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a system an be supported by the laim that nobody has been able to jeopardize itso far. This is of ourse important but, in many appliations, it is not a satisfatoryenough guarantee. A muh better paradigm tries to prove seurity in a mathematialsense, i.e. to establish theorems laiming that illegal ations suh as impersonation areas di�ult as solving a spei� problem, whose di�ulty is well-established. Amongthese problems are integer fatorization, or the omputation of disrete logarithms ina �nite group. Half way between heuristi validation and formal proofs are proofs ina model where onrete objets are replaed by some ideal substitutes: applying thisparadigm to hash funtions yields the so-alled random orale model desribed byBellare and Rogaway in [3℄. Although this approah may not be onsidered as o�eringabsolute proofs of seurity for ryptographi shemes, it provides a strong guaranteethat their general design is not �awed.Next, the size of the data involved in the sheme is of ruial pratial signi�ane.We usually need short publi and private keys, mainly when they have to be stored inportable devies like hip ards, whih may have small storage apabilities. We alsowant to redue the amount of transmissions and the length of the signatures. Thelatter is an important parameter in appliations for whih many signatures have tobe stored (e.g. eletroni ommere) or transmitted (e.g. pay TV).Another key property is the time omplexity, sine it diretly ontrols the ostof the devies on whih a sheme may be implemented. Here, we have to distinguishbetween preomputations that an be performed o�-line and stored in memory, andalulations that have to be done on-line during authentiation or signature ompu-tation. The latter is often the bottlenek of many appliations, espeially when smartards are used. Naahe et al. [34℄ proposed to preompute use & throw ouponsin order to make the DSA signature proess muh more e�ient. However this at-tempt for designing on the �y signature shemes is not optimal sine it still requires amodular multipliation. Another approah is muh more general in harater: Even,Goldreih and Miali [15℄ proposed the onept of on-line/o�-line digital signatureand desribed a onstrution to transform any signature sheme in suh a way thatmost of the omputations an be done o�-line. This was further improved by Shamirand Tauman [44℄.In this paper, we study an interative zero-knowledge identi�ation sheme, alledGPS for short, and a derived signature sheme. They ombine provable seurity basedon the disrete logarithm problem over an arbitrary �nite group, short keys, shorttransmissions and signature size and minimal on-line omputation.The oupon-based signature algorithm GPS allows to implement publi-key sig-nature or identi�ation shemes on low ost smart ards, without rypto-proessor.Another promising appliation is the implementation of suh shemes on ontatlesssmart ards. Suh ards just look like redit ards but they have an eletroni mi-rohip and an embedded antenna. These omponents allow the ard to ommuniatewith an antenna/oupler unit without any physial ontat. Contatless ards are the2



ideal solution when transations must be proessed very quikly, as in mass-transitor toll olletion but, sine the power supply omes from eletromagneti indution,heavy-onsumption rypto-proessors hardly an be used.A typial appliation of GPS is �on the �y� authentiation at a toll. The basi ideais to equip eah authorized ar with a low ost ontatless smart ard. When a argoes through a toll, it does not have to stop but just performs a GPS authentiation inorder to prove that it is a legitimate user. In suh an appliation, the time allowed totransmit data and to perform on-line alulations is very short, about 100 milliseonds.The main feature of GPS is to use publi key ryptography in this setting (veryshort authentiation time and low ost devies), thus ahieving a high level of seurity.Furthermore, in suh an independent appliation that does not require interoperabilitywith other systems, the oupons an be omputed and stored in the ard by theauthority who also ats as a veri�er.Notie that symmetri ryptography ould also be used to solve this probleme�iently. But the advantage of using publi key ryptography is that no seret masterkey has to be stored by the veri�er (here the toll). Consequently, the system is muhmore seure against piray.Earlier announements. The GPS sheme was �rst proposed by Girault at Euro-rypt '91 [22℄ as an example of a sheme with self-erti�ed publi keys but withoutseurity analysis. Then, the main results of this paper appeared in a preliminary ver-sion at Eurorypt '98 [40℄. The main tehnial di�erenes are a more preise seuritymodel and a omplete proof of seurity. Many tehnialities have been streamlinedand we only assume the intratability of omputing disrete logarithms with shortexponents.The GPS sheme has been submitted to the European NESSIE projet and la-belled by this projet as a strong ryptographi primitive [12℄. Various modes of useare desribed in [26℄. Finally, the GPS identi�ation sheme has been standardized byISO/IEC (International Organization for Standardization/ International Eletroteh-nial Commission) [32℄, while the signature sheme is urrently at an earlier stage.Paper organization. In this paper, we show that GPS ahieves a ombination of thestrongest properties that one an demand in authentiation appliations. In setion 2we �rst reall the Shnorr sheme and several of its variants. Then we desribe the GPSidenti�ation sheme and we reall how it an be turned into a signature sheme. Insetion 3, we develop our seurity model for identi�ation, and we study the seurity ofthe GPS identi�ation sheme. We prove that GPS is seure against ative adversariesprovided the so-alled disrete logarithm with short exponents problem is hard. Insetion 4, we establish the seurity of the derived signature sheme using the randomorale model in order to validate the proposed design. The last setion is more pratial3



in harater: we disuss how to hoose seure parameters in order to resist the knownattaks against fatorization and the disrete logarithm problem. Then we explainhow to optimize size of the data and, �nally, report on the performanes of a smartard appliation.2 Desription of GPS2.1 Identi�ation shemes based on the disrete logarithm problemIn 1989, C. Shnorr [42℄ proposed a nie proof of knowledge of a disrete logarithmin groups of known prime order. This proof is a more e�ient version of previousproposals of Chaum et al. [11, 10℄ and Beth [4℄. Suh a proof an be used as an iden-ti�ation sheme, and also onverted into a signature sheme using the Fiat-Shamirparadigm [18℄. In these shemes, the size of the data is short, and the omputationload is quite aeptable.Towards a more preise desription, we let p be a prime number. We denote by Z�pthe set of invertible elements modulo p. Let q be a large prime divisor of p� 1 and gan element of Z�p of order q, i.e. suh that gq = 1 mod p but g 6= 1. The prover knowsa seret element s in Zq and he wants to prove that he knows the disrete logarithmof I = g�s mod p in base g. We �rst notie that any veri�er an immediately hekthat p is prime, q is a prime divisor of p � 1, g is of order q and that I belongs tothe subgroup of Z�p generated by g. This last veri�ation just onsists in heking thatIq = 1 mod p.In order to prove knowledge of s, the prover �rst generates r 2 Z�q at randomand sends the ommitment x = gr mod p to the veri�er who answers a hallenge randomly hosen in the interval [0; B � 1℄, where B is a publily known systemparameter. Next, the prover omputes y = r + s mod q and sends y to the veri�erwho heks the equation x = gyI mod p. This elementary round an be repeatedsequentially; we denote by ` the number of repetitions.The seurity analysis of the sheme shows that a prover aepted with probabilitysubstantially greater than 1=B` must know the disrete logarithm of I, i.e. the seret s;the proof is sound. Furthermore, even a dishonest veri�er annot learn any additionalinformation about the seret, whatever the number of authentiations may be, if Band ` are polynomial in a seurity parameter, i.e. asymptotially �not too large�; theproof is perfetly zero-knowledge.Many modi�ations of the Shnorr sheme, that ahieve additional properties, havebeen proposed. Firstly, one an use a omposite modulus instead of a prime modulusand keep the fatorization of the modulus seret. As a onsequene, the order of themultipliative group in whih the omputations are performed may remain seret.Furthermore, the order of the publily known base g an also be publi or private.In the Shnorr sheme, both the order p � 1 of the group and the order q of g are4



known. We will see that in the GPS sheme, both of those parameters an remainunknown to provers and veri�ers. Other shemes, lassi�ed in �gure 1, ahieve di�erentombinations. We now brie�y review those protools.Order of the multipliative groupknown unknownOrder of gknown Chaum, Evertse, van de Graafand Peralta [11, 10℄,Beth [4℄, Shnorr [42℄,Okamoto [36℄ Girault [21℄,Biham and Shulman [6℄Order of gunknown Brikell and MCurley [7℄ GPS [22, 40℄, RDSA [5℄Poupard and Stern [41℄Fig. 1. Disrete logarithm related shemes lassi�ed aording to the need for the order of the groupand/or of the base g to be known by provers and veri�ersThe Okamoto sheme. The Shnorr sheme is known to be perfetly zero-knowledgeif the parameters B and ` remain polynomial in a seurity parameter. The one-round(` = 1) variant remains sound if B is super-polynomial, but, as a onsequene, thisvariant is perfetly zero-knowledge only w.r.t a honest veri�er, i.e. a veri�er who ran-domly hooses the hallenges. However it is unknown how to prove the zero-knowledgeproperty if the veri�er an bias the distribution of his hallenges. This means that,for large hallenges, we an only prove the seurity of Shnorr identi�ation againstpassive adversaries who just observe regular authentiations. Exatly the same remarkapplies to the GPS sheme.A solution proposed by Okamoto [36℄ onsists in using two bases g1 and g2 and toprove the knowledge of a �representation� (s1; s2) suh that I = gs11 gs22 mod p. Whilethis protool is not proven to be zero-knowledge, it nonetheless is witness indistin-guishable [17℄. As a onsequene, provided the omputation of the disrete logarithmof g1 in base g2 modulo p is intratable, the sheme is provably seure against ativeadversaries, even for large hallenges (note that so is GPS, as explained in setion 3).The Brikell-MCurley sheme. In the protool proposed in [7℄, the omputationsare still done modulo a prime number p but instead of using a base g of publily knownprime order q, the parameters are hosen suh that p� 1 is divisible by the produtq � w of two seret prime numbers. The rest of the sheme is similar to the Shnorrprotool; it uses a base g of order q but the answer y is equal to r + s mod p � 1in order not to reveal information about q. The main advantage of this variant is to5



base the seurity on the intratability of the disrete logarithm problem modulo p oron the fatorization of p� 1. This means that it is seure if at least one of those twoproblems is di�ult.The Girault sheme. The idea of [21℄ is to hoose a omposite modulus n =(2fp+ 1)� (2fq + 1) where 2fp+ 1, 2fq + 1, p, q and f are prime. The integer f ispubli, the base g has order f and the answer y is omputed modulo f . A publi keyof a prover of identity Id is obtained with the formula I = Id1=egs mod n where thee-th root of Id is omputed by an authority who knows the fatorization of n and sis a seret key hosen by the prover. In this setting, an identi�ation, in spirit, is aShnorr proof of knowledge of the disrete logarithm (e�s) of Ie=Id mod n in base g.The GPS sheme. A way of improving the Shnorr protool e�ieny is to get ridof modular redutions during identi�ation or signature. Exponentiation modulo pan be performed o�-line by the user's devie or preomputed by an authority in ause & throw oupons [34℄ setting. Therefore, in order to further redue the on-lineomputation to a very simple operation, it is natural to eliminate the seond modulusq by performing the operations y = r+s in Z. This has �rst been proposed by Giraultin [22℄ and the seurity analysis of this protool is preisely the subjet of the presentpaper in a more general setting. Note that in [24℄, the on-line operation is redued toa single, but muh longer, addition.Other shemes. A variant of GPS, alled RDSA, has been proposed in [5℄ andanalyzed in [19℄. We an also note that the sheme desribed in [41℄ is based on theintratability of the fatorization problem, but it an be seen as a proof of knowledgeof disrete logarithm where the order of the group and the order of the base areserets owned by the prover. More reently, another fatorization-based sheme hasbeen proposed, in whih the key pair is a RSA key pair [25℄.2.2 GPS identi�ation shemeWe now desribe preisely the GPS identi�ation sheme. The seurity analysis ap-pears in the next setion.Choie of the underlying mathematial struture. The GPS identi�ationsheme is de�ned on a generi group G and uses a spei� element, namely the baseg 2 G. In the theoretial seurity analysis of the next setion, we only assume the in-tratability of omputing disrete logarithms in the group G, in base g, for exponentsin the range [0; S � 1℄ where S is a publi parameter of the sheme.6



More preisely, we assume the existene of a randomized algorithm PP(!pp; k)that generates publi parameters G and g aording to a seurity parameter k usinga random tape !pp.In pratie, several mathematial strutures an be used; the most interestinghoies for G are listed below:� G = Z�p with p a prime number s.t. p� 1 has a large prime fator q; the order ofthe base g should be q. We obtain a variant of the Shnorr identi�ation shemein whih on-line omputation is twie as fast for the same seurity.� the set G = Z�n of invertible elements modulo an RSA modulus n, i.e. a ompositeinteger with typially two prime fators of almost the same size. Note that thefators of n are no longer required so they an be disarded after the generationof n. Then g an be randomly hosen. However, the generation of n and g mustbe done by a trusted party sine the omputation of �short� exponents, typiallyof 160 bits, an be done very easily using partial Pohlig-Hellman tehniques [45℄if the order of g is known and if it has many small prime fators. In pratie, weadvise the use of modulus n whih is the produt of two strong primes, i.e. primesp s.t. (p�1)=2 is also prime. We also advise the use of the base g = 2 for e�ienyreasons.� G an also be derived from an ellipti urve. Analogs of GPS in the ellipti urvesetting an be de�ned in a straightforward manner; see for example [13℄.� Muh more sophistiated mathematial strutures an also be used; the only on-straint is the intratability of the disrete logarithm with short exponent problemis suh groups. An example of suh an approah is proposed in [5℄.Other publi parameters. Besides the upper bound S for the seret keys, additionalparameters of the GPS sheme are the number ` of elementary rounds and two integerbounds A and B, de�ned below. The relations between those parameters are analyzedin setion 3. We just summarize some fats about these parameters in order to maketheir meaning more expliit:� the probability of impersonation is 1=B`,� the omputation of disrete logarithms in base g in the group G must be intratablefor exponents in the interval [0; S � 1℄,� A must be signi�antly larger than S �B sine it de�nes the size of some randomdata used to mask the seret.Publi/private keys. The private keys s are integers hosen in the range [0; S � 1℄and the related publi keys I are omputed in the group G by the relation I = gs.Protool (see �gure 2). We let � = (B � 1)(S � 1). A round of identi�ationonsists for the prover in randomly hoosing an integer r in [0; A� 1℄, and omputing7



the ommitment x = gr. Next, he sends x to the veri�er, who answers a hallenge randomly hosen in [0; B�1℄. The prover heks  2 [0; B�1℄ and omputes the integery = r+ � s. He sends y to the veri�er who heks gy = x� I and y 2 [0; A+�� 1℄.A omplete identi�ation onsists in repeating ` times the elementary round. Thetheoretial analysis shows that ` should be super-logarithmi in the seurity parameterin order to be able to prove the seurity of the sheme against ative adversaries, asin the Shnorr sheme. However, in many pratial appliations, ` will often be equalto ` = 1.Parameters: `, A, B and S integersg an element of a multipliative group GSeret key: s 2 [0; S � 1℄Publi key: I = gsProver Veri�erRepeat ` timeshoose r in [0; A � 1℄x = gr x�������������!hek  2 [0; B � 1℄  ������������� hoose  in [0; B � 1℄y = r + � s y�������������! hek gy ?= x� I andy 2 [0; A + (B � 1)� (S � 1)� 1℄Fig. 2. GPS identi�ation shemeAs usual in this kind of sheme, many straightforward variants an be designed,suh as hoosing I = g�s and/or y = r �  � s, with some trivial impat on the restof the protool.2.3 GPS signature shemeWe an turn the identi�ation sheme into a signature sheme by following the teh-nique originally proposed by Fiat and Shamir [18℄, and used by Shnorr [42℄ andmany others: hallenges  are no longer randomly hosen by a veri�er but omputedby means of a hash funtion h with output range [0; B� 1℄, with B larger than in theidenti�ation sheme.The signature of a message m is omputed by taking a random r in [0; A� 1℄ andomputing x = gr,  = h(m;x) and y = r + s. This produes the signature (x; ; y)that may be heked by anybody using the equations  = h(m;x), y 2 [0; A + (B �1)� (S � 1)� 1℄ and gy = xI. 8



Furthermore, well known optimizations, desribed in setion 5.2, suh as reduingthe signature to the pair (; y) an be applied. This leads to the following signaturesheme:Input:� publi parameters (G; g; A;B; S)� hash funtion h(:), with output range [0; B � 1℄� signer's private key s� message enoded as an integer mOperations: signature (; y) shall be omputed by the following sequene of steps:1. Randomly generate an integer r from the range [0; A � 1℄.2. Compute x = gr.3. Compute  = h(m;x).4. Compute y = r + � s.5. Output (; y).A signature is veri�ed using the following sheme:Input:� publi parameters (G; g; S;A;B)� hash funtions h(:)� signer's publi key I� message enoded as an integer m� signature to be veri�ed (; y), a pair of integersOutput: �valid� ifm and (; y) are onsistent given the publi key; �invalid� otherwiseOperations: output shall be omputed by the following sequene of steps:1. If  is not in [0; B � 1℄ or y is not in [0; A+ (B� 1)� (S� 1)� 1℄ output �invalid�and stop.2. Compute x0 = gy=I.3. Compute 0 = h(m;x0).4. If 0 =  then output �valid� else output �invalid�.3 Seurity analysis of the GPS identi�ation shemeThe aim of this setion is to formally prove the seurity of the GPS identi�ationsheme. We �rst de�ne the seurity model we use. Next, in order to prove the seurityof the GPS protool against ative adversaries, we follow the approah of Feige, Fiatand Shamir [16℄, proving ompleteness, zero-knowledge and soundness.Another strategy to demonstrate the seurity against ative adversaries is to provethat GPS is witness indistinguishable [17℄. In [38℄, Pointheval proved that the GPSsheme enjoys this property for some spei� group G and base g 2 G.9



3.1 Seurity modelBy means of an identi�ation sheme a prover onvines a veri�er of his identity.Both the prover and the veri�er are modeled as probabilisti polynomial time Turingmahines (Pptm). They have a speial tape, denoted !, initially �lled with randomlyand uniformally hosen bits. They also have additional tapes where they an readand/or write the messages that they exhange. See [30℄ for a omplete de�nition ofinterative Pptms.We onsider the following senario for identi�ation; �rstly a randomized algo-rithm generates publi parameters on input the seurity parameter k. Its runningtime is polynomial in k. Next a seond probabilisti algorithm, using random tape!K , generates pairs of publi and private keys (pk,sk) and sends the seret key tothe prover while the related publi key is made available to anybody, inluding ofourse the prover and the veri�er. Finally, the identi�ation is an interative protoolbetween the prover and the veri�er whih respetively use random tapes !P and !V .At the end, the veri�er aepts or not.We now modify this senario, where everybody is honest, in order to add anattaker whose aim is to impersonate the prover, i.e. to be aepted by a veri�er withthe publi key of the prover. In this model, we onsider an attaker that does notorrupt publi parameters and key generation. Thus, there are only two ways for himto obtain information. Firstly, the attaker an passively observe the ommuniationduring regular authentiations between the prover and the veri�er. Seondly, he antake ontrol over the veri�er. The di�erene between the passive and the ative attaksis that the ative attaker an make the veri�er deviate from the protool in order totry to extrat more information about the prover's seret key.In the ative senario, we an view the attaker and the veri�er under ontrol as asingle mahine. Aordingly, an attaker is made of two probabilisti polynomial timeTuring mahines; the �rst one, �attaker A1�, interats with a prover and sequentiallyexeutes a polynomial number of identi�ations while the seond one, �attaker A2�,ats as a prover and tries to impersonate the original prover. Of ourse, the �rstattaker an transmit some information to the seond one but the ontrary is notallowed. Notie that suh a seurity model does not take into aount onurrentattaks where the attaker performs parallel authentiations with the prover [14℄ orreset attaks where he an reset the prover in a former state [9, 2℄. Furthermore,lassial man-in-the-middle attaks annot be performed sine we separate interationswith the prover from those with the veri�er.We an now de�ne what is a seure identi�ation protool in this model: a protoolis seure if the probability for any probabilisti polynomial time attaker (A1; A2) tobe aepted is negligible:8d 2 N 9k0 8k > k0 Pr [Veri�er aepts A2℄ < 1kdwhere the probability is omputed over all the random tapes.10



3.2 The disrete logarithm with short exponent problemFor e�ieny reasons, GPS seret keys are hosen in the range [0; S � 1℄ and notmodulo the (possibly unknown) order of g. As a onsequene, the seurity of GPS isnot redued to the disrete logarithm problem but, more preisely, to the so-alleddisrete logarithm with short exponent problem. Among other studies, this problem hasbeen used by [45℄ in the ontext of the Di�e-Hellman key agreement sheme and alsoby [37, 20℄ in the ontext of provably seure pseudorandom generators. Of ourse, ifS is hosen greater or equal to the order of g then the seurity assumption is reduedto the ordinary intratability of omputing disrete logarithms in G in base g.We assume the existene of a randomized algorithm PP(!pp; k) that generatespubli parameters G, g and S from a seurity parameter k using a random tape !pp.The disrete logarithm with short exponent problem onsists, given inputs of G, g, Sand gx s.t. x 2 [0; S � 1℄, to �nd x.The intratability assumption we will further use in the seurity proof of GPS isas follows:Disrete Logarithm with short exponent assumption. For every poly-nomial Q and every probabilisti polynomial time Turing mahineM runningon random tape !M , for su�iently large k,Pr!pp;!M [M(G; g; S; gx) = x where (G; g; S)  PP(!pp; k) and x 2 [0; S � 1℄℄ < 1Q(k)3.3 Seurity analysis of GPSIn the ase of GPS, some publi parameters are the group G, the element g 2 G andthe bound S whih are generated aording to the seurity parameter k. The exatway of generating those parameters depends on the kind of ryptographi group G thatis used but, roughly speaking, k de�nes the �size� of G and S in suh a way that thedisrete logarithms with short exponent problem may be assumed to be intratable,i.e. that there should not exist any polynomial algorithm in the seurity parameter kable to solve this problem.In order to prove the seurity of GPS, we �rst prove in theorem 1 that honestprovers are orretly authentiated. Next, we need to prove than an attaker (A1; A2),as desribed in setion 3.1, annot be aepted with non-negligible probability. Firstly,A1 interats with a prover. The zero-knowledge property, proven in theorem 2, showsthat the ommuniation between the A1 and a prover an be simulated. This meansthat the prover an be replaed by a simulator, who does not know any seret. Sinethe simulated ommuniation is indistinguishable from real ones, the attaker annotdetet this hange. So, the attaker learns as muh information from the simulator asfrom the real prover and we onlude that no information about the seret is leakedduring the exeution of the protool. 11



Then, we show that if the seond part of the attaker, A2, is aepted with non-negligible probability, it an be used to solve in polynomial time a problem that isassumed to be intratable. Suh a proof modi�es the key generation algorithm butthe distribution of the keys remains indistinguishable from the real one. In onlusion,we obtain that, if a Pptm attaker exists in our model, the disrete logarithm withshort exponent problem an be solved in expeted polynomial time in the seurityparameter k. In appliations where this problem is assumed to be intratable, weonlude that the GPS sheme is seure against the ative adversaries we onsider.Let us introdue some notation. For any integer x, jxj is the number of bits(blog2(x)+ 1) of x, and abs(x) denotes the absolute value of x. We use funtionÆ, de�ned by Æ (true) = 1 and Æ (false) = 0. Finally, we denote by ^ the logialoperator �and�.Impliitly, we onsider that S, A, B and ` are funtions of the seurity parameterk. In order to simplify notations, we do not expliitly write the dependenies on kbut, when we say that a positive expression f is negligible, this means that f dependson k and that, for any onstant d and for large enough k, f(k) < 1=kd.Theorem 1 (Completeness). The exeution of the protool between a prover whoknows the seret key orresponding to his publi key and a veri�er is always suessful.Proof. At the end of eah round, the veri�er obtains x = gr and y = r + s, whihan be easily omputed by the prover if he knows the seret key s. Consequently,gy = gr+s = gr � I = xIFurthermore, 0 � y = r + s � (A� 1) + (B � 1)� (S � 1) < A+ �. utTheorem 2 (Zero-knowledge). The GPS protool is statistially zero-knowledge if` and B are polynomial and `SB=A is negligible.Proof. We desribe an expeted polynomial time simulation of the ommuniationbetween a prover P and a dishonest veri�er A1 who an use an adaptive strategy tobias the hoie of the hallenges in order to try to obtain information about s. Inthis ase, the hallenges are no longer randomly hoosen and this must be taken intoaount in the seurity proof. If we fous on the ith round of identi�ation, A1 hasalready obtained data, denoted by hist, from previous interations with P . Then theprover sends the ommitment xi and A1 hooses, possibly using hist, xi and bits fromits random tape !A, the hallenge i(xi; hist; !A).Here is an algorithm that uses a random tape !M to simulate the ith round ofidenti�ation by the usual method of resettable simulation:step 1. using !M , hoose random values i 2 [0; B�1℄ and yi 2 [�;A�1℄ (reall that� = (B � 1)(S � 1)), 12



step 2. ompute xi = gyi=Ii ,step 3. if i(xi; hist; !A) 6= i then return to step 1 and try again with another pair(i; yi), else return (xi; i; yi).The rest of the proof shows that, provided � is muh smaller than A, this simula-tion algorithm outputs triplets statistially indistinguishable from real ones, for any�xed random tape !A. The main goal is to justify the intuition aording whih thedistribution of xi = gyi=Ii , as omputed by the simulator, and the distribution of gr,as hosen by the real prover, are statistially lose.Let us prove that the distribution of the generated triplets is statistially indistin-guishable from the distribution of real triplets, i.e. formally that�1 = X�;�; ����Pr!P [(x; ; y) = (�; �; )℄� Pr!M [(x; ; y) = (�; �; )℄����is negligible. This means that the two distributions annot be distinguished by anyalgorithm, even using an in�nite omputational power, but only aessing a polynomialnumber of triplets of both distribution. We refer to [30℄ for more details on thisde�nition.Let (�; �; ) be a �xed triplet. Let us evaluate the respetive probabilities to obtainsuh a triplet during one round of proof and during simulation.We assume that the prover is honest, i.e. follows the protool. Consequently,Pr!P [(x; ; y) = (�; �; )℄= Prr2[0;A�1℄ [� = gr ^ � = (�; hist; !A) ^  = r + � � s℄= Xr2[0;A�1℄ 1AÆ �� = g=I� ^ � = (�; hist; !A) ^ r =  � � � s�= 1AÆ �� = g=I� ^ � = (�; hist; !A) ^  � � � s 2 [0; A � 1℄�= 1A � Æ �� = g=I��� Æ (� = (�; hist; !A))� Æ ( � � � s 2 [0; A� 1℄) (?)We now onsider the probability Pr!M [(x; ; y) = (�; �; )℄ to obtain the triplet(�; �; ) during the simulation desribed above. This is a onditional probability givenby: Pry2[�;A�1℄;2[0;B�1℄ �� = gy=I ^ � =  ^  = y ����  = (gy=I; hist; !A)�Using the de�nition of onditional probabilities, this an be written asPry2[�;A�1℄;2[0;B�1℄ �� = gy=I ^ � =  = (�; hist; !A) ^  = y�Pry2[�;A�1℄;2[0;B�1℄ [ = (gy=I; hist; !A)℄13



Let Q = Xy2[�;A�1℄;2[0;B�1℄ Æ � = (gy=I; hist; !A)�. We obtain that the denominatorof the previous fration isPry2[�;A�1℄;2[0;B�1℄ � = (gy=I; hist; !A)� = Q(A� �)�BWe now return to the evaluation of Pr!M [(x; ; y) = (�; �; )℄= X2[0;B�1℄ 1B Pry2[�;A�1℄ �� = gy=I� ^  = y ^� =  = (�; hist; !A) �, Q(A� �)�B= Pry2[�;A�1℄ �� = g=I� ^  = y ^� = (�; hist; !A) �� A� �Q= Xy2[�;A�1℄ 1A� � � Æ�� = g=I� ^  = y ^� = (�; hist; !A) �� A� �Q= 1Q � Æ �� = g=I��� Æ (� = (�; hist; !A))� Æ ( 2 [�;A� 1℄) (??)Comparing (?) and (??), we see that, in order to proeed with the indistinguisha-bility proof, we have to show that Q is lose to A. The question is how many pairs(; y) 2 [0; B � 1℄ � [�;A � 1℄ satisfy  = (gy=I; hist; !A)? The answer is providedby the following ombinatorial lemma the proof of whih appears in appendix A:Lemma 3. If f is a funtion from G to [0; B�1℄ and I 2 fgs; s 2 [0; S � 1℄g then thetotal number N of solutions (; y) 2 [0; B�1℄� [�;A�1℄ of the equation  = f(gy=I)satis�es A� 2� � N � A.We an speialize the result of lemma 3 by setting f to the funtion whih omputes(gy=I; hist; !A) from (; y). Consequently we obtain that Q is between A� 2� andA. We are now able to bound the distane �1 between the atual and simulateddistributions:�1 = X�;�; ����Pr!P [(x; ; y) = (�; �; )℄� Pr!M [(x; ; y) = (�; �; )℄����= X�;�;2[�;A�1℄ ����Pr!P [(x; ; y) = (�; �; )℄� Pr!M [(x; ; y) = (�; �; )℄����+ X�;�; 62[�;A�1℄ Pr!P [(x; ; y) = (�; �; )℄14



= X2[�;A�1℄;�2[0;B�1℄;�=g=I� ���� 1A � Æ (� = (�; hist; !A))� 1Q � Æ (� = (�; hist; !A)) ����+0�1� X�;�;2[�;A�1℄ Pr!P [(x; ; y) = (�; �; )℄1A= ����� 1A � 1Q �����Q�+ 1� X2[�;A�1℄;�2[0;B�1℄;�=g=I� 1AÆ (� = (�; hist; !A))= jQ�AjA + 1� QA � 2 jQ�AjA � 4�A < 4SBAThis proves that the real and simulated distributions are statistially indistin-guishable if SB=A is negligible.We �nally explain the reason why the mahine M runs in expeted polynomialtime. Step 3 outputs a triplet (xi; i; yi) if (xi; hist; !A) = i. We have already proventhat Pry2[�;A�1℄;2[0;B�1℄ � = (gy=I; hist; !A)� = Q(A� �)�Band that A� 2� � Q � A so the probability of suess at step 3 is bounded beween1B �1� �=A1��=A� and 1B � 11��=A�. Sine SB=A is negligible, this probability is essen-tially 1=B and the expeted number of exeutions of the loop is B. Consequently, theomplexity of the simulation of the ` rounds is O(`�B).In onlusion, if `SB=A is negligible and if ` and B are polynomial, the GPSprotool is statistially zero-knowledge. utSine GPS is statistially zero-knowledge, we know that interations with a proverannot help an attaker in our model. Consequently, the end of the seurity proof ofGPS onsists in proving that, if the veri�er aepts, then, with overwhelming prob-ability, the prover must know the disrete logarithm of I in base g. Intuitively, afterone ommitment x has been sent, if the prover an orretly answer with probability> 1=B, he must be able to answer to two di�erent hallenges  and 0 with y and y0,smaller than A+ �, suh that gy=I = x = gy0=I0 . Let � = y � y0 and � = � 0; weobtain g� = I� . The following lemma, where " is impliitly assumed to depend on theseurity parameter k, turns those ideas in more formal terms:Lemma 4. Assume that some prover is aepted for a publi key I with probability" > 1=B`. Then there exists an algorithm whih outputs� 2 [�(A+ �� 1); A + �� 1℄ and � 2 [1; B � 1℄ suh that g� = I�with probability > 16� "�1=B`" �2. The expeted running time is < 2=" � T , where T isthe average running time of an exeution of the identi�ation protool.15



Proof. The proof of this lemma appears in appendix B. It is quite similar to theextrator of the Shnorr sheme [43℄.We now meet the main di�erene between the Shnorr proof and GPS. If theorder of g were known and relatively prime with any integer in the range [1; B � 1℄,then, exatly as in the Shnorr sheme where g is of prime order ord(g) = q, it wouldbe very easy to reover the seret s from the equation g� = I� , just by solving theequation � � s� = 0 mod ord(g). When the order of g is unknown, we annot solvethis equation. A onsequene is that GPS is not a proof of knowledge of a disretelogarithm beause logarithms annot be extrated from aepted provers. However, wean prove its seurity in our model, assuming the sole intratability of omputing shortdisrete logarithms in base g, modulo n. Let us �rst reall a well known probabilistilemma (see for example [39℄) :Lemma 5 (Splitting Lemma). Let A � X � Y , suh that Prx;y [A(x; y)℄ � ",and 
 = �a 2 X j Pry [A(a; y)℄ � "=2� then Prx [x 2 
℄ � "=2.Theorem 6 (Seurity of GPS). Assume that an adversary (A1; A2) is suh thatafter interations between A1 and a prover, A2 is aepted with non-negligible proba-bility by honest veri�ers. Further assume that ` and B are polynomial while `SB=Aand 1=B` are negligible, relatively to the seurity parameter k. Then there exists analgorithm that solves the disrete logarithm with short exponent problem in expetedpolynomial time.Proof. The basi idea of the proof is to show that if an adversary an impersonatea prover, he an ompute disrete logarithms with short exponent in expeted poly-nomial time. We have already seen in lemma 4 that if a prover is aepted with nonnegligible probability, he must know integers � and � suh that g� = I� . Unfortu-nately, we annot immediately dedue the disrete logarithm of I in base g from thisequation sine we do not know the order of g. However, we show in this proof thatonly two situations are possible and that in those two ases we an �nally omputedisrete logarithms.In the �rst ase, the exponents � are most of the time multiples of � so it iseasy to simplify the equation g� = I� and to ompute logg I. In the seond ase, weonsider the opposite situation in whih � does not usually divide �; we an no longerompute logg I but, if we already know that I = gs0 , we learn that � � s0� is a non-zero multiple of the multipliative order of g. Then, this information �nally enablesto solve the disrete logarithm problem for values I 0 for whih we do not previouslyknow the logarithm. Some tehnial details are now provided.In the proof, we �x the group G and the base g; we onsider an adversary aeptedwith probability �, where the probability is onsidered over the random tapes !K (for16



the hoie of the private key s), !A (for the attaker random hoies) and !V (forthe veri�er random hoies). We let I = fI = gs; s 2 [0; S � 1℄g the set of all publikeys. Let I0 be suh a key hosen in I. We now desribe an algorithm that uses theadversary (A1; A2) to ompute the disrete logarithm of I0 in base g.Notie that, in order to make the proof as simple as possible, we present a non-uniform algorithm for omputing disrete logarithms, i.e. an algorithm that dependson the probability of suess of the attaker. However, sine the atual value of thisprobability is not used but just allows to estimate the omplexity, it ould easily betransformed into a uniform algorithm, by just running in parallel all Turing mahinesdesribed below.Firstly, notie that the interation between A1 and a real prover an be simulatedin expeted polynomial time as explained in theorem 2. Consequently, the informationtransmitted by A1 to A2 in our seurity model an be output by a probabilisti Turingmahine that does not know any seret. Furthermore, the program of this mahinean even be inluded in the program of A2.Then, in our seurity model, the probability of suess � for an attaker isPrI2I;!A;!V [the adversary (A1; A2) is aepted with the publi key I℄ = �The probability is taken over those random tapes and also over the publi keys so thatthe probability of suess an be muh smaller for some spei� keys. However, fora non-negligible part of the keys, the probability of suess is �not too small�. Moreformally, let I0 be the subset of the publi keys I suh thatPr!A;!V [the adversary is aepted with the publi key I℄ � �=2Lemma 5 proves that the probability for a publi key I to be in this subset I0 isgreater than �=2. Sine the probability of suess of the attaker � is non-negligiblewhile 1=B` is assumed to be negligible, we onsider large enough values of the seurityparameter k for whih �=2 > 1=B`. In this ase we an use the result of lemma 4 thatshows the existene of a PptmM(I) whih outputs� 2 [�(A+ �� 1); A + �� 1℄ and � 2 [1; B � 1℄ suh that g� = I�with probability " > (�=2 � 1=B`)2=(6(�=2)2), in time T 0 < 4=� � T .Thus, the probability that a publi key gs is in I0 and that M(I) outputs (�; �)suh that g� = I� is larger than �=2� ".Prs2[0;S�1℄ [gs 2 I0 ^M(gs) outputs (�; �)℄ � �"2Two situations an our depending on the probability for M(I) to output � and �suh that � � s� = 0: 17



� First ase: if most of the time M(I) outputs (�; �) suh that � � s� = 0, weimmediately obtain the disrete logarithm s = �=� that we are looking for,� Seond ase: on the ontrary, if M(I) outputs (�; �) suh that � � s� 6= 0, weobtain a multiple of the multipliative order of g in G. Then this informationenables to solve equations suh as �0 � x� 0 = 0 mod ord(g) and onsequently toompute disrete logarithms from the outputs ofM(I).First ase: if the probability that a publi key gs is in I0 and that the Pptm M(I)outputs (�; �) suh that � � s� = 0 is greater than �"=4,Prs2[0;S�1℄ [gs 2 I0 ^M(gs) outputs (�; �) ^ � � s� = 0℄ � �"4we an immediately ompute the disrete logarithm of the target publi key I0 bymeans of the following algorithm:step 1. hoose r 2 [�(S � 1); S � 1℄,step 2. ompute I 0 = I0 � gr,step 3. runM on input I 0,step 4. if M(I 0) outputs (�; �) suh that � divides �, �=� � r 2 [0; S � 1℄ andI0 = g�=��r , output logg I0 = �=� � r; otherwise restart at step 1.Notie that if I0 2 I and r 2 [�(S � 1); S � 1℄, the probability for I 0 to be in I is1/2. Furthermore, if I 0 2 I, it is uniformly distributed. Consequently, using the fatwe are in the ��rst ase�, we obtain that this algorithm �nds logg I0 after about 8=(�")exeutions of the loop on average. Eah loop alls M one so the expeted runningtime of this algorithm is O(T 0=(�")) = O(T=�2").Seond ase: we now onsider the ase whereM does not diretly output seret keys:Prs2[0;S�1℄ [gs 2 I0 ^M(gs) outputs (�; �) ^ � � s� 6= 0℄ � �"4The �rst step onsists in omputing a multiple of the multipliative order of g. Weuse the following algorithm:step 1. hoose s0 2 [0; S � 1℄,step 2. ompute I = gs0 ,step 3. runM on input I,step 4. ifM outputs (�; �) suh that g� = I� and L0 = abs(�� s0�) 6= 0 output L0;otherwise restart at step 1.After an expeted running time O(T 0=(�")), we obtain L0 6= 0 suh that gL0 = 1.Consequently, L0 is a multiple, smaller than A + �, of the order of g in G. We annow ompute disrete logarithm of I0 in base g using the following algorithm:18



step 1. hoose r 2 [�(S � 1); S � 1℄,step 2. ompute I 0 = I0 � gr,step 3. runM on input I 0,step 4. ifM does not output (�; �) s.t. g� = I 0� restart at step 1; otherwise output(�; �).We obtain I 0, � and � suh that I 0� = g� . In order to �nd the disrete logarithmof I 0, we solve the equation � � �x = 0 mod L0. Let d = gd(�; L0); sine �=d andL0=d are relatively prime, the equation (�=d) � (�=d) � x = 0 mod L0=d has exatlyone solution x0 mod L0=d,x0 = (�=d) � (�=d)�1 mod L0=dWe now onsider the equation � � � � x = 0 modulo L0 and not only modulo L0=d.As a onsequene, we an write x = x0 + i � L0=d mod L0 with i 2 [0; d � 1℄. Thesolution x suh that I 0 = gx an �nally be found among those d solutions. We an ofourse use exhaustive searh sine d < � < B but a Baby-step Giant-step algorithmallows to �nd the solution in time O(pB).In onlusion, in time O(T 0=(�") +pB) we obtain s0 suh that I0 = gs0 . A �nalproblem is that s0 may not be in the range [0; S � 1℄; we now desribe an iterativealgorithm that �nally outputs a short disrete logarithm in this range.If the probability over s 2 [0; S � 1℄ that M(gs) outputs (�; �) and that thepreviously desribed algorithm omputes exatly s is larger that �"=4, we obtains0 2 [0; S � 1℄ in time O(T 0=(�") + B). Otherwise, we an run the algorithm withI = gs and we obtain s0 suh that gs = I = gs0 but s 6= s0. Consequently L0 and(s� s0) mod L0 are multiples of the order of gso L00 = gd(L0; (s� s0) mod L0) is alsosuh a multiple but L00 � L0=2. We obtain a new value for L0 and we restart theproedure. When the size of L0 dereases, we are �nally able to ompute the disretelogarithm of I0 in the range [0; S� 1℄. The reursive step is repeated less than jA+�jtimes beause jA + �j is the size of the �rst value of L0. Finally, the expeted timeomplexity of this algorithm is O(jA+ �j(T 0=(�") +pB)).If � is non-negligible and 1=B` is negligible, for in�nitely many values of k, 1=B` <�=4. Consequently, the probability of suess of the PptmM of lemma 4 is" > 16��=2� 1=B`�=2 �2 > 1=24and its expeted running time T 0 is less than 4=�� T . Finally, if B is polynomial, weobtain an expeted polynomial time algorithm to ompute disrete logarithms in baseg, in the range [0; S � 1℄. ut19



4 Seurity analysis of the GPS signature ShemeAs explained in setion 2.3, the GPS identi�ation sheme is turned into a signaturesheme by following the tehnique originally proposed by Fiat and Shamir [18℄: hal-lenges  are no longer randomly hosen by a veri�er but omputed by means of ahash funtion h with output range [0; B � 1℄. In order to avoid the parallel exeu-tion of a super-logarithmi number of rounds, we need to inrease the bound B to besuper-polynomial.In order to prove the seurity of the GPS signature sheme, desribed in setion 2.3,we an show that, if an attaker is able to forge valid signatures after having obtainedsignatures of messages of his hoie, then we an use it to ompute the seret keyand onsequently to solve the disrete logarithm with short exponent problem. Therandom orale model [3℄ is used to simulate the behavior of the hash funtion so thatthe proof only validates the overall design.The GPS signature sheme uses a ryptographially seure hash funtion. Ideally,a seurity proof should only be based on some intratability assumption suh as theimpossibility to �nd ollisions. However, in order to obtain seurity arguments, weneed to simulate the hash funtion as a random funtion, following the initial idea ofBellare and Rogaway [3, 18℄. In this model, the hash funtion is not onsidered as adeterministi publi funtion but it is modeled by an orale that randomly answersthe queries. The only limitation is that this orale provides the same answer if thesame query is asked twie.The use of the random orale model is known to be a good engineering priniplewhen it is not possible to provide proofs without suh an additional assumption. Thisapproah validates the design of the sheme even if we must be areful with this modelas shown by Canetti et al. [8℄.A generi result due to Abdalla et al. [1℄ shows that the use of the Fiat-Shamirparadigm to transform an identi�ation sheme seure against passive attaks intoa signature sheme leads to a seure signature sheme sine even existential forgeryunder adaptive hosen message attak is impossible (see [31, 1℄ for standard de�nitionof seurity of digital signature shemes). Consequently, the only property we need toprove is that the GPS identi�ation sheme remains zero-knowledge if the bound Bis inreased to be super-polynomial but in a setting where the veri�er is honest, i.e.randomly hooses the hallenges in the range [0; B � 1℄. Going through the proof oftheorem 2, we see that the simulation requires B to be polynomial. This is a well knownrestrition for zero-knowledge and appears in the Shnorr sheme as well. However,we an notie that if the veri�er is honest the simulation omplexity is only O(`).Theorem 7. Under the disrete logarithm with short exponent assumption, if SB=Aand 1=B are negligible, the GPS signature sheme is existentially unforgeable underadaptive hosen message attaks in the random orale model.20



5 AppliationsThis setion is more pratial in harater: we disuss how to hoose seure parametersin order to resist the known attaks against fatorization and the disrete logarithmproblem. Then we explain how to optimize size of the data and, �nally, report on theperformane of a smart ard appliation.5.1 Choie of the underlying mathematial strutureLet us �rst fous on the group G and the base g. We already proposed in the desriptionof GPS several possible options. We now larify the pratial hoie of the parametersfor the �rst two options:� G = Z�p with p a prime number s.t. p�1 has a large prime fator q; the order of thebase g should be q and the size of q should be larger than 160 bits. The disretelogarithm problem modulo a prime integer seems urrently intratable if the sizeof the modulus is larger than 1536 bits. For more seure appliations, jpj = 2048may be appropriate; we refer to spei� overviews suh as [33℄ for a more preiseanalysis.� G = Z�n with n an RSA modulus, i.e. a omposite integer with two prime fatorswith almost the same size. The use of a 1536-bit modulus seems adequate toguarantee a high level of seurity based on the intratability of fatorization forthe next years. Then g an be randomly hosen. In pratie, we advise the use ofmodulus n whih is the produt of two strong primes, i.e. primes p s.t. (p�1)=2 isalso prime, in order to avoid partial Pohlig-Hellman attaks [45℄. We also advisethe use of the base g = 2 for e�ieny reasons.The seurity is related to the hoie of G, g and S in suh a way that omputingdisrete logarithms in base g is intratable, even if those exponents are in the range[0; S � 1℄. Sine disrete logarithms an be omputed in O(pS) using Pollard rhoalgorithm or Shanks baby-step giant-step algorithm, S should be at least equal to 2160and preferably to 2256 for a high level of seurity.Then, the hoie of the size of B is related to the probability of impersonation ofan adversary. The expeted seurity depends on the appliation and B = 232 with` = 1, i.e. using just one elementary round, would probably be large enough for manyidenti�ation systems sine it guarantees that an adversary annot impersonate a userwith probability larger than 1=232. For signature appliations, the use of a standardhash funtion suh as SHA-256 [35℄ (B = 2256) an be advised.Finally, the parameter A must be s.t. A=SB is �large� in order to guarantee thestatistial zero-knowledge property. We advise to take A = S �B � 280.21



5.2 Optimization of ouponsIn order to derease the number of ommuniation bits, Fiat and Shamir [18℄ havesuggested to send a hash value of the ommitment issued at the �rst step of theidenti�ation. This trik an be used with our sheme. Let h0 be a hash funtion andjh0j be the size of its output. The modi�ations are very simple: the ommitmentx is replaed in the protool by x0 = h0(x) and the veri�ation equation beomesx0 = h0(gy=I).Using the notion of t-ollision-free hash funtions, i.e. funtions suh that it isinfeasible to �nd t distint values with the same image, Girault and Stern [28℄ havepreisely analyzed the onsequenes of suh a modi�ation on the seurity of identi�-ation shemes. This result an still be improved [23℄ if we onsider that an attakerannot perform more than a �xed number of on-line operations during the authenti-ation proess. In this setting, if we want a seurity level of 32 bits, we an hoosejh0j = 50 bits only.Finally, we have already observed that the ommitments an be omputed o�-line, by the individual devie or by an authority. In fat, we just have to ompute andto keep in memory pairs of the form (r; h0(gr)). Notie that the omputation of theexponentiation an use the Chinese remainder theorem, in order to be more e�ient,when the fatorization of the modulus is known.Memory spae an be saved if the random values r are not stored but generatedwhen needed by a pseudo-random generator. This �nally leads to store the seed of thegenerator and the ommitments, i.e. about only 6 bytes per authentiation using [23℄ommitment hashing tehnique.5.3 PerformaneAn implementation of GPS on a PC shows the very high pratial e�ieny of thissheme for identi�ation and signature appliations.Parameters(see setions 2.2 for notations) G = Z�n with jnj = 1536 (n = p� q)jSj = 2� 80 = 160, ` = 1jBj = 35, jAj = jSj+ jBj+ 80 = 275Parameters generation � 1 sComputation of ommitment x 10.1 ms (5940 per minute)Computation of answer y < 1 �sVeri�ation 11.8 ms (5084 per minute)Fig. 3. Implementation of GPS in C using GMP library on a PC PIII 450 MHzFigure 3 shows the performanes obtained with a Pentium III 450 MHz proessorand a C program using the GMP multipreision arithmeti library [29℄.22



The publi parameters and key generation needs about one seond but this oper-ation does not happen very often. The omputation of ommitments or of ouponsjust onsists in omputing an exponentiation. The veri�ation is a similar operation.We see that we an perform a few thousands of suh operation by minute with asimple PC. Note that the omputation of the answer is so easy that we annot reallymeasure it. Also note that veri�ation an be server-aided and made as e�ient asGuillou-Quisquater veri�ation [27℄.5.4 Smart ard appliationIn order to show to what extent omputations are minimal and transmissions veryshort, we now present an appliation we have implemented on a low ost smart ardbased on a 6805 hip. The size of the program is very small, about 300 bytes. Wesee in �gure 4 that the running time of the omputation is very short and atuallymost of the time needed for an authentiation is taken by the ommuniation protoolbetween the ard and the omputer. Notie that, for signature, we would have to takeinto aount the omputation time of the hash funtion; this would probably be thebottlenek of many very fast appliations. In onlusion, this demonstrates that thesheme under study is really suitable for very fast �on the �y� appliations.Parameters(see setions 2.2 for notations) G = Z�n with jnj = 1536jSj = 2� 80 = 160, ` = 1jBj = 35, jAj = jSj+ jBj+ 80 = 275Size of a oupon (= jh0j) 50 bitsNumber of oupons in 4 KBytes 655Running time at 3.57 MHz < 2 msAmount of ommuniation 45 bytesRunning time at 9600 bauds 38 msat 115000 bauds 3.1 msTotal running timeat 9600 bauds � 40 msat 115000 bauds � 5 msFig. 4. Implementation of GPS on low ost smart ardAknowledgmentsWe thank D. Bleihenbaher for his omment on the neessity of heking the rangeof the hallenges and the anonymous referees for fruitful omments.23
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We de�ne the following sets of pairs (; y):PX = f(;X + s) suh that  2 [0; B � 1℄ and X + s 2 [�;A� 1℄gThose subsets have many properties that are summarized below:(1) 8X 6= X 0 PX \ PX0 = ;proof: if (; y) 2 PX \ PX0 , y = X + s and y = X 0 + s so X = X 0.(2) SX2ZPX = [0; B � 1℄� [�;A� 1℄proof: for any pair (; y) 2 [0; B � 1℄� [�;A� 1℄, (; y) 2 Py�s.(3) if X < �� s(B � 1), PX is emptyproof: if X < �� s(B � 1), 8 2 [0; B � 1℄ X + s < �.(4) if X � A, PX is emptyproof: if X � A, 8 2 [0; B � 1℄ X + s � A.(5) ard(PX) = B , X � � and X < A� s(B � 1)proof: obvious sine X + s 2 [�;A� 1℄ for all  2 [0; B � 1℄.(6) 8X 2 Z 8(; y) 2 PX 8(0; y0) 2 PX f(gy=I) = f(gy0=I0)proof: this is obvious sine gy=I = gy0=I0 .(7) for any X 2 Z, there is at most one pair (; y) 2 PX suh that f(gy=I) = proof: this is an immediate onsequene of property (6) beause all the pairs (; y)in a set PX have di�erent values of .(8) for any X suh that ard(PX) = B, there is exatly one pair (; y) 2 PX suh thatf(gy=I) = proof: a pair (; y) suh that f(gy=I) =  is given by (f(gX);X + f(gX) � s).Uniqueness follows from property (7).Consequently, the total number N of solutions of the equation  = f(gy=I) isupper bounded by the number of non-empty sets PX , this is a onsequene of prop-erty (7), and lower bounded by the number of sets PX with exatly B pairs, this is aonsequene of property (8). Using properties (3), (4) and (5), we obtain that N liesbetween A� 2� and A in the following way:A� 2� � A� �� (B � 1)s � N � A� �+ (B � 1)s � AB Proof of lemma 4Assume that a prover A2 running on random tape !A, is aepted with probability" = 1=B`+"0 for a publi key I. We write Su(!A; 1; :::`) 2 ftrue; falseg the result(suessful of not) of the identi�ation of A2(!A) when suessive hallenges 1; :::`are used. Pr!A;1;:::` [Su(!A; 1; :::`)℄ = " = 1=B` + "026



We onsider the following algorithm (inspired from [43℄):step 1. Pik a random tape !A and a tuple  of ` integers 1; :::` in [0; B � 1℄ untilSu(!A; ). Let u be the number of probes.step 2. Probe up to u random `-tuples 0 di�erent from  until Su(!A; 0). If afterthe u probes a suessful 0 is not found, the algorithm fails.step 3. Let j be the �rst index suh that j 6= j 0; we note yj and yj 0 the relatedorret answers of A2. If j > j 0, the algorithm outputs � = yj � yj 0 and � = j � j 0and otherwise it outputs � = yj 0 � yj and � = j 0 � j .If this algorithm does not fail, the prover is able to orretly answer two hallengesj and j 0 given the same ommitment xj , with the answers yj and yj 0. This meansthat gyj=Ij = x = gyj 0=Ij 0 so g� = I� . Furthermore, � 2 [�(A+ �� 1); A + �� 1℄and � 2 [1; B � 1℄.We now analyze the omplexity of the algorithm. By assumption, the probabilityof suess of A2 is ", so the �rst step �nds !A and  with this probability. Theexpeted number E of repetitions is 1=" and the number u of probes is equal to Nwith probability "� (1� ")N�1.Let 
 be the set of random tapes !A suh that Pr [Su(!A; )℄ � " � "0=2 =1=B` + "0=2. The probability for the random tape !A found in step 1 to be in 
,onditioned by the knowledge that Su(!A; ) = true, an be lower bounded in thefollowing way:Pr!A; [!A 2 
jSu(!A; )℄ = 1� Pr!A; [!A 62 
jSu(!A; )℄= 1� Pr!A; [Su(!A; )j!A 62 
℄� Pr!A; [!A 62 
℄Pr!A; [Su(!A; )℄ � 1�� 1B` + "02�� 1" = "02� "Thus, with probability > "0=(2"), the random tape !A is in 
 and, in this ase,by de�nition of the set 
, the onditional probability for a tuple of hallenges 0 6= to lead to suess is � "0=2. The probability to obtain suh a tuple 0 after less thanN probes is � 1� (1� "0=2)N .Therefore, the probability to obtain a random tape !A in 
 and to �nd an appro-priate 0 is greater than"02" � +1XN=1 "� (1� ")N�1 � "1��1� "02 �N#= "02  +1XN=0(1� ")N ��1� "02 � +1XN=0 �(1� ")�1� "02��N!= "02  1" � 1� "02"+ "02 � "� "02 ! = "024"2 � 11 + "02" � "02 = "024"2 � 23� � 1B`�" + "0�27



Sine " > 1=B` and 1 > "0 > 0, we obtain 0 < 1=(B`�")+"0 < 2 so 23�� 1B`�"+"0� > 23 .In onlusion, the algorithm �nds (�; �) with probability > "02=(6"2) and the totalexpeted number of exeutions of the protool between the prover and a veri�er issmaller than 2=". ut
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