × 50 × 31 × 20

unrank(13) = {1, 1, 0, 0} 71 × 51 × 30 × 20

unrank(14) = {2, 0, 0, 0} 72 × 50 × 30 × 20

m0 = 12 will be encrypted as encryption(12) = s
√

3 × s
√

7 = v2 × v4 mod p.
Decryption recovers 20 × 31 × 50 × 71 by exponentiation and determines that
m0 = rank({1, 0, 1, 0}) = 12.

The bandwidth improvement stems from the fact that we encrypt log(15)
bits where the (` + 1)-base variant only encrypts log(3). In other words, the
prime-packing idea fits particularly well to the (`+ 1)-base system.

Also, as is all practical instances
(
γ+`
`

)
will remain moderate (typically less

than one hundred), functions rank(·) and unrank(·) can be implemented as simple
lookup tables rather than as full-fledged constructive combinatorial algorithms.

4.2 Formal Description

Let us describe now the scheme formally. Let ` > 1 and γ be two integer pa-
rameters7 and consider n packs containing γ small primes each (the primes start
from p1 = 2). We pick a prime p such that:

6 The attentive reader would rightly note that there are actually more pi products
smaller than p. This is true for very small primes in the first packs, but when one
considers packs whose minimal and maximal pi-s are roughly equivalent in size, the
number of products quickly tends to

(
γ+`
`

)
.

7 ns corresponds to the case {γ, `} = {1, 1} and the (` + 1)-base variant corresponds
to γ = 1.

8

n∏
i=1

pγi
` < p.

As there are8 shows that there are
(
γ+`
`

)
different γ-tuples {d1, . . . , dγ} such

that 0 6 dk and
∑
k dk 6 `, we define unrank(·) as an invertible function mapping

integers in [0,
(
γ+`
`

)
− 1] to {d1, . . . , dγ}-tuples.

To encrypt a message expressed in base
(
γ+`
`

)
, i.e., m =

n−1∑
i=0

(
γ+`
`

)i
mi with

mi ∈ [0,
(
γ+`
`

)
− 1], one computes:

c = encryption(m) =
n−1∏
i=0

γ∏
j=1

vγi+j
di,j mod p

where {di,1, . . . , di,γ} = unrank(mi).
To decrypt c, the receiver simply factorizes cs mod p in N and recovers each

mi by:
mi = rank({di,1, . . . , di,γ})

4.3 Bandwidth Considerations

The table below shows that the variant described in this section features a bet-
ter bandwidth and smaller public-keys than the basic prime-packs encoding of
Section 3. Data was generated for several public-key sizes (namely 10, 20, 50,
and 500 kilobytes) and a 2048-bit p. The first line {γ, `} = {1, 1} is the original
ns:

γ ` n plaintext bits = n log
(γ+`
`

)
public key size = γn log p information rate= n

log
(
γ+`
`

)
log p

1 1 233 233 bits 59 kilobytes 0.11

8 66 5 169 bits 10 kilobytes 0.08

16 54 5 255 bits 20 kilobytes 0.12

64 73 3 398 bits 48 kilobytes 0.19

512 38 4 781 bits 512 kilobytes 0.38
128 10 16 781 bits 512 kilobytes 0.38

Note that encryption is very fast, since it requires ` ·n multiplications e.g. in
the 781-bit setting an encryption claims 152 multiplications.

5 Security Considerations

As stressed previously, no security proof is known for the original ns, and we
have no hope nor claim that our modifications may supplement this lack. In
this section we nonetheless recall certain security-related facts, some of which
are already known since [NS97], for the clarity and the self-containment of this
paper.
8 cf. to Appendix A for a proof.

9

5.1 What Security Can Be Attained?

The most basic security property expected from any encryption scheme is one-
wayness (OW): an attacker should not be able to recover the plaintext given a
ciphertext. We capture this notion more formally by saying that for any adver-
sary A, success in inverting the effect of encryption must occur with negligible
probability.

Semantic Security (IND) [GM84], also known as indistinguishability of en-
cryptions captures a stronger privacy notion. The adversary A is said to break
IND when, after choosing two same-length messages m0 and m1, he can decide
whether a given ciphertext corresponds to m0 or to m1. An encryption scheme is
said to be semantically secure (or indistinguishable) if no probabilistic algorithm
can break IND.

The original ns cryptosystem, or the variants presented in Sections 2, 3 or 4
can not ensure indistinguishability, since they are by nature deterministic. The
hope however is that there might be one-way. To achieve full-security with our
variants (or with ns), one can use generic transformations such as [FO99,FO00]:
nevertheless, as there are no formal reductions from a standard hard problem to
an attack of ns-type schemes (be these the original ns or the variants proposed
herein), the application of these generic rules cannot possibly achieve a provably
security, but only give empirical security arguments.

5.2 Security Arguments

Our schemes can be broken if one solves the discrete-logarithm. It
is clear that a discrete-logarithm oracle will totally break the ns scheme or the
variants presented in this paper. Indeed, to this aim, it is sufficient to ask the
oracle for the discrete-logarithm of p1 in base v1, which is actually the secret key
s. Even if the primes are permuted or made secret, the fact that primes must be
small makes them easily guessable.

Larger message space may make ns-type problems harder. As one
can see, the schemes presented in this paper are — as is the original ns —
multiplicative knapsacks. Even if no efficient algorithm solving this problem
is known, one must ensure that a brute-force attack consisting in testing all
products is impossible. More precisely, getting back the arguments put forward
in Section 2.3 of [NS97], the message space must at least exceed 160 bits, if
one requires an 80-bit security, or 256 bits, if one wants 128-bit security. In
this perspective, our bandwidth improvements indirectly improve security by
easing the attainment of a larger message space. However, we cannot claim that
the variants are stronger, as bandwidth improvements come along with larger
public-keys, which — at least in the information theoretic sense — give more
information to the attacker about the secret key.

Small factors of (p − 1). As stressed in Section 2.4 of [NS97], the small
factors of (p − 1) are important. Denote by QRp and QRp the quadratic and

10

non-quadratic residues modulo p respectively. Let

c =
n−1∏
i=0

vmii mod p.

By computing a = c
p−1
2 mod p, one gets

a =
∏

vi∈QRp

(−1)mi mod p,

which in turn leaks the value
∑
vi∈QRp mi mod 2. This partial information leak-

age can also be applied to other small factors of (p−1). Therefore, [NS97] advised
to use a strong prime p, and to spare one mi to compensate the leakage (in other
words, they simply make

∑
vi∈QRp mi mod 2 constant).

In our variants, it is not as simple to use same attacks. Indeed, in any given
prime pack, one expects to have some primes in QRp and others in QRp. For ex-
ample, with the variant of Section 3, getting c = encryption(m) =

∏n−1
i=0 vγi+mi+1

mod p, the attacker may compute a = c
p−1
2 mod p. As

a =
∏

vγi+mi+1∈QRp

(−1) mod p,

this reveals the parity of the number of message digits mi whose corresponding
primes are in QRp. Even if leakage is less precise than in the ns case, we still
recommend the use of a strong prime (and residue value compensation) with our
variants.

Can a reduction from attacking ns to attacking our variants exist?
At a first glance, it might seem that reductions between ns and our variants exist:
indeed, one may hope that access to a decryption oracle D of one of our schemes
would yield an ns decryption oracle D′.

However, a simple observation shows that this is certainly impossible: in
our case, the public key is longer and contains more elements related to the
secret key. Therefore, from an ns public key and a challenge, it may certainly
be possible to build a challenge for our variants, but there is little hope that one
might reconstruct the entire public key.

Thus, we have no formal proof that the security of the original ns is equivalent
to the security of the variants proposed herein.

6 Further Research

We conclude this paper with a couple of interesting combinatorial problems
whose solution might further improve the ns’s bandwidth.

Setting ` = 1, not all collections of γn integers allow encoding γn combina-
tions. Let S = {S1, ..., Sn} be n integer-sets, each of size γ and denote by Si[j]

11

the j-th element of Si. We call S an encoder if its Si-s can be used as a collection
of packs encoding exactly n log2 γ bits, or, in other words, if no collisions in the
integer sub-products of S occur. Improving the ns consists in finding “better”
encoders.

To compare encoders, we use their head-products, namely:

h(S) =
n∏
i=1

max
j

(Si[j])

Head-products lower-bound the modulus p and hence “measure” bandwidth.
We saw that when the Si[j] are the first small primes, S is an encoder and

h(S) =
∏n
i=1 piγ (Section 3). We also saw that when the smallest element in

each Si is one, the resulting S is still an encoder whose head-product is h(S) =∏n
i=1 pi(γ−1) (Section 3.4).

This gives raise to interesting combinatorial problems such as finding algo-
rithms for efficiently testing that a given S is an encoder, or finding algorithms for
constructing optimal encoders, i.e. encoders featuring a minimal head-product
(and consequently a maximal bandwidth).

As an example, a (rather inefficient) computer-aided exploration for n = 3
and γ = 4 discovered the optimal encoder S whose h(S) = 4× 8× 13 = 416:

p
ac

k
1

S1[1] = 1
S1[2] = 2
S1[3] = 3
S1[4] = 4

p
ac

k
2

S2[1] = 1
S2[2] = 5
S2[3] = 7
S2[4] = 8

p
ac

k
3

S3[1] = 1
S3[2] = 9
S3[3] = 11
S3[4] = 13

Interestingly, this encoder contains primes, but also powers of primes. Moreover,
throughout our search, non-optimal encoders containing composite integers (such
as 6) were found as well.

Decoding messages encoded with such complicated S-s might not always be
straightforward as in such atypical encoders, decoding is based on impossibilities
of certain factor combinations rather than on the occurrence of certain factors
in the product.

The above questions also generalize to packs of rationals.

References

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Advances in Cryptology – crypto ’99,
volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer-
Verlag, 1999.

[FO00] Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of
public-key encryption at minimum cost. ieice Transaction of Fundamentals
of Electronic Communications and Computer Science, E83-A(1):24–32, 2000.

[FSW02] Pierre-Alain Fouque, Jacques Stern and Jan-Geert Wackers. Cryptocomput-
ing with rationals. In Financial Cryptography – fc 2002, volume 2357 of
Lecture Notes in Computer Science, pages 136–146. Springer-Verlag, 2002.

12

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. In Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[NS97] David Naccache and Jacques Stern. A new public-key cryptosystem. In
Advances in Cryptology – eurocrypt ’97, volume 1233 of Lecture Notes in
Computer Science, pages 27–36. Springer-Verlag, 1997.

[SW86] Dennis Stanton and Dennis White. Constructive combinatorics, Springer-
Verlag New York, Inc., New York, ny, 1986.

[Val91] Brigitte Vallée. Gauss’ algorithm revisited. Journal of Algorithms, 12(4):556–
572, 1991.

A Computing R`,γ

In this appendix, we recall how we evaluate the number, denotedR`,γ , of different
γ-tuples {d1, . . . , dγ} such that 0 6 dk and

∑
k dk 6 `.(

γ+i−1
i

)
is the number of sequences of γ integers whose sum equals i. There-

fore, we have:

R`,γ =
∑̀
i=0

(
γ + i− 1

i

)
.

Assume that we have R`,γ =
(
γ+`
`

)
. What happens for (`+ 1)?

R`+1,γ =

`+1∑
i=0

(
γ + i− 1

i

)
= R`,γ +

(
γ + `+ 1− 1

`+ 1

)
=

(
γ + `

`

)
+

(
γ + `

`+ 1

)
=

(
γ + `+ 1

`+ 1

)

where the last line stems from Pascal’s rule.
As R0,γ = 1 =

(
γ
0

)
, we get by induction that:

R`,γ =
(
γ + `

`

)
.

13

