
Cryptanalysis of Tweaked Versions of SMASH

and Reparation

Pierre-Alain Fouque, Jacques Stern, and
Sébastien Zimmer

CNRS-École normale supérieure-INRIA – Paris, France –
{Pierre-Alain.Fouque,Jacques.Stern,Sebastien.Zimmer}@ens.fr

Abstract. In this paper, we study the security of permutation based
hash functions, i.e. blockcipher based hash functions with fixed keys.
SMASH is such a hash function proposed by Knudsen in 2005 and broken
the same year by Pramstaller et al. Here we show that the two tweaked
versions, proposed soon after by Knudsen to thwart the attack, can also
be attacked in collision in time O(n2n/3). This time complexity can be

reduced to O(22
√

n) for the first tweak version, which means an attack
against SMASH-256 in c · 232 for a small constant c. Then, we show that
an efficient generalization of SMASH, using two permutations instead of
one, can be proved secure against collision in the ideal-cipher model in
Ω(2n/4) queries to the permutations. In order to analyze the tightness of
our proof, we devise a non-trivial attack in O(23n/8) queries. Finally, we
also prove that our construction is preimage resistant in Ω(2n/2) queries,
which the best security level that can be reached for 2-permutation based
hash functions, as proved in [12].

1 Introduction

Hash functions have recently been the subject of many attacks, revealing weak-
nesses in widely trusted hash functions such as MD5 or SHA-1. For this reason,
some recent papers deal with new designs for hash functions such as SMASH [6]
or Radiogatún [2,3]. Most of previous constructions of hash functions use block-
ciphers, since we know how to build such secure and efficient primitives and
since good constructions of compression functions based on them are known.
However, in the proofs of classical constructions of compression function, such
as Davies-Meyer used in MD5 and SHA-1, the assumption made on the block-
cipher is very strong, namely that for each key, or message for hash function,
the blockcipher acts as a random permutation. Such an assumption, which has
been introduced by Shannon and formalized in the ideal-cipher model in 1998
by Bellare et al. in [1], is impossible to check. For instance, it is possible that
among the 2512 possible keys of the SHACAL blockcipher used for SHA-1, some
weak keys exist, which could be used by an attacker. One solution to restrict the
power of the adversary is to fix the key as it is the case in SMASH.

In order to study blockcipher for such constructions, Knudsen and Rijmen
at Asiacrypt last year [7] proposed to use the notion of known-key distinguisher.



The latter is an adversary which tries to distinguish a blockcipher from random
permutation when the key is known. This model seems to be less permissive
than the ideal-cipher model required to study the Davies-Meyer construction.
Knudsen and Rijmen mention that this approach could be used to analyze hash
function constructions, but the security model is not formally defined, seems to
be hard to formalize, and to take into account for a security proof.

Even if there is no security model well adapted to study this alternate con-
struction mode, it is particularly interesting since the assumption on the block-
cipher seems to be more realistic. We refer to permutation based hash functions
to precise that we do not use the flexibility of having many permutations using a
blockcipher. In the constructions we are interested in, we only require one or two
permutations to behave as random permutations, thus the probability to have a
weak key is low and cannot be used by the adversary. Finally, another practical
advantage of such constructions is that the key schedule of some blockciphers
is more costly than the encryption processes and so avoiding the key schedule
algorithm is interesting in term of speed and in term of space for hardware
implementation.

1.1 Related Work

At FSE 2005, Knudsen [6] proposed a design for a compression function us-
ing only one permutation and a particular instance called SMASH. Soon after,
Pramstaller et al. [10] broke it in collision very efficiently and Lamberger et

al. [9] broke it in second preimage. That is why Knudsen proposed two tweaks
to avoid the attacks, so that the expected complexity of any collision attack is
still O(2n/2).

The security of 1-permutation based hash functions has been studied at Eu-
rocrypt 2005 by Black et al. [4]. They show a very interesting impossibility
result: in the ideal-cipher model, the number of queries to the permutation re-
quired to attack in collision the hash function is very low, linear in the bitsize
of the input/output permutation. This result seems to rule out the construction
of compression function using one permutation. However, it has one drawback
which is very important in practice: even if the number of queries is low, the
overall time complexity of the attack presented is very high, namely O(n2n).
Therefore, in a computational model which would take into accounts the time
or space complexity of the attack, such a construction could be possible. That
is why the result of [4] does not completely rules out the construction of hash
function based on one permutation such as SMASH. Finally, in the same vein,
Steinberger and Rogaway at Eurocrypt’08 extend this result for many permuta-
tions against collision and preimage attacks. The main result interesting for us,
is that with two permutations the preimage and collision resistance cannot be
proved if more than O(2n/2) queries are made to the permutations.

2



1.2 Our Results

In this paper, we first exhibit a new collision attack against the two tweaked
versions of SMASH with complexity in time and memory of order O(n2n/3),
generating a 2-block collision. For the first tweak version, the attack can be im-
proved and the complexity reduced to approximately 232 for n = 256. To avoid
our attack, we propose to replace one special operation, namely the multipli-
cation by a constant in an extension field of GF(2), by a strong permutation.
This modification has already been proposed by Thomsen [13], but has never
been analyzed. We prove that a collision attack against this new scheme requires
at least 2n/4 queries to the permutations. In order to better evaluate its colli-
sion resistance in term of number of queries, we devise an attack that requires
23n/8 queries but needs O(23n/4) in time and works only if the Merkle-Damg̊ard
strengthening is not used. Finally, we prove that the number of queries required
to attack the preimage is at least of 2n/2. Note that this latter bound is optimal
according to Steinberger and Rogaway attack. Therefore our construction has
also a theoretical interest since it is the first 2-permutation based hash function
provably collision and preimage resistant. It gives a lower bound for the best
collision resistance that we can obtain with such a construction and proves that
the best preimage collision resistance of these schemes is in Θ(2n/2) queries.

Remark that, even if we are not able to prove better bounds, this does not
say that our function is weak since we are not aware of an attack requiring less
than the birthday attack for collision if the Merkle-Damg̊ard strengthening used.
For the preimage, since the attack of Steinberger and Rogaway requires O(2n)
time complexity, we propose an attack requiring O(2n/2) time complexity for
the compression function and O(23n/4) for the full hash function.

1.3 Organization of the paper

In section 2, we recall the security model and the designs of SMASH and of
our generalization. We propose our collision attack on SMASH in section 3 and
study the resistance of our new hash function against collision attacks in sec-
tion 4. Finally, in section 5, we study the resistance against preimage of our
construction.

2 Construction and Security Model

2.1 Security Model

The ideal-cipher model. To model blockciphers, we use the ideal-cipher
model introduced by Shannon. In this model, the adversary is not computation-
ally limited and the blockcipher is viewed as a family of functions E : {0, 1}κ ×
{0, 1}n → {0, 1}n such that for each k, E(k, ·) is a permutation on {0, 1}n. For
every key k, E(k, ·) is chosen uniformly at random in the set of all permutations
on n bits. This implies that, for the adversary, for each key k ∈ {0, 1}κ, E(k, ·)
is a random and independent permutation.

3



The adversary A is given access to the oracles E and E−1, which is denoted
by AE,E−1

: it can ask at most Q oracle queries to either E or E−1 and the
answer of a query (Ki, Xi) for E is Yi = E(Ki, Xi) and the answer of a query
(Ki, Yi) for E−1 is Xi = E−1(Ki, Yi).

Remarks on the security model. In our 2-permutation based construction,
the keys k1 and k2 chosen for the construction are public and given to the
adversary. As the permutations E(k, ·) for k 6= k1, k2 are independent of E(k1, ·)
and E(k2, ·), we assume w.l.o.g that the adversary does not ask oracle queries
(k, x) to E or (k, y) to E−1 with k 6= k1, k2. For the sake of simplicity we denote
π1 = E(k1, ·) and π2 = E(k2, ·) and give oracle access to π1, π−1

1 , π2 and π−1
2 .

Note that in this case we do not lean upon the whole power of the ideal-cipher
model, we only require that π1 and π2 were chosen independently and uniformly
at random in the set of all permutations. We do not use the fact that for every
k 6= k1, k2, E(k, ·) is a permutation chosen uniformly at random in the set of all
the permutations.

Collision resistance. If H is a hash function, the goal of the adversary is
to break the collision resistance of H , that is to find two different messages
(M, M ′) such that H(M) = H(M ′). The ability of the adversary to break H
collision resistance is denoted adv

Coll

H (A) and is equal to:

Pr
[

H(M) = H(M ′) ∧ M 6= M ′|AE,E−1 ⇒ (M, M ′)
]

The probability is taken over the random coins of A and over all the possible
blockcipher E where E is generated as specified above. The notation AE,E−1 ⇒
(M, M ′) means that A, after at most Q queries to E or E−1, outputs (M, M ′).
We denote by adv

Coll

H (Q) the maximum of adv
Coll

H (A) over all the adversaries A
which can make at most Q queries.

Assumptions. We assume that the adversary does not ask a query for which
it already knows the answer; namely, it does not ask the same query twice or
if it asks (k, x) to E, which returns y, it does not ask (k, y) to E−1, and vice
versa. Furthermore, we assume that when an adversary outputs (M, M ′), it has
already computed H(M) and H(M ′), i.e. it has already made all the oracle
queries required to compute H(M) and H(M ′).

Measures of the complexity. There are two classical ways to measure the
complexity of the attack. On one hand, one can say that this complexity is
equal to the time complexity of the adversary. This is the complexity we are
interested in, in practice, and this is the complexity that Knudsen consider in
his paper about SMASH [6] and that we consider in our attack of SMASH.
We refer to this complexity as the practical complexity. On the other hand,
the attack complexity can be measured by the number of queries made to the
oracles. This is the complexity oftenly used in proofs [11,5], or on the contrary
to show that proofs cannot be established [4,12]. We use this complexity in our
security proofs. It is refered in the following as the query complexity. Note that
the practical complexity is always greater than the query complexity.

4



x

x ⊕ h

h

π1

π2

f(h, x)

x

x ⊕ h

h

π

·θ

smash(h, x)

Fig. 1. SMASH compression function and our 2-permutation based compression func-
tion.

2.2 SMASH Construction and Generalization

In this subsection, we introduce successively the original operating mode of
SMASH, the modifications proposed by Knudsen and our new construction
which is a generalization of the SMASH design.
Smash. Firstly we present the original version of SMASH. Let π = E(0n, ·) be a
random permutations, IV ∈ {0, 1}n be a fixed string, θ 6= 0, 1 be a fixed element
of GF (2n), the finite field of 2n elements, and smash : {0, 1}n×{0, 1}n → {0, 1}n

be the function defined by:

smashπ(h, x) = π(h ⊕ x) ⊕ h ⊕ θ · x,

where · denotes the multiplication in GF (2n).
Given (IV, π, θ), the hash x = (x1, . . . , xℓ) ∈ {0, 1}n·ℓ is SMASH(x) = hℓ+1

where h0 = π(IV ) ⊕ IV = smashπ(IV, 0n), hk = smashπ(hk−1, xk), for all
1 ≤ k ≤ ℓ, and hℓ+1 = π(hℓ) ⊕ hℓ = smashπ(hℓ, 0

n).
Tweaked Versions of Smash. After the attack of [10], it has been proposed
two ways to modify the scheme [10,6], namely: “One is to use different permuta-
tions π for every iteration. Another is to use a secure compression function (. . . )
after the processing of every t blocks of the message for, say t = 8 or t = 16”.

We call the modification which consists in using a different permutation for
every iteration, the first modification and the modification which consists in using
a secure compression function (as π(h) ⊕ h for example) after the processing of
every t blocks of the message, the second modification.
Our Generalized Construction. Let IV ∈ {0, 1}n be a fixed string, π1 =
E(0n, ·) and π2 = E(1n, ·) be two random permutations, and f : {0, 1}n ×
{0, 1}n → {0, 1}n be the function defined by:

f(h, x) = π1(x) ⊕ π2(x ⊕ h) ⊕ h

Given (IV, π1, π2), the hash of a message x = (x1, . . . , xℓ) ∈ {0, 1}n·ℓ is H(x) =
hℓ where h0 = IV , hk = f(hk−1, xk) for all 1 ≤ k ≤ ℓ.
Padding. The constructions introduced before require that the message length
is a multiple of a fixed integer which depends on the block size. To extend this

5



construction to arbitrary length messages, one can add an injective padding to
the message, such as the classical padding proposed for SMASH: add a ’1’ and
as many ’0’ as required. In SMASH, it is also required to add the so-called
Merkle-Damg̊ard strenghtening, that is to concatenate the encoded length of
the message at the end of the message. We also advice to add the Merkle-
Damg̊ard strenghtening for our construction, since, even if the security proof we
are able to establish does not require it, the best known collision attacks against
the construction without strengthening are strictly more efficient than the best
known collision attacks against the construction with the strengthening.

3 A Collision Attack Against All Versions of SMASH

In this section, we present a collision attack against SMASH in O(n2n/3). Since
it generates a 2-block collision, it can be mounted against the two modifications
of SMASH, as long as t ≥ 3 (we remind that t denotes the number of iterations
using the classical SMASH compression function before the use of an alternate
secure compression function). Then we present an improvement of the attack
which can be used to reduce the complexity of the attack. It can be applied
against the first modification and then the attack generates two 2

√
n−1-block

long collision messages and has a practical complexity of O(22
√

n). This means
that for n = 256, there is an attack in c · 232 where c is a small constant. It also
can be applied against the second modification if t = 8 or t = 16, but its impact
is more limited.

3.1 Generic Attack

This subsection describes an attack against the collision resistance of the two
modifications of SMASH with practical complexity of O(n2n/3). It generates a
2-block collision.

Note that the generic collision attack presented in [4] by Black et al. also
applies to SMASH used with the first modification and finds a collision with
a query complexity of at most O(2(n + 1)) but a practical complexity greater
than O(2n). Therefore, this attack does not negate the security level expected by
Knudsen [6], namely a practical security of O(2n/2). The attack presented in [10]
by Pramstaller et al. is very efficient against the original version of SMASH, but
as they precise in their paper, it does not apply to the two modifications.

In the following, we use the notations already introduced in subsection 2.2.
Let π and π′ be the two permutations used respectively in the first and in the
second iteration. Let (α1, β1) and (α′

1, β
′
1) be 2 pairs such that π(α1) = β1 and

π′(α′
1) = β′

1. Let us define γ1 = β1 ⊕ θ · α1, γ′
1 = β′

1 ⊕ θ · α′
1, x1 = α1 ⊕ h0,

h1 = smashπ(h0, x1) = β1⊕θ ·α1⊕ (θ +1) ·h0, and x′
1 = α′

1⊕h1. Consequently,
for h2 = smashπ′

(h1, x
′
1), we get:

h2 = γ′
1 ⊕ (θ + 1) · γ1 ⊕ (θ + 1)2 · h0.

6



Let (α2, β2) and (α′
2, β

′
2) be 2 other pairs such that π(α2) = β2 and π′(α′

2) =
β′

2. Let us define similarly as above γ2 = β2 ⊕ θ · α2, γ′
2 = β′

2 ⊕ θ · α′
2, x2 =

α2 ⊕ h0, h′
1 = smashπ(h0, x2) = β2 ⊕ θ · α2 ⊕ (θ + 1) · h0 and x′

2 = α′
2 ⊕ h′

1. For
h′

2 = smashπ′

(h′
1, x

′
2), we get:

h′
2 = γ′

2 ⊕ (θ + 1) · γ2 ⊕ (θ + 1)2 · h0.

First, notice that if h2 = h′
2, then SMASH(x1, x

′
1) = SMASH(x2, x

′
2). We have

h2 = h′
2 if and only if γ′

1 ⊕ (θ + 1) · γ1 equals γ′
2 ⊕ (θ + 1) · γ2, which is equivalent

to:

(θ + 1) · γ1 ⊕ (θ + 1) · γ2 ⊕ γ′
1 ⊕ γ′

2 = 0. (1)

The attack can be easily deduced from this relation.

Let us makes 2q queries to π to generate 2 sequences with q elements (α1,i, β1,i)
and (α2,i, β2,i) and 2q queries to π′ to generate 2 sequences with q elements
(α′

1,i, β
′
1,i) and (α′

2,i, β
′
2,i). Let us compute the associated γj,i = βj,i ⊕ θ ·αj,i and

γ′
j,i = β′

j,i ⊕ θ · α′
j,i, for j = 1, 2 and 1 ≤ i ≤ q.

If q = 2n/4, the birthday paradox says that with high probability there exists
a quadruple (γ1,a, γ′

1,b, γ2,c, γ
′
2,d) such that equation (1) is true. However finding

such a quadruple requires a time complexity of O(n2n/2). For q = 2n/3, the
algorithm presented in [14] allows to find such a quadruple in time O(n2n/3)
and space O(2n/3). Therefore, using this algorithm, we can mount an attack
with query complexity of O(2n/3) and practical complexity of O(n2n/3) which
is much smaller than the practical complexity of O(2n/2) that one could expect.

3.2 Improvements of the Attack

The improvement presented in this subsection comes from the generalization
presented in [14] of the 4-list algorithm. The more lists there are, the smaller
the practical complexity is. The main drawback of this improvement is that
it generates longer colliding messages and therefore cannot be used completely
against the second modification.

Let assume that instead of searching for 2-block colliding messages, we are
searching for 3-block colliding messages. Using the same notations as above, let
us introduce π′′ the permutation used in the third iteration and (α′′

1 , β′′
1 ) and

(α′′
2 , β′′

2 ) two pairs such that π′′(α′′
1 ) = β′′

1 and π′′(α′′
2 ) = β′′

2 . If we define similarly
as above x′′

1 = α′′
1 ⊕ h2 and x′′

2 = α′′
2 ⊕ h′

2, and generalize previous notations, we
have that

h3 = γ′′
1 ⊕ (θ + 1) · γ′

1 ⊕ (θ + 1)2 · γ1 ⊕ (θ + 1)3 · h0

h′
3 = γ′′

2 ⊕ (θ + 2) · γ′
2 ⊕ (θ + 2)2 · γ2 ⊕ (θ + 1)3 · h0

So, h3 = h′
3 if and only if (θ+1)2 · (γ1⊕γ2)⊕ (θ+1) · (γ′

1 ⊕γ′
2)⊕γ′′

1 ⊕γ′′
2 = 0.

This leads to an attack which generates 6 lists and tries to find one element
in every list such that the xor of theses elements is equal to 0. This can be

7



generalized to k-block long messages. We can show that hk = h′
k if and only if:

k
⊕

i=0

(θ + 1)k−i · (γ(i)
1 ⊕ γ

(i)
2 ) = 0. (2)

The algorithm presented in [14] finds such a 2k-tuple in time O(k·2n/(1+log2(2k)))
and requires 2k lists of size O(2n/(1+log2(2k))), therefore it requires to make
O(k · 2n/(1+log2(2k))) queries to generate all these lists. The complexity of the
attack is optimal for 2k = 2

√
n and in this case the practical complexity is equal

to O(22
√

n).
This improvement can be applied for all values of k when the first modifi-

cation is used and therefore this version of SMASH can be attack in O(22
√

n),
generating messages of 2

√
n−1 blocks. For n = 256, this means a complexity of

c · 232 for a small constant c and messages of 215 256-bit blocks, that is of 1 Mo.
However, it can be applied only for k ≤ t − 1 when the second modification

is used. Therefore against this modification, the improved attack has a practical
complexity of O(t · 2n/(2+log2(t−1))), that is O(2n/4) and O(2n/5) for t = 8 and
t = 16 respectively, as proposed by Knudsen [6] (we remind that t denotes the
number of iterations using the classical SMASH compression function before
the use of an alternate secure compression function). For n = 256, this gives a
complexity of approximately 264 and 252.

4 Collision Resistance of the Generalized Design

Now, we examine the collision resistance of the generalized version we pro-
pose. Firstly, we prove that a collision attack requires at least Ω(2n/4) queries
to succeed with good probability. Secondly, we give a collision attack against
our scheme with a query complexity of O(23n/8), but a practical complexity of
O(23n/4). Most often this attack generates two messages of different length and
therefore does not work anymore if the Merkle-Damg̊ard strengthening is used.
In this latter case, the best attack we have against our scheme is the birthday
paradox attack with O(2n/2) queries and a practical complexity of O(n2n/2) .

4.1 Security Proof

The attack presented in [4] shows in particular that one cannot expect to prove

the collision resistance of SMASH if more than O(n) queries are made. On the
contrary, we prove here that if we replace the multiplication by θ by a strong
permutation (modelized by an ideal cipher), then one can prove that at least
Ω(2n/4) queries are required to break collision resistance, and therefore that
such an attack has a practical complexity greater than 2n/4. This proof is valid
even if the Merkle-Damg̊ard strengthening is not used.

Theorem 1. Let A be a computationally unbounded adversary which makes at

most Q queries. Its advantage in breaking H collision resistance is upper bounded

8



IV

(α, β)

∆

Fig. 2. An example of graph. In gray is the tree T .

by:

adv
Coll

H (A) ≤ 2Q4

2n
.

Proof. A collision adversary is allowed to make at most Q queries to either π1,
π2, π−1

1 , or π−1
2 . We show that the probability that the adversary finds a collision

for H is upper bounded by Q4/2n. The permutations π1, π2 and the initial value
IV are chosen randomly.

The graph construction. First, we introduce the following graph construc-
tion. Let R1 = {(αi, βi)1≤i≤q1

} be q1 pairs such that π1(αi) = βi and R2 =
{(α′

j , β
′
j)1≤j≤q2

} be q2 pairs such that π2(α
′
j) = β′

j . We define ∆i,j = αi ⊕ α′
j

and ∆̃i,j = βi ⊕ β′
j ⊕ αi ⊕ α′

j for 1 ≤ i ≤ q1 and 1 ≤ j ≤ q2. We construct a
labelled directed graph G = (V, E). The set of vertices V contains the bit strings
∆i,j , ∆̃i,j and IV (that is at most 2q1 ·q2 +1 nodes). The set of edges E contains

the directed edges (∆i,j , ∆̃i,j) labelled with (αi, βi) denoted
(

(∆i,j , ∆̃i,j), αi, βi

)

(there are exactly q1 · q2 labelled directed edges, possibly several edges between
the same pair of nodes).

We define a path in the graph G as a sequence of edges p = (e1, . . . , eℓ) such
that for each of its edge ei, 1 ≤ i ≤ ℓ− 1 the output vertex is equal to the input

vertex of ei+1. Let us denote ∆
p
 ∆′ which means that either ∆ = ∆′ (and p

is empty) or there exists a path p = (e1, . . . , eℓ) for which the input vertex of e1

is ∆ and the output vertex of eℓ is ∆′.

9



Correspondence between the hash function and the graph con-

struction. A message x = (x1, . . . , xℓ) is said to be valid if one can compute its
digest value thanks to the already made requests, that is if and only if: h0 = IV
and for every k ≥ 1, (xk, π1(xk)) ∈ R1 and (xk ⊕ hk−1, π2(xk ⊕ hk−1)) ∈ R2,
with hk = π1(xk) ⊕ π2(xk ⊕ hk−1) ⊕ hk−1. Let us denote by M the set of all
the valid messages. Let P be the set of all non-empty paths in G with IV as

input node, that is P = {p 6= ∅ | ∃∆ ∈ V, IV
p
 ∆}. We now show that there is

a bijection between P and M .

Let p = (e1, . . . , eℓ) be a non-empty path from IV to a node ∆. For this
path p we construct a message x = (x1, . . . , xℓ), such that H(x) = ∆, where x is
defined as follows. For the kth edge ek, by construction, there exists (a unique)

(ik, jk) such that ek =
(

(∆ik,jk
, ∆̃ik,jk

), αik
, βik

)

, and we define xk = αik
. Using

the same notations as in the definition of H one can easily check that h0 = IV =
∆i1,j1 , and for all other 1 ≤ k ≤ ℓ, hk = ∆ik+1,jk+1

= ∆̃ik,jk
:

hk = f(hk−1, xk) = π1(xk) ⊕ π2(xk ⊕ hk−1) ⊕ hk−1

= π1(αik
) ⊕ π2(αik

⊕ ∆ik,jk
) ⊕ ∆ik,jk

= π1(αik
) ⊕ π2(α

′
jk

) ⊕ αik
⊕ α′

jk

= βik
⊕ β′

jk
⊕ αik

⊕ α′
jk

= ∆̃ik,jk
= ∆ik+1,jk+1

.

Therefore x is valid and H(x) = hℓ = ∆̃iℓ,jℓ
= ∆. We say that p induces the

message x. One can check easily that if p 6= p′ induce respectively x and x′, then
x 6= x′.

Conversely, let x = (x1, . . . , xℓ) be a valid message and p be the path defined
as p = (e1, . . . , eℓ) with ek = ((hk−1, hk), xk, π1(xk)) (we remind that h0 = IV
and hk = f(hk−1, xk)). The path p is clearly in P . We say that x induces p. One
can check easily that if x 6= x′ induce respectively a path p and p′ in G then
p 6= p′.

Therefore, finding two colliding messages in M is equivalent to find two paths
in P with the same output nodes. We say that these two paths collide and that
there is a collision in G.

Upper bound of the collision probability. Consider now the collision
adversary. Let us assume that it has already made q1 queries to π1 or π−1

1 and
q2 queries to π2 or π−1

2 . These queries induce two sets R1 and R2, and a graph
G defined as above. We also introduce the following sets:

T = {∆ ∈ V | ∃ p, IV
p
 ∆}

A = {α | ∃ 1 ≤ j ≤ q2, ∃∆ ∈ T, α′
j ⊕ ∆ = α}

B = {γ | ∃ 1 ≤ j ≤ q2, ∃∆′ ∈ V, β′
j ⊕ α′

j ⊕ ∆′ = γ}

Without loss of generality, we can assume that the adversary is ready to
make a query to π1 or π−1

1 . Let us denote by (α̃, β̃ = π1(α̃)) the pair induced by
this query. With this query the graph G expands, new edges are generated. Let
us denote by G̃ the graph after this expansion and similarly T̃ the expansion of
T and P̃ the expansion of P .

10



We now show that if there is a collision in G̃, then β̃⊕ α̃ ∈ B and α̃ ∈ A with
high probability. Assume that there is a collision in G̃ but not in G. Let ∆ be a

node in G̃, let p, p′ be two paths in P̃ such that p 6= p′, IV
p
 ∆ and IV

p′

 ∆
in G̃. Let us denote (IV, ∆1, . . . , ∆ℓ = ∆) the sequence of vertices crossed by p
in G̃ and (IV, ∆′

1, . . . , ∆
′
m = ∆) the sequence of vertices crossed by p′ in G̃. As

there is not any collision in G, then either p or p′ is not in P . Let us say it is p.
Note that with high probability ∆ is already in G and was not generated

by the expansion. If it were not the case, then there would be i 6= j such that
∆ = β̃ ⊕ β′

i ⊕ α′
i = β̃ ⊕ β′

j ⊕ α′
j . This implies that β′

i ⊕ α′
i = β′

j ⊕ α′
j . The

probability that there exists such a pair (i, j) is upper bounded by q2
2/2n. Let

us assume that such a pair does not exist and therefore that ∆ is already in G.
Let a be the smallest integer such that there exists r suffix of p with ∆a

r
 ∆ℓ

in G (hence ∆a ∈ V ), that is r exists before the expansion. Due to the previous
remark, a exists and a ≤ ℓ. As ∆a−1 6∈ r, it means that the edge (∆a−1, ∆a) is
generated by the expansion, that is there exists j such that ∆a−1 = α̃ ⊕ α′

j and

∆a = β̃ ⊕ α̃ ⊕ β′
j ⊕ α′

j . Therefore we have β̃ ⊕ α̃ ∈ B.
Similarly, let b be the greatest integer such that, there exists r′ prefix of p with

IV
r′

 ∆b in G (hence ∆b ∈ T ). As ∆b+1 6∈ r′, it means that the edge (∆b, ∆b+1)
is generated by the expansion, that is there exists j such that ∆b = α̃ ⊕ α′

j and

∆b+1 = β̃ ⊕ α̃ ⊕ β′
j ⊕ α′

j . Therefore we have α̃ ∈ A.
If it is π1 which was queried by α̃, then the collision probability is upper

bounded by:

#B

2n − q1
≤ #V · q2

2n − q
≤ 2(2q1q2 + 1)q2

2n
≤ 2q3

3 · 2n
≤ q3

2n
,

where q = q1 + q2. The last inequality is true because the function x 7→ 2(2(q −
x)x + 1)x reaches its maximum for x ≈ 2q/3 and is smaller than 2q3/3 at this
point. The collision probability can be similarly upper bounded by q3/2n if it is
π−1

1 which was queried.
So, at the qth iteration, the success probability is lower than 2q3/3·2n+q2/2n,

and at the end the success probability is lower than
∑Q

q=1

(

2q3/3 · 2n + q2/2n
)

≤
Q4/2n.

4.2 Attacks

Now we present an attack against the entire hash function, this gives upper
bounds of its collision resistance. Before that, note that the birthday paradox al-
lows to easily construct a collision attack which succeeds with probability nearly
1 with O(2n/2) queries to π1 and π2 and time complexity of O(n2n/2). This
attack generates two 1-block messages which collide and therefore works even if
the Merkle-Damg̊ard strengthening is used (see the full version of the paper for
a description of this attack).

We present now an attack which succeeds with probability nearly 1. It is a
better attack than the birthday attack since its query complexity is only equal to

11



2 · 23n/8, but it has a practical complexity of O(n23n/4). Moreover, one does not
control the size of the two messages generated during the attack and most proba-
bly they won’t have the same size. Therefore the Merkle-Damg̊ard strengthening
allows to thwart the attack. Our analysis of this latter is heuristic and not proved.
However, we have tested the attack for several values of n up to n = 40 and it
turned out to work well in practice.

Proposition 2. For Q ≥ 23n/8+2 there is a computationally unbounded collision

adversary with high success probability.

Sketch of the attack. In the sequel, first we explain how we make the
queries, then we informally evaluate the expected number of messages for which
we are able to compute the hash. For a precise algorithm, see the full version
of the paper. Note that the following attack is inspired from the way we have
proved the collision resistance : we introduce the same tree T and try to make
it grow as much as possible, so that it quickly contains 2n/2 vertices.

Let α0 and β0 be two random n-bit strings such that α0 ⊕β0 = IV . Let q be
an integer. We generate the sequences (αi)0≤i≤q, and (βi)0≤i≤q such that for all
1 ≤ i ≤ q, αi = π1(αi−1) ⊕ αi−1, and βi = π2(βi−1) ⊕ βi−1. For all 0 ≤ i, j ≤ q,
let us define ∆i,j = αi⊕βj. Note that we make Q = 2q queries to π1 and π2, and
we generate about (q + 1)2 different ∆i,j . We generate the sequences this way,
because we have the following interesting property: for all (i, j), f(∆i,j , αi) =
∆i+1,j+1. Therefore, for all 1 ≤ ℓ ≤ q, the message α0‖α1‖ . . . ‖αℓ−1 hashes to
∆ℓ,ℓ and if ∆k,k = ∆i,j , then for all 1 ≤ ℓ ≤ q−max(i, j) the message Mk,i,j,ℓ =
α0‖α1‖ . . . ‖αk−1‖αi‖αi+1‖ . . . ‖αi+ℓ−1 hashes to ∆i+ℓ,j+ℓ. Such a triplet (k, i, j)
is called a colliding triplet and the message Mk,i,j,ℓ is a preimage of ∆i+ℓ,j+ℓ for
H .

If there are many different colliding triplets (i, j, k), so we are able to find
a preimage for many different values ∆i+ℓ,j+ℓ. Let us introduce the graph T =
(V, E) where:

V = {∆a,b|∃ a colliding triplet (k, i, j) s.t. a − i = b − j ≥ 0}
∪ {∆a,a, 0 ≤ a ≤ q}

E = {(∆a,b, ∆a+1,b+1) s.t. 0 ≤ a, b ≤ q − 1, ∆a,b ∈ V } .

Note that we are able to find a preimage for all ∆a,b ∈ V and that T is a tree if
and only if there is no collision (otherwise we are able to find a cycle in T and
there are two ways to reach some ∆a,b ∈ V ). Therefore, our goal is to make V
grow up to a size of about 2n/2 vertices so that a collision occurs. In the following
we explain informally why this happens with high probability for q = 23n/8+1.
This analysis considers that the αi and βj are uniformly distributed, which is of
course not the case. However, we expect that the analysis gives a good intuition
of what happens.

Let us evaluate roughly the expected value of T size, denoted t. Note that
T contains at least the q + 1 vertices ∆a,a. If (i, j, k) is a collision triplet with
i 6= j, then all the ∆i+ℓ,j+ℓ, with 0 ≤ ℓ ≤ q − max(i, j), are added to T . Thus,

12



n Q number of experiments size of T percentage of success

36 215 10000 218 ≤ · ≤ 219 52%

40 216.5 1000 220 ≤ · ≤ 221 59%

Fig. 3. Experimental results

if Set = {(i, j, k) s.t. i 6= j, i 6= k, j 6= k}, we have:

t ≈ 1 + q +
∑

(i,j,k)∈Set

1{∆k,k=∆i,j}(q − max(i, j)),

therefore, E(t) ≈ 1 + q +
∑

(i,j,k)∈Set

Pr [∆k,k = ∆i,j ] (q − max(i, j)).

where 1 denotes the characteristic function. If the αi and βj were uniformly
distributed (which is not the case) then we would have that Pr [∆k,k = ∆i,j ] =
1/2n and therefore that

E(t) ≈ 1 + q +
1

2n

∑

(i,j,k)∈Set

(q − max(i, j))

= 1 + q +
q(q + 1)(q − 1)(q − 2)

3 · 2n
≈ q4

3 · 2n
.

We can conclude that for q = 23n/8, we can expect that T contains more than
2n/2 vertices and, in this case, hope that the birthday paradox applies here so
that two of these vertices collide. As already stated, if there is such a collision
the attack is finished, we are able to find two messages which collide for H .

Complexity of the attack and experimental results. The precise algo-
rithm is described in the full version of the paper. The attack requires O(23n/8)
queries to π1 and π2, O(2n/2) in space (to store T ) and O(n23n/4) in time (be-
cause we have to search for all the colliding triplets (i, j, k) with 1 ≤ i, j, k ≤
23n/8, that is all the triplets (i, j, k) such that ∆k,k = αi ⊕ βj).

We have run several tests for n equals 36 and 40. For that, we have used the
blockcipher RC5 with two random keys and with a random IV . The results are
summarized in figure 3. It appears that for Q = 2

√
2 · 23n/8, in all experiments

the tree T contains between 2n/2 and 2n/2+1 vertices and a collision is found at
least half the time. This validates our heuristic analysis of the attack.

Note. We have studied some other constructions of a compression function using
only two permutations and some “xor”. Some lead to hash functions which are
trivially breakable, for all the others a variant of this attack could be applied
(sometimes this variant is tricky and requires to make oracle queries to π−1

1 or
π−1

2 ).

13



5 Security Against Preimage of The Generalized

Construction

5.1 Security Proof

In this section we prove that the preimage resistance of our construction is
provably in O(2n/2) queries. Note that in the design of the compression function,
we have added a feed-forward (more precisely, we xor the chaining value to the
output of the two permutations) exclusively in order to prevent trivial preimage
attacks against the compression function (removing this feed-forward does not
alter the collision resistance). Thus, the compression function is provably collision
resistant up to O(2n/2) queries. That is what we show in the following. Since
finding a preimage for the whole hash function implies finding a preimage for
the compression function, this implies that the whole hash function is provably
preimage resistant as long as less than O(2n/2) queries have been made.

Proposition 3. Let A be a computationally unbounded adversary which makes

at most Q queries, its advantage in breaking f preimage resistance is upper

bounded by Q2/2n.

Proof. Let α and α′ be two queries made respectively to π1 and π2 and let β and
β′ be the respective answers (that is we have β = π1(α) and β′ = π2(α

′)). Let x
be the value for which a preimage is searched. We have Pr[x = α⊕β⊕α′⊕β′] =
∑

y Pr[β = x ⊕ α ⊕ α′ ⊕ y] Pr[β′ = y] = 1/2n. The result is the same if π−1 is

queried by β or if π−2 is queried by β′. Therefore, if A makes q1 queries to π1 or
π−1

1 and q2 queries to π2 or π−2
1 (such that q1 + q2 = Q) and obtains the pairs

(αi, βi) and (α′
j , β

′
j) respectively, the union bound says that the probability that

there exists a pair (i, j) such that x = αi ⊕ βi ⊕ α′
j ⊕ β′

j is upper bounded by

q1q2/2n, and thus by Q2/2n.

5.2 Optimality of the Proof and Attacks

In [12], Rogaway and Steinberger present a generic O(n2n/2) preimage attack
against any 2-permutation based hash function. This means, as already stated,
that our construction reaches the best security level against preimage that we
can expect, namely O(2n/2) queries; in this sense, the construction is optimal.

Besides, the attack of [12] against the whole hash function requires O(n2n/2)
queries, but the exact practical complexity is not established in general. However,
in our case, its practical complexity seems greater than 2n. This leads us to
wonder what is the attack with the lowest practical complexity. Since finding a
preimage for the compression function requires O(n2n/2) in time, the Lai and
Massey attack [8] can be used. This attack is an unbalanced meet-in-the-middle
attack: we compute 2n/4 preimages, hash 23n/4 messages and meet in the middle
using the birthday paradox. This requires to make O(23n/4) queries and to make
O(n23n/4) computations. This is still greater than O(n2n/2) and it is an open
problem to decrease the practical complexity of a preimage attack against the
whole hash function.

14



Acknowledgment. The authors would like to thank Lars Knudsen for his useful
comments. This work has been partially supported by the European Commission
through the IST Program under Contract IST-2002-507932 ECRYPT, and the
French RNRT/ANR SAPHIR Project.

References

1. M. Bellare, T. Krovetz, and P. Rogaway. Luby-Rackoff backwards: Increasing
security by making block ciphers non-invertible. In K. Nyberg, editor, EURO-

CRYPT’98, volume 1403 of LNCS, pages 266–280. Springer, May / June 1998.
2. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Radiogatùn, a belt-and-mill

hash function. ECRYPT Hash Workshop 2007.
3. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. On the indifferentiability of

the sponge construction. In Eurocrypt ’08, LNCS 4965, pages 181–197. Springer-
Verlag, Berlin, 2008.

4. J. Black, M. Cochran, and T. Shrimpton. On the impossibility of highly-efficient
blockcipher-based hash functions. In R. Cramer, editor, EUROCRYPT 2005, vol-
ume 3494 of LNCS, pages 526–541. Springer, May 2005.

5. J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 320–335. Springer, Aug. 2002.

6. L. R. Knudsen. SMASH - a cryptographic hash function. In H. Gilbert and
H. Handschuh, editors, FSE 2005, volume 3557 of LNCS, pages 228–242. Springer,
Feb. 2005.

7. L. R. Knudsen and V. Rijmen. Known-key distinguishers for some block ciphers.
In Asiacrypt ’07, LNCS 4833, pages 315–324. Springer-Verlag, Berlin, 2007.

8. X. Lai and J. L. Massey. Hash function based on block ciphers. In R. A. Rueppel,
editor, EUROCRYPT’92, volume 658 of LNCS, pages 55–70. Springer, May 1992.

9. M. Lamberger, N. Pramstaller, C. Rechberger, and V. Rijmen. Second preimages
for SMASH. In M. Abe, editor, CT-RSA ’07, volume 4377 of LNCS, pages 101–111,
San Francisco, CA, USA, 2007. Springer-Verlag, Berlin, Germany.

10. N. Pramstaller, C. Rechberger, and V. Rijmen. Breaking a new hash function
design strategy called SMASH. In B. Preneel and S. Tavares, editors, SAC 2005,
LNCS, pages 233–244. Springer, Aug. 2005.

11. B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In D. R. Stinson, editor, CRYPTO’93, volume 773 of LNCS,
pages 368–378. Springer, Aug. 1994.

12. P. Rogaway and J. Steinberger. Security / Efficiency Tradeoffs for Permutation-
Based Hashing. In EUROCRYPT 2008, LNCS, pages 220–236. Springer-Verlag,
Berlin, 2008.

13. S. S. Thomsen. Cryptographic Hash Functions. PhD thesis, Technical University
of Denmark, 2005.

14. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 288–303. Springer, Aug. 2002.

15


